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Abstract. In the paper we deal with the integral-functional equation

afl)
(*) a(t) = F(t, | f(t, s, %(s))ds, 2(B(2)))
0

considered in & Bauach space. The first part of the paper contains a theorem on the
existence and uniqueness and on the convergence of suceessive approximations proved.
by the comparative method. It is supposed that the operator defined by the right-hand
gide of () satisfies an inequality similer to the Lipschitz condition. The conditions
given in the paper involve some relations between the functions a, § and the Lipschitz
coefficients of the functions F and f.

In the second part of the paper equation (x) is ‘considered in a finite dimensional
Banach space. The theorem on the existence of a solution of equation () is established
under the assumptions involving the relations between the functions a, 8, the Lip-
gchitz coefficient of the function F with respect to the last variable and the continuity
modulus of the functions f and I'.

Introduction. Let C(X, ¥) denote the class of continuous functions
defined in X < B, with range in Y < B,, B, B, being arbitrarily fixed
Banach spaces. Put I = [0, a], where a is a fixed positive real number.

Let B be a Banach space with the morm |[|-], and let functions
FeC(Ix B B),feC(I*?XB, B),a,feC(I,I) be given. We shall always
assume that 0 < ea(t) <1, 0 << A(t) <, tel.

We consider the integral-functional equation

a(l

)
1) a(t) = Ft, [ flt, s, @(s))ds, (B(1)), tel.

There exists an extensive literature on the existence and uniqueness
problems for equations of this type and also for equations of the more
general form
(2) (t) = G(t, 2(-)),

where G is an operator defined in the suitable space.
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For more detailed information on the existence and uniqueness prob-
lems for such general equations see [1], [4]-[6], [9], [12], [13].
The fundamental idea in treatement of equation (2) is to associate
the operator G with a non-decreasing operator 2 by the inequality

Q(G(ta .'171(')), G(tr o ))) < 'Q(t; Q(wl(')r Za (° )))

with suitably chosen (not necessarily real valued) distance . If the operator

Q is “good?”, i.e. such that tlie sequence {u,} produced by the recurrent
formula

tasa(t) = Qt ua(-))

(with suitably chosen 1u,) is convergent to » = 0, and for the sequence
{x,} defined by the relation

wn+l (t) = G(t7 mn(‘))

(with suitably chosen x,) the estimations g(#,,,(?), 2, (1)) < %, (8), nyp =
0,1,..., hold, then the sequence {x,} is convergent to the unique solution
z of equation (2). The abstract presentation of this idea can be found in
[14].

Now the following question arises: for a given operator @ (for instance
for the operator given by the right-hand side of equation (1)), what operator
Qis “good” % Always we want to have an effective answer to this question.

We are not going to deal in this paper with the general equation (2).
It seems that it is not possible to give more precise conditions for the
given operator 2 to be “good” if we consider the general equation.

Recently effective conditions for suitable operators 2 associated
with operators involved by neutral-differential equations were given in
[3], [15].

It is well known that if the function F satisfies the Lipschitz condition

"with respect to the last two variables with constants %,, I respectively
and the function f fulfils the Lipschitz condition with respect to the third
variable with the constant %, and if 7 < 1, then the operator

- a(l)
(3) Qtyu(-)) = kuka [ w(s)ds +1u(p(1)
0
is “good” for the operator given by the right-hand side of equation (1)
(short: “good” for equation (1)).

From the results of papers {3], [15] it follows that so defined Q is
also “good” for equation (1) if f{t) < B, f = const and I'f< 1 (now
it may happen that I > 1). We now ask: if Lipschitz coefficients %, %,, I
depend continuously on %, te I, what conditions involving «, f, k,, ks, 1
are sufficient for operator (3) to be “good” for equation (1)?
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The first part of this paper deals with this question, and also with.
the problem of continuous dependence of the solution of equation (1) on
the right-hand side.

The second part of the paper concerns equation (1) considered in a
finite dimensional Banach space B, i.e. B = R".

It is known that if the function F is bounded (this condition can be
slightly weakened) and fulfils the Lipschitz condition with respect to the
third variable with a constant I, I < 1, then there exists at least one solution
of equation (1).

Results of this type for suitable differential equations can be found
in [7], [8], [16]. The result pointed out here is contained also in [2], [10],
[11].

‘Weare interested in the question: can the condition I < 1 be weakened ¢
The positive answer to this question for suitable differential equation
is contained in paper [16]. The result of the present paper is non-local
and more precise than that of [16].

I1.1. The main lemma. We have

Lemma 1. If b, I, LeC(I, R,), R, = [0, +00), a, BcO(L, I), a(t)
ﬂ(t)‘[os ], t€I7

=

[\43

(4)  m(2) LOB(BA) < +oo, eI,

1

]
o

(5) n—ZMmmwmik+w,nL m;ﬂ<+w

=0

and m, me C(I, B.), where

ﬁo(t) =1, ﬁ.;+1(t) = ﬁ(ﬁz(t)): 1= 0,1,..., teI:

WO =1; Ll .Hmm)@=m»w

j=0
te I, then

1° there ewists @ fmwmon zye O(I, R,) which is the unique solution of
the equation

00 a(B4) )
®)  20) = D L)L) [ e ds+ D LOB(B), e,

in the class of bounded non-negative and measurable functions defined in I.
(This olass will be denoted by .M (I, B.).)
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2° The funclion 2, is the unique solution of the equation

a(t)
(7) 2(t) = L(t) [ 2(s)ds+1(2)2(8(2)) +1(2)
0

n the class
at
.M},(I, R+) == UMc(Ia -R+)7
20
where

M(I, Ry) S [2:2e M(L R,), 0<z(t) <coa(t)], ceR,.
3° The function 2, 2(t)= 0, s the unique solution of the inequality

a(t)
(8) 20) < IQ) [ 2(s)ds+1()=(B(), tel,
0

in the calss My (I, R,).
The function z, is non-deocreasing if the functions h, 1, L, a, B, are so.
Proof. At first we prove 1°. Let us not that if ze M(I, R, ) is a solution
of equation (6), then ze¢ O(I, R, ). This fact follows from the uniform con-
vergence of the series (5) which is implied by the assumed continuity
of m and Dini’s theorem. Thus we shall prove that equation (6) has a
unique solution 2, in C(I, R.).

Put
2l = mgxe—“lz(t)l, ze C(I, R,),
m (1
with 1> 4 E sup mT()
I

Now we can prove that the operator A defined by the right-hand
side of equation (6) is a contraction. Indeed, we have
o a(ﬂi(t)?
1Az — dwly < maxe™ D' L{B,)1(1) [ le(s)—w(s)|ds
I 0

i=
oo a(B;(1))
< m?xe‘“ 2 L(B: (1)) -1,(2) f e‘sm?xe‘“lz(s) —w(s)|ds

=0 0

1 2 At .
S7 "z_w"omﬁ:x g L (B, () (ty e~ (expilt——a(ﬂt( ) —1)

4
< le =l

in view of the inequality

-1 yé¢ for ye[0,1], t>0.
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Thus assertion 1° of lemma is implied by the Banach fixed point
theorem.

Now we prove 2°. At first we show that any solution of equation (6)
is a solution of equation (7).

Indeed, if z* is a solution of equation (6), then we have

a@) a{t)
z*(t)—L(t)J 2" (s)ds —1(t)2* (ﬂ(t)) —h(t) =2"(¥) —L(t)f 2*(s)ds —
0 0

a{By41 ()

—10[ D) LB L(B®) [ & ()ds+ D L(BW) (i ()] — 2 (1)
' =0 0 1=0
a(f) o a(f74.1(%)
= 25(t)—L(t) [ 2*(s)ds— D) L(Bia()la() [ 2"(s)ds—
0 =0 0
— D) Lisa (O R (Beys (9) — (1)
1=0
) a(P(t) ) |
=2~ D) L)L) [ 2©)ds— D L@B(B:() =0.
=0 0 1=0

To finish the proof of 2° we observe that

LOU(Ba®) = Lups(®)y  BilBalt)) = Brys(®)

and.
oo \ °(ﬂn+im)
T ()20 (Ba(t)) = 1(8) D) L(Bass()L(Ba(®) [ 20(s)ds +
00 oo "(ﬁt(‘))
+ D 1 (O (Ba ()R (Bars®) = D) LB®)U(D) [ 20(s)ds+
i=0 i=n 0
+ ) L0 B(BH) < maxap(t): D) L{B: (1) L(®) o (i) +
{=n i=n
+ D LB {B.1).
Hence we get
(9) L)z (Bu() =0 if n—+ oo

(9,,(t)— g(t) denotes the uniform convergence in I).
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Further, by induction, we easily obtain for any solution Ze M,(I, B,)
of (7) the following relation:
a(8;(t)) n—1

(10) %) =D LB:@)L@) [ Z(s)ds+ D L)h(Bi)+

=0 0 i=0

Y

+1.(5)Z(8,(2), = =1,2,..., tel.
If zZe My(I, B,), then for some ¢> 0 we have
L Z() < cz(t), tel;
now, according to (9), we infer phat
L()ZE(Ba() > 0 as n—> co.
If we let » — oo in (10), we get
a(B;(1))

2(1) = ) DB L) [ Z(s)ds+ D LA (B:(1),
=0 0 1=0
i. e. Z is a solution of equation (6), but this equation has only one solution
2, thus it results z = 2, and 2° is proved.
Finally we prove 3°. Put
oo u(ﬁ{(‘))
tua(t) = D LB)L() [ 2a(s)ds, m=0,1,..., tel.
i=0 0
Since #, is the solution of (6) and m(?) > 0, we easily infer that
ngn+1(t)<zn(t’); n=01..,tel,
and 2z, - 0 a8 n— oco. In fact, if

2(t) = limz,(t), tel,
n—co
then the function z satisfies the homogeneous equation corresponding
to equation (6), but such equation according to 1° has only the trivial
solution z(t) = 0.
Now if ze M,(I, R,) is a solution of inequality (8), we get by induc-
tion
a(By1))
10 <2 L)) [ Z(s)ds+1,(1)7(8,(2),
=0 [

n=12.., tel.

We have for some ceR., 2(f) < ¢-%(2), tel.
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Hence and by (9) we find that Z satisfies the inequality

© a(f1)
W< D) LB [ Z(s)ds < o-z(t).

i 0

Oonsequently we get
0<2(t)<ee,(t), n=01,..., tel.
Finally, leting #»— oo, we conclude Z(f) = 0.

The last assertion of the lemma is obvious.

Remark 1. If the assumptions of Lemma 1 are fulfilled also for
he O(I, E,)and ﬁ(t) <.h(t), te I, then the suitable solution %, of equation
(6) with f instead of } established in Lemma, 1 is the only solution of equation
(7) with % replaced by % in the class M,y (I, B, ) produced by 2.

This fact follows immediately from the proof of assertion 2° of Lemma 1.

2. Some remarks and further lemmas.
(a) If we assume that

(11) I#) <1l = const, L)< L =const, a(t)<al,
Bi)< pt, tel, @ Be[0,1],

then conditions (4), (5) in Lemma 1 can be replaced by the following
ones: '

(4" I is non-decreasing and 2 Fh(fit) < + oo,
=0
(5") 18< 1.

We note that now £;(t) < 8¢, 1,(?) < U,
(b) If we assume that

) <l, LML al)<at, . B <,
then conditions (4), (5) ean be replaced by (4') and
(5") 182 < 1.
(e) If we assume that
<it, LKL, ef)<ot BB,
then conditions (4), (5) can be replaced by

(4'") h is non-decreasing and Z (1BtYh(F1) < -+ oo,
=0

(5""") Lf2a< 1.
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It is clear that both conditions (4''), (5"') hold if Ifa < 1.
(d) If we assume that

<, LE<K<L:, <Pt and «@f)<at?a<l,
then (4), (5) can be replaced by (4') and
(5""") Igr<1.
(e) Finally, if we assume
i <l, LH<I, AOH<E, al)<at, a<l,
then (4), (5) can be replaced solely by

h is non-decreasing and Z l’h(_t’i) < 4 oo.
i=0

(f) If we éuppose (11) and 2(t) < H-t*, te I, H — positive constant,
then (4) and (5) are both fulfilled if 18" << 1 with v = min(Z1, p).

However, under stch assumptions we can obtain a better result.
We have’

Lemma 2. If b, LeC(I, R,), a,BeC(I,I), and conditions (11) are
fulfilled, moreover, if h(t) < H-1*,te I, p > 0 and 1” < 1, then the assertion
of Lemma 1 holds if the classes M(I, E.) and M,(I, E,) are both replaced
by the class V,(I, R+),’.

VoI, By) & [2:2¢ M(L,Ry), lzll, < +o0],
where
2, = max(t=le()).

Proof. The proof of this lemma is similar to that of Lemma 1. The
only difference is that now we consider equation (6) in the space
v L v,(I, B,) nO(I, R,).

‘We introduce the -norm

at _x 12

lell,, = max (e “T)
and prove that the operator A (defined by the right-hand side of equation
(6)) is a contraction in V7 if 1 > L/(1 —187). Indeed, if ze V; and w = Az,
we get

X oo a-ﬁiﬂ

max (¢~ %t Pw(t)) < max e~ P LI | e*t*max (e~ 172 (s))ds +.
ax () < max { 3/ J o ttmax (e ()

=0

+§‘ UH g e

i=0
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t

Ilall,,,,,,llmxz e~ MgP L1 a? gP1P ’ %% ds +
0

_ ¥
=0 lﬁ
A v t
D\E 5—at A8
<L||z||**m?.xié1 (") e J e ds+'1—lﬁ”
1 H 1
< Lzl +— = (H+ L2, -

w10 11 17
Thus weV,. Further we get:
o a(B;())
|]Az — 4|, ma,xt"’e‘“ N L f e s”ma.x( ~* 5Py (8)—2(s)|) ds
&
¢
< maxt"’e‘” V Ll‘a”ﬂ”‘t”]lz—vll f e™ds
I 1.—0

1 4
< Ll —ol,, Tnu;xe“‘f ePds < llz—wll,,

lp*

We see that 4 is a contraction in V7,.

The remaining argument is the same as in the proof of Lemma 1.

‘We want to point out the case when Dboth conditions (4) and (5) in
Lemma 1 are superfluous.

We have _

Levma 3. If b1, Le C(I, R,), h non-decreasing, a, feC(L,I), aft)
<t BE)S v 0 y(t) <, tel, y(t) =0 for t— 0 and h(vt) <% R (1),
g > 0, te I, then the assertion of Lemma 1 holds.

Proof. We prove that under assumptions of Lemma 3 both series (4)
and (b) are convergent.

Let I = m?xl(t); then we have

LSV and By () < p(B:(2)) Bl?)-

Since p(t) < 1 in I, we get §,() > 0 as n— -+ oo, and therefore there
exists n, such that

(B () < 02 min(lil'_z ) (liL[-l )lla)

AL—18%)

for n > n, and eI
Hence we have

Bror1(t) < @:B,(8), mn=ng, tel,
and consequently

Brgri®) S @B (1), §=1,2,..., tel.
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Finally we get

D Lb(B0) = D L)+ D) L) b ()
=0 1=0 i=n9+1
L] o
= N LOBBAD) + D, Tagss OV B (Bagas ()
T j=1
but
D g (0 1B () < D) 1041 (0 B, (1)
j=1 J=1
QZ"DEP(mi)qh(ﬁno(t Z"Oh(ﬁn Z‘zﬂ' ( )
=1 Jm=1

— 1R (B, (1)) < I maxh(B, (1))-
I

Similarly we prove that

2 LB a(Bt) <maxLiy ) zi(t)ﬂ,(t)
t=ng+1 i=ng+1
< max L(f)- rotig, () < m?.xL( ) ma,xﬂ 1)-I"0t1,
I

Thus the proof of the lemma is finished.

3. Theorem on the existence and umiqueness. In order to formulate
the theorem on the existence and uniqueness of the solution of equation
(1) we assume the following:

AssumerioN H,. There exist ky, ko, le C(I, B,) suoh thai

(12) VE (¢, , ©) — (2, @, ¥) || < Ky () lw —Z|| -+ 1(2) [l —2|,
(13) 1 (2, 8, u) —F(2y 8, B | < Ra(2) llw—2 ||
for tel, se[0, a(t)], u,%, v, veB.
Put -
" a(t)
(14)  L(t) = k() ks (t), D(4 -_“F ff(t 8, 0)ds, )” teT.

Now we can associate with the operator occurring on the right-hand
gide of (1) the following one:

aft)
2(t, 2(+)) t)f 2(s)ds +1(8)2(B(2))s

Under the assumptions of Lemma 1 it is easy to prove that the operator
£ is “good” for equation (1).
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In fact, we have
Leyma 4. If the assumptions of Lemma 1 are fulfilled and

wy(t) = % (1),
aft)

(15) W1 (D) = Qft, 0, () = L(2) [ wo(s)ds+ 1), (B(1),
0
n=20,1,..., lel,
then
(16) 0w, ) <w, ()< 2%@E), =7=01..,1tel,

and w, (1) 5 0.

Proof. Relation (16) is obtained by induction. The convergence of
the sequence {w,} is implied by (16). The limit of this sequence satisfies
inequality (8) and by Lemma 1 it must be equal zero identically. The
uniform convergence of {w,} follows from Dini’s theorem.

Put

a(f)
(A7) Tara®) = F(t, [ f(t; 8, @u(6))ds, @, (B(1)), # =0,1,..., tel.

‘We have the following

LeswvA B. If the assumptions of Lemma 1, Assumption H; and (14)
are fulfilled, and if the sequences {w,}, {w,} are defined by relations (15) and
(17) respectively, then

(18) flez,, (DM << 2, (0), n=01..., tel,
(19) [@nin(B) =2, ()| < wy(t), =n,2=0,1,..., tel.

Proof. The induction proof is very simple,.
According to (12), (13) we have

a(t)

I (1 <|| (2, f 1ty 8, @n(s))ds, o, (BN = F (8, [ flt, 5, 0)ds, 0 )| + hit)

u(#}
<L) [ llwa(s)llds +1(0) || (BB +7(2)
and

”wn-l-p+1 (t) — %y (t) “
aft)
< I(t) f .15 (8) = B (8)11 5 -+ 1(8) || (B(2)) — 2, (B (1))

3 — Annales Polonicl Mathematici 31,1
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From these inequalities by induction we get (18) and (19) respec-
tively.

Thus we have proved that 2 is “good” for equation (1). Summing
up the results obtained we can formulate

THEOREM 1. If Assumption H, and conditions (4), (B) of Lemma 1 are
satisfied with L and h defined by (14), and if m, me C(L, R,), then there
extsts a solution Te C(I, B) of equation (1) with the property

Iz (B)]] << 24 (2), te I,
Z(#) =2, ()| S w, (), 2el, n=0,1,...,

where %, , w, are defined by (15) and (17) respectively. Moreover, the solution
Z is unique in the class Xy(I, B), where

X,(I, B) Z U [w:0e M(I, B), @)l < c2(8)]

[=41
(M (I, B) 18 the class of all sirongly measurable functions defined in I with
ramge in B).
Proof. The proof of the existence part of the theorem in view of
Lemmas 4, b is trivial.
The uniqueness part of the theorem follows immediatelly from 3°
of Lemma 1.
Indeed, if we suppose that there exists another solution % of equation
(1) belonging to Xy(I, B), then we easily infer that [|z—&|e My(Z, R,)
and
a(t)
6 =3 @) < (1) [ B(s)—5(s) | ds + ()| Z(8(8)) — 5 (B (1)
0

.
s

now by 3° of Lemma 1 we get |[Z(f)—2(t)[f = 0. Thus the proof of the
theorem. is completed.
However, Lemma 2 implies the following

THROREM 2. If Assumption H,, condition (11) with L and h defined by
(14) are fulfilled, and if W< H", H=0, p>0, 1<, then the
assertion of Theorem 1 holds.

Proof of this theorem remains the same as the proof of Theorem 1.

4. Continuous dependence of, the solution on the right-hand side
of equation (1). Let us now consider another equation

al1)
(18) y() =Tu(t, [ faltys, y(s)ds, y (8 (2))

with given ¥, f;, al¥, % having the properties referred to in the intro-
duction. '
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Let 7 be a solution of equation (18). We want to evaluate the distance
between T and 7.
Put

aft) _
1) o) =Bt [ £t 5 Fls)ds, 7(B0) -

oI}t

(t)
=Fi(ty [ filtss, 7)) ds, 7(B0))
0
and let pe O(I, B, ) be such that

(20) B@)—-5OI< o), tel.
Put
B (@) = max (p(3), v(2), h(1)).
Now we get
THEOREM 3. If Assumptions H,, (14) and conditions (4), (5) of Lemma

1 are satisfied with h replaced by B, then there ewists a comtinuous, non-
negative solution w of the equation

a(t)
(21) 2(t) = L(t) [ 2(s)ds+1(0)2(B(2)) + (%)

such that
IZ@) -7 < B(2), tel.

Proof. Let 2 be the solution of equation (21) with v replaced by i®.
Put
wy(t) = 2 (%)
and
, aft)
Wair(t) = (@) [ w,(s)ds +1(8)w, (B(2)+0(2).
0

By induction we get

0 < Wpyy (1) S w, (1) < (), telyn=0,1,...

From this we see that the sequence {w,} is convergent to @, w < 2{,
which satisfies equation (21). However, in view of Lemma 1, there exists
only one solution of this equation (see Remark 1) in the class of measurable
functions satisfying the condition 0 < z(#) < #{P(f), te L.

Further we get easily

(22) B — 7O < w,(t), =0 =0,1,..., tel.
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Indeed, we have

a(t)
B -7l =2t [ £ s 2(s)ds, Z(B0) —
[]

oLty

Rt [ 55 5)ds 56" 0)|

a(t) a(t)

<7t [ £t s, 7(s))ds, Z(BW) —2(t, [ £ 5, 7(s)ds, F(BW))| +000),

a(t)
<L) [ B () — (o)l ds +1()||E (B(t) — F (BB +(2)

a(f) »

<L) [ #0(s)ds + Uy’ (B(2) +2(8) = wi(2),

0
since inequality (20) implies the following one
EG—-FOI<#A(), tel.

Now relation (22) results by induction.
Leting n — oo in (22) we get the assertion of the theorem.

Remark 2. If we take the sequence of equations of type (18)

)
(23) g =F(t, [ filts,y@)ds, y(O0), i=1,2 ..,

such that the assumptions of Theorem 3 are fulfilled for

R*(3) = sup max (p;(t), v,(2), h(1))
3

and 2;(t) 0 as ¢ — oo (or v,(f) = 0), then
() =7 (0 < w;(2)

and w;(t)N0 as 41— oo (or w;(¢) — 0).
We note that the index 4 denotes the suitable functions which are
associated with equation (23).

II.1. Assumptions. We are now going to consider the existence
problem for equation (1) in a finite dimensional Banach space B under
slightly weaker assumptions. We now replace the Lipschitz condition
for the functions # and f by the following assumptions:
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Asstyreriox H,. 1° B = R® and there exist Sfunctions 1, Ly, Ly, Hy, Hy e
e C(I, B,) such that

VF(t, w, v) —F (3, %, 7)]| <L)lv—7],
I (2 %y ) << Lig (2)llnell 4+ 2(2) oll ++ Ho (2),
(2, 85 )| < Ly (8) [l + H, ()
for tel, u,v, %, 5e R";
2° the assumptions of Lemma 1 are fulfilled for h, L defined by

aff)
W(t) = Ho(t) + Lo(t) [ Hy(s)ds, L(t) = Ly(t)Ly(t), tel.

AssunpTION H,. There exist subadditive and mon-decreasing functions
w;e (R, R.), 1 =1,2,38, 4,5, w,(0) =0, and such that
°NE(E, u, v) — F(F, uly )| < oy~ ]) +wa(lu—u'l) for [ull, v <
RE amax L, (f)max zy(t) + max H, ()},
I I I

o)l < By £ maxey(s), t,tel,
I

2y being defined in Lemma 1;

2° |If (3, s, v) —f(t'y 8, V)| < w3(Jt—1"]) F o (o—v’[) for 1, ¥ e L. 0 <8 <
min(t, ¢'), loll, o'l < Ry

3% la(f) —a(t)| < ws(lt—1']), tt'el

AssuMPTION H,. The following series are convergent:

12 my(t, 8) L St s Sa(fi(t]) < + oo,

2° my(ty, 1) z 2 Li(ts) w(lﬂi(tl) ‘“ﬁf(%)‘) < +oofori, b, tel and deR,

i=0
where
o(s) = w,(8)+ wz(-Rf')s(s)) + w, (aws(s)):

and the functions my, 1 =1, 2, are continuous.

Remark 3 Ttis obvious that Assumption H, is fulfilled if forinstance
l;(t)=1<1. The functions m,, m, are continuous if the functions I, g, a
are non-decreasing (in this case it is easy to find a majorizing series inde-

pendent on # and to apply the Weierstrass theorem).
Let )

W E [y:ye O, B, ly(@)l < 2(t), teI]

with z, defined in Lemma 1.
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2. Some lemmas. We have
Leyua 6. If Assumption Hy is fulfilled, then for any ye W there exists
the unique x(-, y}e W whioh is the solution of the equation

aft)

(24) o) = F(t [ 1t 5, v(s))ds, (B,

Proof. The proof of this lemma is standard. We define sequences:

. a(t)
,m(t)—F(tffts,y(s)ds, . B(1))); @) =0,

n = 0, 1, ..., tel
and

() =102 (B0), 2 (1) =2(),

with 2, defined in Lemma 1.
‘We observe that

lz, B < %(t)y, n=0,1,..., tel
and

z:; (t) = ln (t) % (ﬂn (t))

and therefore 2, (f) — 0 as n — oo, te I (5ee relation (9)).
Further, by induction, we get

145 (3) — 2, ()] < o), tel,n,p=0,1,...

Now the assertion of Lemma is obvious.
Consider the operator U: W— W

Uuﬁ (' Y)

where @(-, ) is the solution of equation (24) for a given ye W.

Lemma 7. If Assumptions H,, Hy and 1° of Assumption H, are ful-
filled, then the operator U 8 continuous.

Proof. Let y,,9,e W, and z; =a(,¥;), 1 =1,2, u(t) = |z (f) —
—m,(2)]l, 6 = o, (m?x Yy () — 2 (B)l); by our assumptions we get

off)

w(t) < [ 8ds)+1(1)u(B(1)

and.

n=-1

(25) u (1) w(Ba (1) + D Lty o (8 (B;(1))-

i=0
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But %(t) < 22,(f), consequently we have

L)% (B (2)) < 2L, (3) 2 (B (8)) = 23(3).
Letting # — oo in (25) we obtain

u(t) < D) L) 0y (8- B:(2)) = my(t, ).

=0

By the continuity of the function m; we conclude the assertion of
Lemma 7.

Levwva 8. If Assumptions H, H, and H, are fulfilled and
(26) L(te)% (Ba(t)) =0 as n—> oo, &y, e I,
then the set U(W) is compact.
Proof. For ye W and o = U' we have
afty)

I8ty 9)— @ty )| =|| Bty [ Fltey 5, 9(8))ds, 2 (B(2), 9))—
0

olty) .
—F(tey [ fltes s, y(s))ds, 5(B(t), 9))) < @1(1ta—ta]) + oa (Reog( 1ty — )} +

0

+ g (awy ([t — 1)) +l(t2)||m(ﬂ(t1), y)— (B (L), ?/)”
< w([t;—1,]) +l(t2)|lm(ﬂ(t1), y)_m(ﬂ(tz)’ y)”
Let »(8y, t2) = ll@(ty, y) — (i, ¥)ll; we have
P(tyy ) < z(tz)"’(ﬂ(tﬂ; ﬁ(tz))'l' o ([t —1a])
and consequently

Y(lyy 1) < ln(tz)'”(ﬂn(tl)’ ﬁn(tz))"l‘z li(t2)w(lﬂi(t1) “'ﬂi(tz)l)
for n =0, 1,..., #,lel.
But
v (81, ) < 2 (81) +20(te);
thus

ln (tﬂ) v (ﬂn(tl) ? ﬂn (tz)) < Zn(tk) % (ﬂn (tl)) +ln (tz)zo (ﬂn(tz)) .
By the assumptions of the lemma we get

Uy (ta)v (ﬁn (t1)s Bn (7;2))"> 0.
Finally, letting n~ oo, we_obtain_ the estimation

¥(tyy 1) < D) Lilta) o (IBi(t) — Bilta)l) = ma(ty, 1)

=0
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By the continuity of the function m, we arrive at the assertion of
Lemma 8. |

Remarlk 4. Relation (26) can be assumed ounly for ¢, > t,, ¢, t,¢ I;
it will be satisfied if the functions I, # are non-decreasing or if there exist
non-decreasing functions a, I, 7, 5,  such that a(t) < a(t), 1(?) <1(2), L(¥)
< L), B < B (1), h(2) < () and (4), (5) hold with a, I, I, B, h replaced
by &1, L, B, k-

3. Existence theorems. Now we can formulate

THEOREM 4. If Assumptions H,, Hy, H, are fulfilled and relation (26)
holds, then equation (1) has at least one solution Ze V.

Proof. In view of Lemmas 6, 7, 8 and the Schauder fixed-point
theorem the assertion of the theorem is obvious. In fact, we see that the
continuous operator U maps the bounded, closed and convex set W c
C({I, R") into its compact subset U (W), thus it has at least one fixed-
point. . _

Now we can indicate some more simple conditions under which the
assertion of Theorem 4 holds true.

We have

THEOREM 5. If Assumption Hy, condition 1° of H, and (11) are satisfied
and if

h(t) < H-#7, 0,(8) = 311 wy(8) = 87, wy(s) =87, w4(8) = 8%
dat .
o =min(p, g, 4, ug,rq), . <1,

then equation (1) has at least one solution Ze W.

Proof. To prove this theorem it remains to observe that under
assumed conditions Assumption H, is fulfilled.
It results from the following estimations

Li(8) wg(8a-By(1) < Vwy(ba-B1) = (16717,
Li(te) 0 (185 (82) — Ba(2)]) < {0 (Ba(ty)) + @ (Bulta))),
Flo (8 4) + 0 (f1,) < 2w (1), 1 =max(t, &)

and
Vo (81) = (181" + (18%) R74™ + (15" a7,

We know (see Lemma 2) that condition 2° of H, is satisfied if 187 < 1.
Now we find that Assumptions H,, H,, H, are fulfilled if 15°< 1.
Thus the theorem is proved.
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