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On some structures defined by algebraic equations
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Abstract. Structures on a differentiable manifold obtained by introducing &
vector-valued linear function J satisfying some algebraic relations have been exten-
gively studied by a number of mathematicians under various topics, such as complex
and almost complex spaces, almost produot spaces, contact and almost contact
spaces, and f-structure spaces. Recently Duggal [1] defined a new structure called
a GI'-structure on a differentiable manifold, which is more general than almost complex,
almost product and almost tangent structures. In the preaent paper we define some
tensors in the G:F-structure space and study the properties of these tensors. In Sec-
tion 4 we define some stuctures on the GF-structure and obtain an inclusion relation
between them.

1. Introduction. We consider a differentiable manifold M of class C®.
Let there exist on M a vector-valued linear function J of class 0 such
that

(1.1) JX =a’X

for an arbitrary vector field X, and a is complex number. Such a structure
is defined to be a GF-structure [1]. It is well known that M is endowed
with an almost complex, almost product, and almost tangent structures
according as @ = +iora = +1 or a = 0, respectively. If the GF-structure
is endowed with a Hermitian structure, i.e. the metric tensor { , ) satis-

fying

(1.2)a TX,JYS = —a(X, T)
or
(1.2)b TX, TS = —(X,JI>,

then it is defined to be an H-structure [1] subordinate to the G.F-structure.
DEFINITION. A bilinear function ¢ is said to be pure in two slots if
p(JX,JY)—a?p(X, ¥) = 0. It is said to be hybrid in its slots if @(JX,
JY)+a?p(X, ¥) = 0.
Let us consider on M, equipped with an H-structure, a tensor F
of type (0, 2) such that

(1.3) (X, Y)E WX, ¥ = —(X,JY) = —F(T, X).
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It is easy to wverify the following relations:

(1.4)a F(JX,Y) =a'X,Y) = -F(X,JY),
(14)b PJX,JY) = —a*(JX,Y) =a?{X,JY) = —a?*F(X, Y),
and
(1.5) (VxF)(X, 2) =<(Vxd) X, Z),
where V x 18 a connexion satisfying the following conditions:
(1) VixyrnZ =VxZ+VyZ,
(IX) V(¥ +2) = Vg Y +VxZ,
(1.6) (I1I) Vix ¥ =fVx Y,
(V) Px(f¥) =Pz ¥ +(XNY,

(V) XX, Z) =(VxX,Zy+<X,VxZ),

where X, ¥,Z are arbitrary vector fields, f is a real-valued function,
and ¢ , > denotes metric tensor defined by (1.2). Hence the connexion
Vx defined by (1.6) is a connexion with torsion, the torsion tensor T'(X, Y)
being given by

TX,Y) =V Y-V X—[X, Y].
In view of (1.4)b, we have
ProposiTioN 1.1. The 2-form F defined by (1.3) is hybrid.

2. Nijenhuis tensor. The Nijenhuis tensor with respect to J is
a vector-valued bi-linear function N given by [1]

21) N(X,Y) =J[X, Y]-J[JX, Y1-J[X, Y]+ [JX,J Y]+
+J*T(X, ¥)—JT(JX, Y)—JT(X, JY)+T(J X, JY),

where T' is the torsion tensor with respect to the connexion Vx.
We can easily verify the following relations:

(2.2)a NZX,Y)=—-N(Y, X),
(2.2)b NJX,Y)=NX,JY) = —JN(X, ¥)
and '

2.2)c N(JX,JY) = —IN(X,JY) = —JN(JX, ¥) = &N (X, ¥).

The above relations provide the proof of the following:

PROPOSITION 2.1. The Nijenhuis tensor N in a GF-structure is pure
in X and Y.
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THEOREM 2.1. Let M be equipped with an H-structurs. If we put
(2.3) N(&X,Y)=J2[X, Y]+ [JX,JY]-J[X,JY]-J[JX, Y]
and

(2.4) N,(X, ¥) =JT(X, I’) +T(JX,JY)—-JT(X,JY)-JT(JX, Y),
then
N(X, ¥) = Ny(ZX, X)+N,(X, Y).

Moreover, N, and N, are skew-symmetric and pure in X and Y.
Proof. By the definition of ¥,, N, and N, we get

NX,Y)=/N(X, Y)+N,(X, Y).
Moreover, N, and N, are obviously skew-symmetrie, while
N(JX,JY) = J*[JX, JY)+ [J°X, Y] -J[JX, PY]-J[J*X, J Y]
= a®N,(X, ¥)

proves that N,(X, ¥) is pure in X and Y. Similarly it can be verified
that N,(X, ¥) is pure in X and Y.
TeEOREM 2.2. If the torsion temsor T(X, ¥Y) satisfies

(2.5) Tr'JX,Y) =JT(X, Y),
then it is pure in its slots and
N(X, T) = Ny(X, ¥).
Proof. In view of (2.5) and (1.1) we have
TJX,JY) =JT(X,JY) = —JT(JY, X) = a’T (X, ).
Hence T(X, Y) is pure in X, Y. Using (2.5) in (2.1) we get
N(X, Y)=N,X, Y).
THEOREM 2.3. If the torsion tensor T(X, Y) satisfies
(2.8) TWJX,Y)=—-JT(X, Y),
then it is pure in its slots and
N(X, Y) = N,(X, ¥)+4a’T(X, ¥).
Proof. As in Theorem 2.2 we get
T(JX,JY) = a*T (X, Y),

which proves that T'(X, ¥) is pure in X, ¥. Also using (2.6) in (2.1) we
have

N(X, Y) = Ny(X, Y)+4a*T(X, V).
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COROLIARY 2.1. In an almost tangent space, if the torsion tensor satis-
fies (2.8), then

N(X, X) = Ny(X, X).

THEOREM 2.4, The tensor fields N, and N, defined by (2.3) and (2.4),
respectively, satisfy the following relations:

N(JX, Y) = Ny(X,JY) = —JN,(X, ¥)
and

N,(JX, X) = Ny(X,JY) = —JN.(X, Y).

Proof. From (2.3) we have
N\(JX,Y) =J[JX, Y]+ [’ X,JY]—J[J'X, Y] -J[JX,JY].
Using (1.1) in-the above equation we get

N.,(JX, Y) = —JN,(X, Y).
Similarly

N\(X,JY) = ~JN(X, Y)

and ,
N, (X,JY)=N,(JX,Y) = —JN,(ZX, Y).

THEOREM 2.5. Let us putl
(2.7) 'N(X,Y,Z) = —a{N(X, ¥),Z) = —(N(JX,JY), 2);

then

(2.8) ’-N(Xv ¥,2) = —"N(Yf X, 7)
and
(2.9) ‘N(JX,Y,2)='N(X,JY,Z) ="NZX, Y, JZ).

Proof. Relation (2.8) follows directly from (2.2)a while (2.9) follows
from (2.7) and (2.2)b.
From the above theorem we get the following:

COROLLARY 2.2. Tensor ‘N (X, ¥,Z) defined by (2.7) salisfies the
following relations:

(2.10) '‘N(JX,JY,Z)="N(X,JY,JZ)="'N(JX, Y,JZ)=a*'N(X, Y, Z).
THEOREM 2.6. If we put
(2.11)  'N(X, ¥,Z) = —a’(N(X, ¥), Z) = —(N\(JX,TY),Z)

and
(2.12) 'Ny(X, ¥, Z) = —a’{N,(X, ¥), Z) = —(N,(JX,JX), 2>,
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then

(2.13) '‘N(X,Y,Z) ="'N|(X,Y,Z)+'N(X, X, %),
(2.14) ‘N(X,Y,Z) = —'N,(Y, X, Z),

(2.15) ‘No(X, ¥, 2) = "N, (Y, X, Z),

(2.16) ‘N.(JX, Y, 2) = 'NyX,JY,Z) ='N,(X, Y, JZ),
(2.17) '‘Ny(JX,Y,Z) = 'NyX,JY,Z) ='Ny(X, Y, JZ).

Proof. (2.13) follows from the definition of 'N,, N, and ¥, (2.14)
and (2.15) follow from the skew-symmetry of N,(X, ¥) and N,(X, ¥),
while (2.16) and (2.17) follow from (1.2)b and Theorem 2.4.

THEOREM 2.7. Lel us put

(2.18) M(X, ¥) = (Px)I Y~ (V sy J)X;
then
(2.19) N(X,Y)=MZX,Y)-M(Y, X).

Proof. We have
M(X, Y)-M(Y, X) = (Vxd)JY—(V;pd) X —(Vyd)JX+(Vyxd) Y
=0V Y—JIVxdY —V;pd X +JV;: X —
— @V XA+ IVpd X -V d Y—JV;x Y
=& (VyY—Vy X) 4 (Vyxd Y —V;pd X)—
—J(V;x Y —VpdX)—J(VxJY —V;pX)
= N(X, ¥).

PrOPOSITION 2.2, Tensor M (X, Y) defined by (2.18) satisfies the
Sfollowing relations:

(2.20)a MJX,Y)=—-UJY, X)

and

(2.20)b MJX,JY) = —-a’?M (Y, X).
Proof.

MJX,Y) = (V)X —(Vypd)JX = —M(JY, X).
From. the above relation. we have
M(JX,JY) = —a’M(Y, X).
THEOREM 2.8. Let us put
(2.21) 'M(X,Y,Z) = —a®(M(X,Y,)2y =(M(JY,JX),Z);
then
(2.22) 'N(X,Y,%2)="M(X,Y,Z2)-"M(Y, X, Z).
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Furthermore, M (X, Y, Z) is skew-symmetric in ¥ and Z if and only if
(Vord)Z+(Vyzd) Y = 0.
Proof. Relation (2.22) follows from (2.19) and (2.21). Furthermore
MX, Y, Z)+M(X,Z,Y) =(VyP)JX, Z)— (Vs F) X, Z)+
+(VxF)(JZ, XY)— (Vs FYZX, )
=L(Vypd)Z, Xy +{(VyzJ) ¥, X,

which proves the theorem.
Relations (2.20)a, (2.20)b and (2.22) provide the proof of the following:

CoroLLARY 2.3. We have
‘NJX,Y,Z)=2'M(X,JY,Z) and 'N(JX,JY,Z)=2a"'M(X,Y,2Z2).
THEOREM 2.9. If the covariant deriwative Vx satisfies
(Vogd)Z+(Vizd) X =0,
for arbitrary ¥, Z, then
'‘N(X, Y,2)+'N(Y,%,X)+'N(Z, X, Y)
=2'M(X,Y,Z)+2'M(Y,Z, X)+2'M(Z, X, X).

Proof. The relation follows immediately from Theorem 2.8. In
view of (2.18) and (2.21) we get

THEOREM 2.10. We have
'MJIX, Y, Z)+'M(JY,Z, X)+'M(JZ, X, Y)
= —20*[V;x F(JY, Z)+V,p P(JZ, X)+V;z F(JX, Y)].

3. Remarks.

1. If for an H-structure (FxJ)Y = 0 is satisfied, then we define M
to be a Kihler space in the broad sense. It follows immediately from
(2.10) and (2.19) that for a Kéahler space in the broad sense M (X, Y)
and N(X, ¥) both vanish. Consequently, ‘M (X, Y, %) and 'N(X, ¥, Z)
also vanish.

2. If for an H-structure (V,xJ)JY —a*(VxJd)Y =0 is satisfied,
then we say that M is a quasi-Kédhlerian space in the broad sense. It can
easily be deduced that in a quasi-Kdhlerian space in the broad sense
MJX,Y)= —JM(X, Y).

4. It can easily be checked that the covariant derivative VyF and
exterior derivative dF of the 2-form # are given by

(4.1) (VxF)(Y,Z) =<K(Vxd) ¥, Z)
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and

(4.2) aF(X, Y,2) = 6 Vx(F)(Y,2)+ S P(T(X,X),2),
¥ X, Y.z

where © denotes the cyclic sum over X, Y, Z,
X.Y¥.Z

TEEOREM 4.1. Using the above formulae we get the following resulis:
(43) N(X, X) = (Vxd)JY+(Vyxd) Y —(Vypd) X —(Vpd)J X,
(4.4) 28*(VgF)(Y,2) = *dF(X, Y, Z)+dF (X, JY, JZ)—
—(N(Y,JZ),Xy—a* G F(T(X,Y),Z— & F(T(X,JX),JZ).
X,¥,Z ¥,JZ

(4.5)  2(V;xF)(JY, Z)—2a*(VxF)(Y, Z)
= —a*dF (X, ¥, Z)—dF(X,JY, JZ)+dF(Z,JX, JY)+
+dF(Y,JZ,JX)+a* G F(T(X,Y),2)+ & F(T(X,JY),Jz)—
XY,z Z

— & F(T(Z,JX),JY)— & F(T(JZ JX) X),

JX,JV,Z IX,V,JZ
(4.8) 2(V,;xF)WJIY, Z)+2a(VxF)(Y, Z)
=(N(X,JY), Z—{N(X,Z),JY) —(N(JY, Z), X>.
Proof. The proof of (4.3) follows from (2.1), (1.5) and the fact that
Ve Y—VyX =[X, Y]+T(X, ¥),
while (4.4), (4¢.5) and (4.6) are consequences of (2.5) and the formula

(4.7) (VeFYWJY,Z) = (VxF)(X,JZ).
We shall call an H-structure space
a BK-space iff :
Vx(J) =0,

a B A K-space iff
iF(X,Y¥,Z) = 6 F(T(X, X),Z),
X, ¥.,Z

a B N K-space iff
Ve()Y+Vp(J)X =0,
a B Q K-space iff
(Vixd)JY—a*(VxJ)Y =0,
and a B H-space iff
N(ZX,Y)=0
for all X, ¥, Z.
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We study the inclusion relation between the special spaces defined
above and prove
THEOREM 4.2.

< BAK :
BK < BQK and BK < BH.
< BNK

Proof. We prove that BK c B A K {follows from (4.2); BAK

c B Q K follows from (4.2) and (4.5), while BK = BH follows from (4.3).
It is obvious that BK < BNK, while BNK < BQK is a consequence

of (4.7).
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