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Determination of geometric objects of the type [2,2,1]
with a linear homogeneous transformation formula *

by M. KucHARZEWSKI (Katowice) and M. Kuczma (Krakéw)

Introduction. The purpose of the present paper is to determine
all differential geometric objects of the first class, with two components,
in a two-dimensional space (i.e. objects of the type [2, 2, 1]—cf. [2],
P- 15) which have a linear homogeneous transformation formula ().
Geometric objects with two components (of an arbitrary class and in
a space of an arbitrary dimension) have been determined and classified
by J. E. Pensov [8]; however, for the determination of these objects
Pensov applied the theory of Lie groups, and thus tacitly assumed that
the functions occurring in the transformation formula of the object are
analytic. Therefore he has not obtained all objects of the type investigated.
In the present paper we shall determine all linear homogeneous objects
of the type [2, 2, 1], without any suppositions whatever about the functions
occurring in the transformation formula. In the sequel we shall investigate
the equivalence (cf. [2], [3]) of the objects obtained in the case where
the funetions occurring in the transformation formula are measurable.

§ 1. We seek purely differential geometric objects of the first class
with two components in a two-dimensional space with the linear homo-
geneous transformation formula:

(1) Wy =fuwy+fre0,,

@y = fo 0+ faw,.

Having adopted the matrix notation

(2) Q=

R T

’
w1

’
w2

1
Wy

’ ‘Q’=|l

9

* The results of this paper have been announced (without proofs) in our note [7].

(*) Linear differential geometric objects with two components of the type J
(cf. [2], p. 47) in a two-dimensional space were determined by means of differentiation
(and thus under suitable differentiability conditions) by A. WoZniacki in 1952. However,
he has never published this result.
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we can write formula (1) shortly in the form
(3) Q2'=F-Q,.
The functions f; in formula (1) as well as the function F in (3), depend

by definition on the derivatives

2 dat aél’ ’ ’ ’
Al"~¢~a—£1, 1=1,2;1=1,2,

of the new variables with respect to the old ones. Writing shortly

1’ 11
A A,

-A- = or o
A7 A

H

we can write (3) more precisely as
(4) Q =F(4)- 2.

From the group property of the transformation formula (4) it follows
that the function F(A4) must satisfy for all regular matrices 4, B the
functional equation

(5) F(A-B) =F(4)-F(B),

(which corresponds to a system of four equations for the functions f;)
and must be a regular matrix for every regular matrix A.

The general solution of equation (5) has been given in our paper [5]
(cf. also [6]). The non-singular matrix-function #(A), fulfilling equation (5)
for all regular matrices A and B, must have one of the following forms:

(6) F(A)zo-‘?’((;’) qo(OJ)”'A’C_I’

o P -0 A Rt

o SR AN P
o nesol e

In formulae (6)-(9) J = detd, C is an arbitrary regular matrix, ¢(z),
(%), po(x) are arbitrary functions satisfying the functional equation

(10) p(ey) = p(@)p(y), xy+#0,
a(x) is an arbitrary function satisfying the functional equation

(11) a(zy) = a(x) +a(y), zy +0,
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and %(x) and s(z) are arbitrary functions satisfying the system of
functional equations

k(zy) = k(x) k(y)—s(2)s(y) ,
s(xy) = k(x)s(y)+s(@)k(y),
and the condition
(13) 8(2) £ 0
(cf. [1], [6]).
Hence we immediately get the following
THEOREM 1. Every differential geometric object of the first class with
two components in a two-dimensional space with a linear homogeneous
transformation formula must be of form (4) (with shortened notation (2)),
where F(A) is one of the matrices (6)-(9).

(12) xy #0,

§ 2. In the sequel we shall always assume that the functions fy
occurring in the transformation formula (1) are measurable. Therefore we
must insert in formulae (6)-(9), in the place of the functions ¢, ¢, @.,
a, k, s, the measurable solutions of the corresponding equations (10)-(12).
These solutions are given by the following formulae (cf. [1], [6]):

For equation (10)

(14) p(x) =|z|* or @) =|z*sgnx, d = const;

for equation (11)
(15) a(z) = cln|x|, ¢ = const;
for equation (12)

(16) k(x) = |z[*cos(cln|z]), s(z) =|z|*sin(cIn|z]),
or

(17) k(z) = (sgnz)|z|*cos(cln|z|), S(w)=(sgnm)lw[dsin(cln|a9|),

¢, d = const. It follows from (13) that in formulae (16) and (17) ¢ # 0.

If an object 2 is transformed according to formula (4) and if in a par-
ticular coordinate system we have w, *-0 and w,==0 (%), then w; =0
and w; = 0 in every coordinate system. The object £ is then a couple
of scalars and thus an object of class zero. Since in the present paper
we aim at determining and classifying the objects of the strictly first
class, in the sequel we shall always assume that

(18) wr+w;>0.
Relation (18) is invariant under transformation of the coordinate system.
(?) The sign =% means that the equality holds in a particular coordinate system

(i. e. the relation need mot be invariant). The notation is due to J. A. Schouten
(ef. [10], p. 2).



32 M. Kucharzewski and M. Kuczma

We shall give now the definition of the equivalence (similarity) of
geometric objects (cf. [2], [3]):

DEFINITION 1. Geometric objects 2 and X are called equivalent
(or simslar) if there exists an invertible function H such that the relation

Q2 =H(2)
holds in every coordinate system (is invariant under transformation of

the coordinate system).

The relation of the equivalence of objects is reflexive, symmetric
and transitive.
Now we shall prove the following

LEMMA 1. Every object X with the transformation formula
(19) 2 =C-F(A)-¢*- X,
where C is a regular matriz, s equivalent to an object 2 with transformation
formula (4).

Proof. Let us put H(X) % ¢!+ Z. The function H(ZX) is invertible,
since the matrix C is regular. Moreover, we have by (19)

H(Z)=C'- X =0 C-FA)-C' Z=F(A4)-C'-Z =F(A)-H(X),
and consequently the object Q-2 H(Z) is transformed according to for-

mula (4), which was to be proved.

Given n objects 2, ..., 2, (each with an arbitrary number of com-
ponents) we may unify them in one new object 2 = (2,, ..., 2;) (cf. [2],
p. 13).

LEMMA 2. If an object ; 1s equivalent to an object Z; (for ¢ =1, ..., n),
then the object Q2 = (2., ..., 2,) is equivalent to the object X = (X, ..., Zp).

LEMMA 3. Object Q2 = (2,,...,92,) 18 equivalent to the object %

= (Luy +ory 2u,), where p,, ..., ux s an arbitrary permulaiion of the se-
quence 1, ..., n.

We omit the simple proofs of Lemmas 2 and 3.

LEMMA 4. Object Q with transformation formula (4) with the function
F(4) of form (6) is mot equivalent to an object with transformation for-
mula (4) with the function F(A) of form (7), (8) or (9).

Proof. For an indirect proof let us suppose that the objects

w o e Ylaca

and
Y =GJ) X,
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where G(J) denotes one of the matrices (7)-(9), are equivalent. According

to Lemma 1 object 2 is equivalent to an object Q = “ z‘
2

formation formula

(21) “ ““ 0 o)

Since the relation of the equivalence of objects is transitive, the objects
Q and X are also equivalent. Consequently there exists an invertible
function H(ZX) such that the relation

(22) Q=H(2)

-A-Q.

is invariant under transformation of the coordinate system. Since we
can always choose a transformation of the coordinate system in such
a manner that the derivatives A; assume given values (with the only

restriction det(d4}) £ 0), let us put 4 = uo i]l Then we have J =1,

¢(J) =1, and—as easily follows from (10)-(13)—G(J) =“ 01 in all

cases (7)-(9). Consequently 2= 2 and by (22) Q' = Q. But according
to (21) @' = A-0Q, i.e.

14 ’
o =2w0,, 0 =3w,.

Hence it follows that w, = 0 and w, = 0, which contradicts relation (18).
Thus objects £2 and 2 cannot be equivalent.

Now we shall recall the definitions of some particular geometric
objects with one or two components in a two-dimensional space.

DEFINITION 2. Object with two components ="w1

transformation formula
Q =A4-0

is called a contravariant vector.

Object Q = “ “1
2

with the transformation formula

@ =420
is called a covariant vector.

Object 2 = Mz’ with the transformation formula
2

i IR
sgnJ

is called a contravariant @-vector.

(*) XT denotes the transposed matrix of the matrix X.
Annales Polonici Mathematici XIV 3
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Object 2 = z‘ with the transformation formula
2
. | sgnd 0 | -7
=1 sgnJ” (472

is called a covartant @-vector.

Object Q = Z‘ with the transformation formula
2
JP 0
o |l A0 £0
” o et T

is called a contravariant vector-W-density (Weyl-density) of weight —p.

Object @ — |
l| @y

with the transformation formula

’ lle 0 1,7
= (4) - Q # 0
0 lJlop ( H p H
is called a covariant vector-W-density of weight —p.
Object 2 = “ Z" with the transformation formula
120
|J [P sgnd 0

o - 42, p=o,
!

] |JIPsgnd

is called a contravariant vector-G-density (ordinary density) of weight —p.

Object Q = ZI with the transformation formula
2
[P sgn 0 -1,T
o =] (A2, pAo
0 | TP sgnd ) P

is called a covariant vector-G-densily of weight —p.
Object with one component w with the transformation formula

o =|Ifw, p#0,
is called a W-density (Weyl-density) of weight —p.
Object @ with the transformation formula
o =|JP(sgnd)w, p#0,
is called a G-density (ordinary densily) of weight —p.
Object o with the transformation formula

o’ = (sgnd)w
is called a biscalar (%).

(*) More exactly, a biscalar is an object with one component which can assume
only two different values. The name has been introduced by S. Golab. J. A. Schouten [9]
calls such an object W-scalar. Physicists sometimes call it pseudoscalar.
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Object w with the transformation formula

o =w
is called scalar.
The last four of the above mentioned objects (W - density, G - density,
biscalar, scalar) are called objects of type J (cf. [2], p. 47).

The scalar is an object of class zero, all the remaining objects defined
above are of the first class. All G-densities are equivalent to the G -density
of weight —1, and similarly all W-densities are equivalent to the W-den-
sity of weight —1. The function establishing the equivalence is in both
cases

H(o) = |o["sgno.

On the other hand, no G-density is equivalent to any W-density. For,
if a @-density o were equivalent to a W-density o, then there would
have to exist an invertible function H such that the relation

(23) o = H(o)

should hold in every coordinate system. But after a transformation of
the coordinate system such that J = —1 we have ¢’ = ¢ and o’ = —w,
and hence — w == H(o). Hence it follows by (23) that w = 0. Thus o is
a scalar and not a density, as has been assumed.

§ 3. On account of Lemma 1 and formulae (14), object 2 with trans-
formation formula (4) with a measurable function F(4) of form (6) is
equivalent to a contravariant vector-W-density, to a contravariant
vector-G-density, to a contravariant vector, or to a contravariant
G-vector. Now we shall prove

Levma 5. Contravariant vector-W-densities of different weights are not
equivalent; neither is a contravariant vector equivalent to any vector - W-density.
Similarly, contravariant vector - G-densities of different weighis are not equiv-
alent; neither is a contravariant G-vector equivalent to any vector- G - density.
Moreover, no contravariant vector-G-density or contravariant G-vector s
equivalent to any contravariant vector-W-density or to a contravariant vector.

Proof. Let Q = |

@1 | be a contravariant vector-W-density of weight

Wy
—p, or a contravariant vector (for p = 0):

g0

24 Q=
(24) o |JP

-

and let X =ii‘;:

I be a contravariant vector-W-density of weight —gq:
|

WI* o

(25) =" g

‘A X,

3%
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and let us assume that
(26) P#q.
Let us suppose that objects (24) and (25) are equivalent, i.e. that

there exists an invertible funection H such that in every coordinate system
we have

27) Q=H(2).
Thus 2’ = H(Z2’). Taking into account (24), (25) and (27) we get hence

P04 m(x) = (“w 0
(28) LA R E R (| A

-A-Z').

The function H should satisfy equation (28) for all matrices 4 with

J # 0 and for all X~ = %

P

Now let us put in (28) 4 =

such that of + o5 > 0.}
1/0’1 0
—0

, 00 7 0. Then J =1 and

A4-2 =“t“ Writing Hy = (H \ , we obtain the formula

(29) H(Z) = A~ H, °1.m,,

02 1/0y|
valid for all o; #0 and o,.
Next let us choose in (28) A = “8 g”, o > 0. Taking into account (29)

we obtain
Q2p+l 0-1 . 0

2p+1 °p+1 ’
o**lg, o*Ptl/q,

H Q2Q+10-1 0
* llgHtio, 1/g%tiq,

H,,

whence it follows, according to (26), that H, must have the form

"2“, h = const. Thus we get from (29)

o |

hjo,

But such a function cannot be invertible. Consequently the conjecture
that objects (24) and (25) are equivalent has been false.

The proof for contravariant vector-G-densities is quite analogical.
The proof that vector-G-densities and G-vectors are not equivalent to
vector-W-densities and vectors is quite similar to the proof of the ana-
logical property for G-densities and W-densities with one component
(cf. § 2).

Since covariant vector-densities and vectors have the transformation
formulae of form (4) with F(A) of form (6), they must be equivalent
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to contravariant vector-densities or vectors. More precisely this equiv-
alence (°) is established by the following

LEMMA 6. Every covariant vector-W-density (vector-G-density) of
weight —p is equivalent to a vector -G -density (vector-W-density) of weight
—p+1, or (if p =1) to a contravariant G-vector (vector). In particular,
a covariant vector (G -vector) is equivalent to a contravariant vector - G - density
(vector - W-density) of weight 1.

Proof. The lemma follows immediately from the identity

|

—1

0 -1

(A" = A

o R

0
1
1 0 N

‘1 0
and from Lemma 1.

§ 4. On account of Lemmas 1, 2, 3 and of formulae (14), an object
with transformation formula (4) with a measurable function #(A) given
by (7) is equivalent to a pair of densities, to a pair consisting of a density
and a biscalar, to a pair consisting of a density and a scalar, to a pair
of biscalars, to a pair consisting of a biscalar and a scalar, or to a pair
of scalars (this latter object is of class zero). Now we shall prove that
an object 2 with transformation formula (4) with a measurable function
F(A) given by (8) is also equivalent to one of the above-mentioned
objects.

According to Lemma 1 and formulae (14) and (15), we may confine

ourselves to objects 2 = Z‘:l with the transformation formula

2

d
(30) 0 — || Od 1 cln|J| 0,

0 |J] 0 1
or

d
(31) o |17 send do 1 clnlJ[“_Q.
0 |J|“sgnd| |0 1

Moreover, we may assume that ¢ # 0, for it is obvious that in the contrary
case object (30) represents a pair of W-densities or scalars, and object (31)
represents a pair of G-densities or biscalars.

In order to prove the equivalence announced we start from the
following

(*) The equivalence of vector-densities (in a space of an arbitrary dimension)
has been recently investigated by S. Golab [4]. The following lemma is a particular
case of his results.
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LEMMA 7. There exists a function r(a) such that
ay - —a
(32) E[‘ tert (Y1) >1

for all 1 e(0, o), a € (— o0, 0o).

Proof. Let us put
(33)  f{;a, N EYietYBP+1Y, te(0,0), a,re(—oco,c0).
‘We have

ditm; a,r) = f/i e (Y ETIS +ry/ien(y B RIf +aty tety EFI,

ie.
d
(34) rAGEI A Viet(ye+1)f ( +r+t2+1)
Since the function
. at /3 112 l at
(35) o(t; o) “VHVEFIP 3+ 5505)

increases boundlessly as ¢t—>0, one can find a é > 0 (in general depending
on a) such that

(36) g(t;a) >1 for te(0,9).

Hence we have for te(0,9) and » > 0
(37) gif(t; a,r) = g(t; a)et+rytet (VB 1) > g(t; a)et > 1.
The function f(¢; a,r) is continuous with respect to ¢t and positive

for ¢ € {4, oc), moreover for » > 0 we have lim f(¢; a, r) = oo. Consequently
t—>o0

f(t; a,7) is in (§, co) bounded from below by a positive constant:
(38) fit;a,r)=p>0 for tes, o0,
where § depends on a, but it can be made independent of r if we confine

ourselves to r > 1. Similarly the function %-}-% is continuous for
t € {8, o), and tends to zero as t—>oo. Consequently it is bounded from
below for t e (4, oo) (the bounding constant can depend on a). Thus one
can choose 7(a) in such a manner that

1

1 at
2—t+'r(a) t2+l>[§ for te{d, ), ae(—o0,c0).

From (37), (34), (38) and (39) follows relation (32), which was to be proved.

(39)
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LeEMMA 8. If d # 0, then the object with transformation formula (30)
is equivalent to a pair of W-densities of weight —1, or to a pair consisting
of a W-density of weight —1 and a scalar. Similarly the object with the trans-
formation formula (31) is equivalent to a pair of G-densities of weight —1,
or to a pair consisting of a G-density of weight —1 and a scalar.

Proof. Let us put

Jy

(./‘M"[_c]/ &

(<)

e'Dlorlol gon o,

a
Oy

Y 2

Vol 4+ a2

= | +c(anaf+a§)

sgn 02] for o0,7#0,

(40)
lo,|*sgne, for o, £0, 0,=0,

0 fOl' 0‘1 = 02 - 0,

1 Iazldsgna2 for o0,#0,

“2 0 for o0,=0,

where r(d) is so chosen that for a = d relation (32) hold. We shall prove
that relations (40) are invertible, i.e. that o, and o, are uniquely determined
by o, and ®,. From the second relation of (40) we obtain

lwg["?sgnew, for w,#0,
O fOI‘ wz = 0 .

(41) oy = {

Now, if w, = 0, then we have by (40)

o — { |o,|*sgna, for o, %0,
_ ! 0 for ¢, =0,
i.e.
_ flof"sgne, for o, #0,

o
! 0 for o, =0.

If, instead, w, # 0, then according to (41) also o, # 0, and we obtain
from (40)

Tonz |4
(42) o, = —¢|o,|’sgno, (]/ % er(d)la,/o.x(l/(ﬁ) +1) sgn 2 —.
g, [ A
2
—1n]/(ﬁ) +1 —1n|az|).
Oy

Let us put
F) LyTile@n(y e+ 1) sgni—ny £4+1.
Since
d, — t 1
aVitl = sy
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on account of Lemma 7 we have for ¢ > 0

f@y>1%.

Thus for ¢ e (0, o) the function f(f) increases from zero to oco. On the
other hand, it is evident that for ¢ ¢ (— oo, 0) the function f(¢) increases
from —oo to zero. Thus the function f(?) increases in (— oo, co) from
—oo to +oo, being, of course, continuous. Consequently, having de-
termined ¢, from relation (41), we can uniquely determine o¢,/s, from (42),
and then also o;.

Now, let o, and o, be W-densities of weight —1:

(43) o =|Ijon, o=|J|o

(or a scalar and a W-density if ¢, = 0 or o, = 0). We shall verify in what
manner o, and o, are transformed with a change of the coordinate system.
If o, # 0 (this condition is invariant under transformations of the co-
ordinate system, and thus implies the relation ¢z # 0), then we obtain
from (40) and (43)

w; = |J%w, + | {fw,eIn|J|,

’

(44)
Wz = |J|dw2 y

W

which, after putting 2 = o7 €30 be written in form (30). And if ¢, = 0,

2

then we obtain from (40) and (43)
w; = |J|w,, w2 =0,

which again can be written in form (44), and thus, after putting 2 = ' ,

also in form (30).

Consequently formulae (40) establish the equivalence of object (30)
and the pair of objects (43); the latter represents a pair of W-densities
of weight —1 (when o; 3 0 and g, # 0), or a pair consisting of a W-density
of weight —1 and a scalar (when o,0, = 0, 63+ 05 > 0. The case o, = 0
and o, =0 would imply w, =0 and w, = 0, which, according to (18),
is impossible).

Now let o, and o, be G-densities of weight —1:

(45) o, =Ja,, as=Jo,

Wy
Wy

(or a scalar and a @-density, if o; = 0 or ¢, = 0). We shall verify in what
manner o, and w, are now transformed with a change of the coordinate
system. If o, # 0, then we obtain from (40) and (45)

i = |T|*(sgnd) o, +|T | (sgnd) wyeln|J | ,

(46) ,
ws = |J|%(sgnd) oy,
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@y

which, after putting 2 = , can be written in form (31). And if

2
o, = 0, then we obtain from (40) and (45)

o) = I} sgnd)w,, =0,

which again can be written in form (46), and thus, after putting 2 = ‘

w,
w, |’

also in form (31).

Consequently formulae (40) establish the equivalence of object (31)
and the pair of objects (45); the latter represents a pair of G-densities
of weight —1 (when o, 7 0 and o, #* 0) or a pair consisting of a G-density
of weight —1 and a scalar (when o0, = 0, o} + o3 > 0).

Thus the lemma has been completely proved.

LEMvMA 9. If d =0, then object with transformation formula (30)
18 equivalent to the object consisting of a W-density of weight —1 and
a scalar, or of a pair of scalars. Similarly the object with transformation
formula (31) ¢s equivalent to the object consisting of a G-density of weight
—1 and a biscalar, or of a biscalar and a scalar.

Proof. Let Q—_-\

Wy
Wy

be an object with the transformation for-

mula (30). Since d = 0, formula (30) can be written as

(47) w; =, +cln|d|w,, = w,.

If w, =0, then object (47) consists of two independent objects
o =w,, w=0,

l.e. it is a pair of scalars. If, on the other hand, w, # 0, then the object
with components

w
48 g, = exXp — o, = W
(48) 1 Pcw27 2 2

is equivalent to the object 2, for we have from (48)
w; = Colne,, w,=0,,

and thus formulae (48) are invertible. Further we get from (48) and (47)
with a change of the coordinate system

’

' ol L1 —
01 = eXp 5 = exp (cw2 + In [JI) || oy
gg — 0'2 ’

which means that o; is a W-density of weight —1 and o, is a scalar.
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Now let o = be an object with the transformation formula (31).

Wq
Since d = 0, formula (31) can be written as

(49) w; = (sgnd)w;, +(sgnd)(eln|J|)w,, w2 = (sgnd)w,.
If w, =0, then £ consists of two objects with one component
w = (sgnd)w,, w; =0,
i.e. it consists of a biscalar and a scalar (according to (18) necessarily

w, # 0). If, on the other hand, w, # 0, then the object with components

w
(50) 0, = (BXP c—wl) (sgnw,), Ty = Wy,

is equivalent to the object {2, and, moreover, we have by (49) and (50)
with a change of the coordinate system

’

o = (exp (Z:é)(sgn w3) = [exp ((%2 +ln|J|)] (sgnw,){sgnd)

¢
=J|ex &(sn =dJ
= P oo, (580 @2) = J o,

oz = (sgnd)a,,

which means that o, is a G-density of weight —1 and o, is a biscalar.
This completes the proof of the lemma.

§ 5. Now we shall deal with the objects with transformation for-
mula (4) with a measurable function F(A4) given by (9). According to
Lemma 1 and formulae (16) and (17) we may confine ourselves to the
objects with the transformation formula

|T[*cos(eln|J]) —|J|*sin(cIn|J|)

(1) “= H |JP%sin(cln|J]))  |J|%cos(eln|J])

2
or
|J|%(sgnd)cos(c¢In|J|) —|J|*sgnd)sin(cln|J])

Q =
o ‘ |7 |%(sgnd)sin(eln|J|)  |J[%(sgnd)ecos (eln|J|)

-2

where, according to (13), ¢ # 0.

LemMA 10. If d # 0, then the object with transformation formula (51)
is equivalent to a pair of W-densities of weight —1, or to a pair consisting
of a W-density of weight —1 and a scalar. Similarly the object with trans-
formation formula (52) is equivalent to a pair of G-densities of weight —1,
or to a pair consisting of a G-density of weight —1 and a scalar.
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Proof. Let us put

W, = (V a; -+ Ug)dl:
(53)
Wy = (l O'l—f—O'o) [

coslelnl of £ of) — —=2 2 _—sin (clnV/ crﬁ—m.)l
V0’1+O'2 10'1+O'»

%m ‘c]n l/ol -+ oz) e ——

- 0S8 (cln ¥ oL 0'2)]
'/(71 + O’)

We shall show that relations (53) are invertible, i.e. that to every couple
of numbers w,, w, fulfilling condition (18) there corresponds exactly one
couple o, 6, i+ 03 > 0, such that relations (53) hold. For this purpose
we put

(54) o, = pcosa, 0o, = psina.

Relations (54) establish a one-to-one correspondence between the couples
0y, 0, (61 + 03 > 0) and the couples g, a from the region ¢ >0, 0 < a < 2=.
Formulae (53) will now have the form

_ o, = p%cos(a—+¢lnp),
(55) . ,
w, = p%sin(a +c¢lnp) .

In order to prove the invertibility of relations (53) it is enough to show
that to every couple w,, w, fulfilling (18) there corresponds exactly one

couple g, a, 0 >0, 0 < a < 2x, such that relations (55) hold. Taking the
squares of both sides of (55) and adding the corresponding sides, we obtain

g = ((01 + ws vz

Hence and from (55) we can determine a-+c¢lng, and thus also a, up

to a multiplicity of 2x. Taking into account the condition a € (0, 2x)

we can determine a uniquely. This proves the invertibility of relations (53).
Now let o, and o, be W-densities of weight —1

(56) o) = ]J|017 0 = |J|02

(or a scalar and a W-density if o, = 0 or o, = 0). We shall verify in what
manner o, and o, are transformed with a change of the coordinate system.
We have from (53) and (56)

= IJ[d(Vﬂl‘l'Uz) [ = 08 (clnl ¢+ > +cln|J|)—

0’1-1—0'>

% _sineln (Vi + & + cln[Jl)]

O'1+O')

Cos (cln | o)_) —

— Vet ) [ s

O'l+0'>
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—— 2% snlelnVe+ og)) cos(cIn}J|)—

Vai+ o
— (L— sinleln Ve + ) + —%— cos(cnV o - a§)) sin (¢ln| J])]
Vot +at Voi+o

— |J]*w, cos (¢ln|J|) —|J |*w,sin (eln|J])

and similarly
w} = |J| o, sin(cln|J]) +|J|*w,cos (cln| T |) ,

which, after putting 2 = | “*

, can be written in form (51). Consequently
2

object (51) is equivalent to a pair of W-densities of weight —1 (when
o, # 0 and o, # 0), or to a pair consisting of a W-density of weight —1
and a scalar (when o, =0 or o, = 0; from condition (18) and the form
of formulae (53) it follows that we must have &+ as > 0).

Now let o, and o, be G-densities of weight —1

(57) o1 =dJo,, o:=4da,

(or a scalar and a G-density if o, =0 or g, = 0). It follows from (53)
and (57) that with a change of the coordinate system w, and w, are trans-
formed according to the formulae

wi = |J|%(sgnd) w, cos (cIn|J|)—|J|*(sgnd) wysin (cln|J]) ,
wi = |J|*sgnd) w,sin(cIn|J|) +|J|*(sgnd) wycos (¢In|J]) ,

0y

which, after putting Q = .| o3 be written in form (52). Consequently
2

object (52) is equivalent to a pair of G-densities of weight —1, or to a pair
consisting of a G-density of weight —1 and a scalar. This completes the
proof of the lemma.

In the case where d = 0 formulae (51) and (52) have the form

cos(cln|J1) —sin(eln|J]|) “Q

(58) " = |sin(eln|d])  cos(cln|J|)

and
(59) Q =

(sgnd)cos(cln|J|) —(sgnd)sin(cln|J])
(sgnd)sin(¢ln|J|) (sgnd)cos(cln|J|)

respectively. We shall prove the following

LEMMA 11. Neither of the objects (58) and (59) is equivalent to any
object consisting of two objects of type J with one component. Neither are
the objects (58) and (59) equivalent to each other.

Proof. Let 2 be an object with transformation formula (58) or (59).
For an indirect proof let us suppose that there exists an invertible function

2



Geometric objects of the type [2,2,1] 45

h(2)
ha( L)
of type J. Thus we have

H such that H(R2) =

is an object consisting of a pair of objects

b = gi(J)hy, hs = @y(J) by,
where @,(z) and @,(z) denote some of the functions
p(@) =lal’, @(@) =|o’sgnw, o¢(z)=sgnz, @@ =1

(d # 0). Now we effect a transformation of the coordinate system such
that J = e?*m¢. Then we have according to (58) or (59) 2' =2 and thus
also ki =h, and h; =h,. Hence it follows that h; =0, @iz) =1,
or giz) =sgnx (¢ =1,2), and this means that H is a pair of scalars,
or a pair of biscalars, or a pair consisting of a scalar and a biscalar.
Consequently H({2) can assume at most two different values, while the
set of values assumed by 2 is (on account of (18)) infinite. This contradicts
the supposition that the function H () is invertible.

Similarly, objects (58) and (59) cannot be equivalent to each other,
because under a transformation of the coordinate system with J = —1
the components of object (58) remain unchanged, while the components
of object (59) change the sign. This completes the proof of the lemma.

Formulae (58) and (59) give two families of objects, since they contain
the parameter ¢. The equivalence of objects of these families is established
by the following

LeMMA 12. EBvery object with transformation formula (58) (or (59))
with a parameter (—c) is equivalent to an object with transformation for-
mula (58) (or (59)) with the parameter ¢. On the other hand, two objects with
transformation formula (58) (or (59)) with parameters ¢, and c,, where
les| # eal, are mot equivalent.

Proof. Let
) = cos(¢,In|J|) —sin(e,In|J])
B | sin(e In]d])  cos(e,In[J])
and
cos(czln[JI) —sin(e,1n|J1)
’ sin{e,In|J[)  cos{e,In|J])
and let ¢, = —¢,. Further let 2, be an object with the transformation
formula
(60) QL =F(J) 2, .

But, as one can easily verify,

—1

1 0! 1
FyJ) — ||0 _1|] Fod) "o
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Thus, by Lemma 1, the object 2, is equivalent to an object 2, with the
transformation formula

(61) O =Fy(J) 2.
On the other hand, let |¢;| # |¢,], say |¢| > |¢;|, and let us suppose

that the objects 2, and 2, (with transformation formulae (60) and (61)
respectively) are equivalent:

(62) 2, =H(%,).
We effect a change of the coordinate system such that J = exp(2=/e,).

Then Fy(J) = "; g and 2, remains unchanged, while

e ) ¢
cos2n 0—2 —sin 21:53
1 1
Fz(J) = e &
sin 27 =2 cos2n-2
5] G

and consequently £, is changed (by the assumption ¢ # 0 (cf. p. 84)
we have 0 < |¢/e,| < 1). Thus the function H in (62) cannot be invertible
and the objects £, and £, cannot be equivalent.

The proof for objects with transformation formula (59) is analogous.

§ 6. As we have seen, in many cases objects with transformation
formula (4) have turned out to be equivalent to an object consisting
of a pair of objects of type J with one component. Here arises the problem
of the equivalence of the latter objects. The following lemma solves this
problem:

LEMMA 13. Every object consisting of two objects of type J with one
component 8 equivalent to a pair of W-densities of weight —1, to a pair
of G-densities of weight —1, to a pair of biscalars, or to a pair of scalars.
These four objects are mot equivalent to one another. ‘

Proof. Taking into account Lemmas 2 and 3 and the fact that every
object of type J with one component is equivalent to a W-density of
weight —1, to a G-density of weight —1, to a biscalar, or to a scalar,
in order to prove the first part of the lemma it is enough to show that
every ‘‘mixed’’ object (i.e. an object consisting of two different ones
of the above-mentioned objects with one component) is equivalent to
one of the objects occurring in the assertion of the lemma.

Let o, and o, be a W-density and a G-density of weight —1 respec-
tively:

o =|J|oy, o3 =0dJa,.
Then the object

w, = l/|0'10'2|3gn0102; Wy = Oy
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is equivalent to the object 2 =i and represents a pair of G -densities

oyl
. "zl
of weight —1.
If o, and o, are a W-density of weight —1 and a biscalar respectively:

o1 =|J|o,, o= (sgnd)a,,
then the object

0 = IUIH/ESgn“z, Wy == 010,
is equivalent to the object X' = Z‘ and represents a pair of G-densities
2

of weight —1. And if o, and o, are a G -density of weight —1 and a biscalar
respectively:
o1 =Joy, ox=(sgnd)o,,
then the object
W1 = 0y, w2=]°'1l°2
|

is equivalent to the object X = H z’ I and represents a pair of G -densities
2

of weight —1.
If o, is a W-density or a G-density of weight —1, or a biscalar, and
o, is a scalar different from zero, then the object

W =01, Wy = 0,0
la,
lo'z
of weight —1, a pair of G-densities of weight —1, or a pair of biscalars,
respectively. If, on the other hand, ¢, = 0 (a separate treatment of this

case is allowed, since the properties o, = 0 and o, 7 0 are invariant under
transformation of the coordinate system), then the object

is equivalent to the object 2 = and represents a pair of W-densities

W = Wy = 0y

0y
0y
sities of weight —1, a pair of G-densities of weight —1, or a pair of
biscalars.

Now we proceed to the proof of the second part of the lemma. Let
2 be an object consisting of a pair of W-densities, or of a pair of scalars,
and let 2 be an object consisting of a pair of G-densities, or of a pair
of biscalars. If X and 2 were equivalent:

Q=H(X),

then after a change of the coordinate system such that J = —1 we should
have X’ = X, and thus also Q' = 2; but the components of the object 2
after such a transformation change the sign.

Similarly an object X consisting of a pair of scalars or of a pair of
biscalars cannot be equivalent to an object 2 consisting of a pair of

is equivalent to the object 2 = and also represents a pair of W-den-
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densities, because X can assume at most two different values, while Q2
assumes infinitely many. This completes the proof of the lemma.
Thus finally we have obtained the following result:

THEOREM 2. FEvery differential geometric object of the first classwith
two components in a two-dimensional space, with linear homogeneous trans-
formation formula (4) is equivalent to one and only one of the following
objects:

1. Contravariant vector-W-densily of some definite weight —p.

2. Contravariant veotor-G-density of some definite weight —p.

3. Contravariant vector.

4. Contravariant G-vector.

5. Pair of W-densities of weight —1.

6. Pair of G-densities of weight —1.

7. Pair of biscalars.

8. Object with transformation formula (58) with a definite parameter ¢ > 0.

9. Object with transformation formula (59) with a definite parameter ¢ > 0.

Remark 1. Object consisting of a pair of scalars is not an object
of the first class, but of class zero.

Remark 2. As far as we know, objects (58) and (59) have not
been known till now, apart from the unpublished work of WozZniacki.
In particular, they do not appear in [8].
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