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Continuability and estimates of solutions of
(a(t)p(z)@) +e(t)f(x) = O

by VAapmM Komkov (Lubbock, Tex.)

Abstract. This paper discusses some basic properties of solutions of the non-
linear equation (a(t)y(z)z’)’ +c¢(t)f(z) = 0. A necessary and sufficient condition
is given for non-continuability of solutions. An estimate is given on minimal value
agsumed by a solution on a given interval, and also a proof of a restricted version
of Leighton’s variational theorem.

1. Introductory remarks. In non-linear mechanics it is quite common
for the equations of motion of a system to be of the form:

(a@®)p () = e(®)f(2) (=8

po)w = —p@ | @

For example a slight modification of the non-linear motion studied
by Poincaré ([7], Chapter 7) leads to such systems of equations. Assuming
in this case that the mass is varying with time and the strength of the
field is also time dependent, leads to the following expression for the
angular momentum (in the usual polar coordinate system r, 6):

Po = a(t)r20'.
Introducing a constraint r = p(6) we have
Po = a(t)(y(0))26',
Do = —o(t)p(r, 0) = —c(thp(y(6), 6) = —c(t)f(6).
This system is equivalent to the single equation
(a(t) (v (0)26°) +e(®)f(6) =0,

which is of the form
@) (a(®)p(@)2’) +c(t)f (z) = 0.

Here p is the angular momentum of a particle with mass a(t) varying
in time. ¢(t)@(r, 6) is the moment about the origin of the forces acting on
the particle. This moment is assumed to depend on position and also on
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time. We comment that there is no loss of generality in assuming a(t) > 0
when studying equation (1) (¢(¢) can be negative).

2. Non-continuability of solutions of equation (1). We shall extend
the result of [2] and consequently generalize older results such as [3] by
proving that the basic arguments of [2] apply to equations of the type:

(1) (a@®yp(@)2’) +e()f(z) = 0.

In the remainder of this paper we assume the conditions:
a() =0, a()eCt, T] (T = + o not excluded), ¢(t)e C[t,, T1,
(%)  f(&)eC(&yy + 00)y, w(E)e C1(&y + oo) for some &y ¢ R, and that

Ep(£) >0, £f(£) >0 whenever & # 0.

We pose the initial value problem for equation (1), and seek a local
solution #(t) of (1) satisfying conditions @(t,) = @, > &, #(,) = v,. The
proof of the existence of local solutions is fairly routine and is thus omitted.
Under the above conditions on y(x), f(z) and if a(t) and ¢() have the same
sign on [%,, ?,] it is easy to duplicate the argument of [3] to show that all
solutions of (1) are continuable on to [Z,,t;]. Therefore we shall :assume
that a(ty)c(ty) < 0.

We shall rewrite equation (1) as a pair of equations:

o = [a(®)] [p(=(®)] " (Va()-p),
(Va-p) = e(t)f(z(2)),

where p = V(a(t))zp(a:(t))a}'(t) (where V  denotes the positive square
root). This form will be useful in subsequent arguments, particularly
is the proof of Theorem 1.

We shall now prove that under a certain integrability hypothesis
on f(z), y(x), given any ¢, > {,, £, and v, can be chosen so that the solutions
of (1) satisfying x(t,) = @,, v(t,) = v, is not continuable on to [¢,, ]

‘We denote F(x) = f:p(&)f(&)d&.
Ty

(3)

THEOREM 1. (Sufficiency condition for non-continuability.) A4ssume
conditions (*) and a(t,)-c(t,) < 0. If

p(x)

IETES TET A

then, given any closed intervai [to, t1] and given any x, such that zo = &, > 0,
there exists a number K, > 0 such that for any v, > K, a solution z(t) of
(1) satisfying &(t,) = @g, &' (t,) = v, is not continuable on [ty,1,]:
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‘We remark that an identical theorem can be stated for the case when
y(£) and f(£) are defined on ( — oo, &), with hypothesis
T (@)
[1+ F(x)]'?

dx > — oo,

and the signs of initial conditions reversed.

We comment that the original technique of the proof of this theorem
was developed by Burton and Grimmer in [2].

‘We shall need two lemmas.

LEMMA 1. Assume that a solution Z(t) of (1) is non-continuable onto an

interval [t,, E]. Then there exists 1, ¢ (t,, t~] such that the solution is continuable
onto [ty, t,) and is not continuable onto [1,, t,) for any t, > 1,.

The proof is easy, and is omitted.

LeEMMA 2. Assume a(t)-c{t) <0 on some interval [t,,t,] and that
a solution Z(t) of equation (1) satisfying hypothesis (x) is non-continuable
onto [iy, t,], while it is continuable onto [ty,t] for any te iy, t,). Then there
exists an open interval (t,, 1) < (1o, t,) such that T(t)Z’ (t) > 0 for all te (I,,t,).

Proof. Without any loss of generality we assume a(f) > 0 on [7, ;]
Agssume, contrary to the assertion, that #(f)-#'(¢) fails to be positive on
every interval (i, t,) = (to, ¢,). The case #(t)-2'(f) < 0 for all te(f,t,) is
easily disposed of, and we can consider the other possiblility, which turns
- out to be that 2’(t) vanishes on every interval (,t,), ¢, <& < ¢;. Let us
first demonstrate that the infinite set of points (in (%, t,)) on which Z'(t)
vanishes has only one possible limit point, namely ¢,. Otherwise if 2’ (¢;,) = 0
for some sequence of points %€ (¢,, {;) with lim¢;, = v < {,, then by con-

i—>00
tinuity #’'(z) = 0 and &'’ (7) = 0. Since #(t) is a solution of (1) it follows
that ¢(z)-(f(%)(r)) = 0, which is possible only if f(z(?)) =0, i. e. if (7) =0,
since Z-f(@) >0 if & = 0. x = 0 satisfies the initial value problem for
equation (1) with &(z) = 0, &'(7) = 0. Since the solution #(t)=0,1> 1,
can be continued past ¢ =¢,, we have a contradiction. Hence #, is the
only possible limit point of zeros of #(t), and such zeros form a countable
set of points on (¢, ¢,). Denote it by {{;,},7 =1, 2, ...
Since #(f) satisfies equation (1):

(@) p(@) &+ a(t)p(@)&" +c(t)f(&) = 0,
we have

@ (t;) [a(t;)p(@ (@) (1;) + o (8) (@ (2;))] = 0.
Since a(?;) > 0, and

() (@) >0  z@)f(@@) >0 if x(t;) #0,
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we have either x(f;) = 0 (which leads to a contradiction after repeating
our previous argument using the uniqueness of solutions), or else z'’ (#;) # 0
and is of constant sign at all points #;, j = 1, 2, ... But this is impossible
since a (! function can not have a non-zero derivative of constant sign
at more than one consecutive zero of the function. This proves the lemma.

Proof of Theorem 1. We have

d ALoA AL oAang
(4) = (p?) = 2(Vap)(Vap)' = 2(ay(®)&)(ay(3) &)

= —2a(t)e(t)y (@@)f(@®)@ (¥).

Hence for a given ¢t >1?, (and ?e [{,, {,] and sufficiently close to %),
we have

¢
(ap?), = (ap?)y,—2 [ |a(&)e(&)p(@(&)F(@ (&) (£))de
to

> (ap?), +2m [ p(@(5)f(B(£)F (§)de
)

z(f)
= (ap¥)y,+2m [ y(@)f(%)dw

= (ap?®), +2mF (&(t)),

where m >0 denotes m = min(—a(t)c(t)), te([ty,?]. Note: ' >0,
y(z)f(z) > 0, on a sufficiently small interval [Z,, t] < [t,, ¢,].
Observe that since zy>0,v,>0, #(f) is a monotone increasing

function of ¢ on a sufficiently small interval [,, i], te [ty t;])- This fact
is sufficient for the purpose of this proof. Hence

Vap () = [(@p?ey, +2mF [@(t)]'2,  Vte [to, t].
Writecf, = (apz)g_,,o.
Then for any ¢ for which z(¢) is monotone increasing and continuable

onto [y, 1] we have:

a(h)
. s p(o)do
W am) .af) [2m +F@)]" ~
a(ty

3
[a(£)]) P de.

to
Having assumed that the solution can be continued to i-, we have
a(f)

(i) (2m)~12 v@d o,

[c;/2m + F ()] =

where

7
6 = f[a(t)]“""dt.
%
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Since

p{x)

u+mnwm<w’

it follows that

f (z)dz -
oo
[c3/2m -+ F (@)1 ’
xp 0
and the wvalue of this integral depends continuously on the parameter

¢;. Moreover,

lim (#) do
- [co/2m + F(z)]'"*

=0 for any T > x,.

Hence ¢} can be chosen sufficiently large so that

9 v(2)dz

() [G/2m+ F (@)]"

< (2m)'* 4,

which contradicts inequality (ii), proving that with such choice of ¢, the
solution @(¢) is not continuable onto [t,, 1] < [t,, t,]- Since

Cg = a(ty) p2(ty) = a’(ty) v’ (‘%(to)) (5;7'(':0))2
= a*(to) y* (o) v},

the remainder of the proof follows.

Choosing any z, >0 we can now choose v, to satisfy condition (iii)
(or vice versa). Hence the corresponding solution &(t,%,, o, v,) is not
continuable onto the interval [t,,%;] 2 [Z,, t]. This completes the proof.

We comment that the continuity of f(x) was not used in the proof
and only local integrability was required. (Continuity was needed to
assert the existence of solution.) We also comment that the result of [2]
is obtained by putting v(z) =1, a(t) = 1.

THEOREM 2. (A necessary condition for non-continuability.)

y(z)dw

) FEsEI

:—i—m

implies that all solutions of (1) are continuable onlo [t,, o).

Proof It is bufficient to prove this theorem for initial conditions
sign (@ ) — sign (» ’(to)), since by Lemma 2 any non-continuable solution
Z (1) muqt have the property that 2(¢) and #’(¢) assume the same sign for
all ¢ greater than some v > ¢, on the maximal interval [%,, ¢,) of continua-
bility of z(t). Without any loss of generality let us assume that z(t,) > 0,

2 — Annales Polonici Mathematici XXX.2
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Z'(t,) >0, and by way of contradiction let us assume that a solution
satisfying condition (iv) is not continuable onto some interval [i,,t,],
while Z(f) and &’ (t) are positive on any open interval [t,, t) on which Z(f)
is continuable. We shall first consider the possibility llm sup(#(t)) = + oo,

while Z(t) is defined on [Z,, ?,), and show that thls assumptlon leads to
a contradiction. (The case lim mf(m(t)) = — oo is analogous.) As before
we obtain the estimate: ‘%

4
a()p*(t) < (ap¥yopy + 2 M- | [ p(@(&) flm(£) ' (£)dE],
)

te [t,, t,), where M = max |a(t)c(t)|.
teltgs 1]
Note that without knowing the length of ¢y, {,] we cannot in general

assume a(t)e(t) < 0 on [y, t,] even if a(ty)c(t,) < O.
(1) p*() < (ap?)ymiy+ 20 - |F (1)) — F (1)),

te [to, t,). As before ¢ will denote (aD?)i—y, -

Since lim sup #(f) = + oo, we can choose a sequence of points t;
t—btl

converging to ¢, such that

a(t)p2(t) < 3+ 2 M(F (& (4,)) — F (3 (1)),
while

4 AR
o)
tim | L+ FE@E" =T

Hence

y(r)dw o
hm f les+2M (F (x) — F (2,))]'? <‘f [a()]" " dt < oo,

which is a contradlction. Lemma 2 easily takes care of the remainder
of the proof.
Note. The possibility lim sup |Z(t)| < oo, but Z(¢) cannot be continued

to t,, because lim#(t) does not exist, can be disposed of by the following
t—)tl

argument. We assume as before that #(¢) is defined on [¢,, ¢,). We examine
the behavior along the trajectory Z(t), te [t,, t,), of the function:

4
a()p3(t) = a®(t)y?(&(1))(2")2(t) = cj—2 fq(t)c(t)w(@(t))f(“}(t))dt
ty

< G+ 2M(F (&) — F(5(t))),

where M = ({,—1,) max |a(t)e(t))
te[lp, 1]
(see formula (4) and recall again that y(z)f(x) > 0).
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Hence lim sup |p(2)| < oo. Choosing ¢ > 0 it follows that &' () e C[%,, t,)
)

is bounded um’lfo'rmly on the subset of [, t;) on which |z(f)] = . It follows
easily that zero is the only possible limit point for any sequence {xz(;)},

;e [ty 1), lim t; = t;, such that lim z’'(f;)) = + oo. This possiblity is ex-
t;it

cluded by our hypothesis that lim Iw( ){ does not exist, completing the proof.

t—i
The understanding of the 1ca,se when a(t) and ¢(f) are of the same
sign is made easier by the following theorem, which indicates a basic
behavior property of all solutions of [1].
THEOREM 3. Let Z(t) be a solution of (1) on interval [t,,1,], such that
' (t,) = &' (ty) = 0. Let the signs of a(t) and of c(t) be the same on [t, t,].
Then (t) must vanish on the interval [t,, t,].

Proof. Assume to the contrary that Z(t) # 0, for all te [t,, t,], hence
‘ f(:i'(t)) # 0 and y(&(?)) # 0 on [t,,%,]. It follows that the function F(%)

f £)dé = F(@(¢)) >0 on [ty, 1], and that f(#) and f(#)F(2) are

o

of the same sign of [¢,, ¢,]. Consider the function
a(t)p (@(1) 3" (1)
F(2(t)

which is conﬁnuously differentiable on [i,, t,]. Clearly ¢(;) = ¢(f;) = 0.
However,

) ty A .
e c(Mf(@(t)  al)p(@() f(#(0)(#)?
tfﬁ” B = f[—m D) ]"”

p(t) =

. f[c(t )f (@) F (@ (1) + a(t) w2 (&(2) (2 (0))( w)2
B F2(z(1)

t1
= @(ty) — @(t)

is a non-zero number, since the integrand is of constant sign, because
a(t) and ¢(t) are of the same sign, and f(Z) and f(2)F () are of the same
sign on [¢,, t,]. This contradiction proves the theorem.

3. An estimate and a generalization of Leighton’s variational theorem
for equation (1). In this part of the paper we can prove an estimate of
the type introduced by the author in [5] for equation (2). Equation (1)
is of course a special case of (2):

(2) (A (@, t)a') +0@)f(z) =0, te[ty, o]

It is clear that A(t) can be absorved in ¢(z,t) without any loss of
generality. I have left it deliberately in this form to make easier the
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identification of the special case when ¢(z,t) = p(x). We assume that
(i) f(§)eC(— o0, + ), [f(0) =0, [f(&) #0 if & %0,
(ii) A(t)e C i,y 00)y, A1) >0, te[ty o), C(t)eC[t,, 00),
(i)  @(, t)e OL[(— o0, + 00) X O1[ty, o), @(z,1) #0 ifz #0
(Vie (15, ).
Let us write h(z, 2', t) = @(z, t)a’. Jﬂ,ﬂ(u, G(u)) will denote the fol-
lowing functional:

B
Tug(us G(w) = [[A(0)R2(u(t), w (2), ) — C(1)G (u(t))]dt,

a

where
u(t)e C'[a, B, g(u)e C*(— oo, 4 o0),

g(u(t),t) #0 Vite[a, ).

THEOREM 4. Let [a, 8] be any closed subinterval of [t,, o). Let u(?)
be any function of class C%*[a, ], such that (p(u(t), t) # 0 for all te[a, Bl.
Assume that there exists a function G(&)e C1(— oo, + o0), such that G(u(t))
>0 for all te(a,p), G(u(a)) =G(u(f) =0, and J,z(u, G(u)) < 0. Let

aa . .
glu(t),t) = dL”) [p(u(t), )]~ Write G@) =G (u(t), g(t) = g(u(®). If

there exists a number m such that m = max ngt) , then any solution v(t)
tela,8] 4G ()

of (2), te[a, f], such that v(t) # 0 on [a, B], will satisfy the inequality
m >f (o) |e(0(), f)]7 on some open subinterval (y, ) < [a, ], where
f'(v) stands for df(v)/dv. (Clearly with ¢(x(t),t) = 0 on (y, 6).)

Proof. Let us assume that there exists a solution »(¢) of (2) which
is not equal to zero on [a, B]. (Otherwise the conclusion of the theorem
is trivially correct.) We examine the non-negative function

B
f A(t) [h(u(t), w' (1), 1) —

a

g(u(@), t)h(v, v, 1) ]2
21 (o(1) a

4 '
— !{(A(t)h(?},(:(,t )t))G(um)

)' A ()R (1), ' (1), 1) —

h(u(t), w (1), t)g (u(t), ) h(v(2), v’ (1), 7) n
flo(®))
g2 (u(t), )2 (v (t)v' (3), 1) )} it
4f2(v(t))

—A(t)(
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G (u (b)) + A () h2(u(t), w' (1), t) —

=fﬁ{[A(t)h(v(t), v (), 1))’
u 1o@)

h(v(®)v' (2), 1) G (u(t))f (v(D) 0’ (2) +
F2(v(1))

1 g(ue), )12(o(), v' (1), 1 ]} ;
*1 Flo() !

B ’
1 9% (u(t)a t)r l hz(”(t)a v’ (t), t)
= Ja.ﬁ(’"f) G(u)) + f {Z ( fz)(,v(t))
_ Glu@)hfo@), ' @), ) (2() v (1)
F2v (1)

Since J, 4(u, G(u)) < 0, the last integral in this chain of equalities
is positive. Hence on some subinterval of [a, 8] we have the strict inequality:

—A(t)[

}A(t)dt.

1a2(u(t), )R (v (), o' (0), t) > G{u(t)) k(v (D), ¥ (1), Of (0 (1)) V' (¥),
Vie(y, 9) = [a, f].
It follows that h(v(t), v'(2), t) # O for all te (y, 8), and
Gu®)f (v(®)v' (t) _ Gu(®))f (v (1))
h(o(t), o' (2), 1) plo(t),t) '

Since (v, ¢) is an open subinterval of [a, 8], G(u(t)) > 0 for all te (y, 4),
and

1
7 ), 9> te (y, ).

g2 (u(t), 1) I (0(1))
4G(u(t) ~ elo(t),t)’

. g3 (u(t), t)
Hence if m = max ————
tefa,8) 4G (u(2), 1)

completing the proof.

COROLLARY. If f(v) = v% ¢(v(t), t) = p(¢)v”, where »(t) >0 on [a, B],
and a>b+1, then v(t) < (mk[a)'@=°V te(y, d), where k = minyp(t).

te[a, B)

4. Example of application. Consider the equation (tz°z')’ 4+ Ctz® = 0,
t >0, where C > 1, K > 3.

We wish to show that on any interval [a = nn+=n/4, f = nrn+x/2],
n=0,1,2,..., any solution of this equation will attain values smaller
than (4/K)Y&-93),

Vie (y, 6).

I (v(9)

exists, then m > ———""
’ p(2(t), 1)

y Vie(y, ),
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Proof. Choose u = sint, G(u) = [(u—l/§/2)2(1—u)]2, then

g _
Ioslt, G(w) = [ 1{2(u—V2/2)%(1 —u)*(—2u+1-V2/2)*—

) —C(u—V2/2)3(1—u)?}dt < 0,
_g 4G (u)
du

g*(w)  (—2u+1-V2/2)2  [(1—V2/2)—2sint]
4G(u) ut a sin?? ’

glu) =u = 2u~(—2u+1—V2/2)(u—V2/2)(1—u),

and z < (4/K)"E-% a3 required.

In particular, if K = 4, we observe that z <1 on [nrn-+=/4, nn+
+=/2],n =0,1,2,... This also implies that any solution Z(t), Z(0) >0
must attain values smaller in absolute value then one on the interval
[=/4, =/2].

A generalization of a classical result of Leighton. The so-called
“Leighton’s variational theorem” (see reference [6] for the original proof)
appears to be difficult to formulate as in [6], in the most general case
of equation (1). We offer below a restricted version of such a generalization.
This result also generalizes the author’s former result in [5]. Again we
consider equation (1), subject to hypotheses (i), (ii) and (iii) as stated
in Section 3, and in addition to the hypothesis

(iv) p) #0 if 2 #0.
We shall denote by I, 4(G(u), u} the following functional:

sl o = [ fpluo) o o)(w O o6 (uo)])

where u%(t), G(u(t)) are functions satisfying the hypotheses:
u(t)e C'[a, Bl, G(u)e C'(— o0, + 00).

THEOBREM 5. Suppose that there exists a function wu(t) defined on
Ta, B), and u(tye C*[a, B, while ¢(u(t)) > 0 for all te [a, B, and a function
G (&) e O'(— 00, + o) such that the continuous function

(Gu®)e(u@))

t —
g(u(t)) e
satisfies the inequality g¢*(u(t) < 4G(u(t))@(u(t)) for all te[a, B, while
G{u(a)) = G(u(B)) = 0. Suppose that there ewists m >0 such that );)Eg

> 1 (») for all & satisfying |E| > m. Then I,,,,(G(u(t)),u(t))< 0 implies
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that every solution (t) of equation (1) will have the property that |Z(t)| < m
for some te [a, 8]. In particular,

f()
@(&)

implies that every solution of (1) will have a zero on [a, B].

Proof. Assume to the contrary that there exists a solution of (1)
z(t), such that |Z(f)] >m for all te [a, ]. Our hypothesis implies that
f(@(t)) # 0 for all te [a, B]. Consider the integral

f x o~ ’
K, (G (u(®), u(t) = f{(a(t)(P(w(t)W(@f(t))G('u(t))m (t)) N

fla@)
o glu@)el®)' @) T ...
+a(t)[«p(u(t))u (2) 210 ]}dt,

K, 5(G(u), u) is non-negative since G(u(a)) = G(u(B)) =0 and the first
term of the integrand contributes nothing to the value of the integral,
while a() = 0 on the interval [a, #]. We have

8
R t)) ' (2
Koslts 60) = | ‘““W(u(t))G(u(t))+a(t)(w<t))w'(tw(u<t))%_

if ——>1 forall & then I, 4(G(u), u) <0

a

g(u)f' (&)@ (¢) . g
e e e o -

_ elute@@lglem)w 1)@ @) gz(uu))q»z(a?(t))(é'(t))*] it
(@ @) 4f2(5(v))
g (u) " (@) (@ (1)
af3a(t))
9 (®)g(w) G (w)f (@ (1)) (& (t)V}
Faw)

4 2N 2
16w, u)+f a(t)¢4}f()g; (t) [gz(u(t))_

[
= L, (6 (u), u)+ f {a(t)

—a(t)

4<p(u)G(u)f’(93(t))_] i
p(2(1)) '

. Sinee I, 4(G(u)u) < 0, the integrand in the above expression must
attain positive values in some subinterval of [a, #]. Hence for some te [a, 8]

f'@ (t))
(& (1))

g=(u(t)) > 4¢p(u(t )G (u( t))
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. (Observe that qa(&:(f)) -# 0.) However, since by hypothesis g2(u) < 4¢ (4)G(u),
and since by our assumption |Z(f)] >m, and F(@@)/p(#() =1, this
inequality cannot be true. This contradiction completes the proof.

We observe that in the linear case f(z) =, ¢(x) =1, we have

———— =1 and we obtain the classical rcsult of Leighton (sec [6]) by
putting G (%) = 42, u(a) = u(f) = 0.
An example of application. Every solution #(t) of the equation
((1 +cos2(w))w')' +2z" =0

(where u is an odd positive integer, ¢ > 0) will assume values smaller)
in absolute value than (2/u)"“~" on the interval [0, =]. To prove it we simply
check that all conditions of Theorem 5 are satisfied when

fl@) _ _we'” _ p2lw) _
@) 14cos2z” 2

] > (2[u)"47 1, 1.

We set u(t) = sint, G(u) = u? Then we check the inequality

49 ()G (u) = 4(1+ cos?(sinf))sin®t > & +c°:2_$i?1281n2”'
— 2cos(sint)costsin?i - 2 cos2(sint)sinicost \*
- ( 1+ sin®t )
4 sin?tcos?(sint)cost

= (L1 sin®)? [sint — cos2(sint)]?,

i. e. we need to check that for all te [0, =]

sin2?tcos?(sin?)cost

1> (1+sin?t)(1 + cos?(sin?))

[sint—cos2tsint]2.

An elementary argument confirms this inequality, thus completing
the proof.

Remark. Some weakening of the hypothesis is possible in Theorem
5, if the initial conditions are given at t, = a. If #(a) > 0, then condition

(*) may be restated as a one-sided inequality f—:g—; 1 for all &£ > m.
@
Similarly, if Z(a) < 0, we shall only require ! g)) >1forall §< —m.
4

No changes are required in the subsequent argument.

In closing I would like to mention the papers of Tippett and Ford
who studied a somewhat similar differential equation in [4] and [9].
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However, their investigation concerned primarily the existence of solutions
of the two point boundary value problem. The author would like to thank
the referee for a very careful recading and correcting of the original manu-
seript.
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