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Abstract. General stability-like concepts with respect to sets in processes in the sense of
Dafermos [4] and their generalizations are introduced by using a formal idea of Bushaw [2].
A definition is given of so-alled Lyapunov functions, by an extension of a general idea
presented in papers [16] and [19] by Pelczar. Theorems about the connections between stability
conditions and the existence of suitable Lyapunov functions are established.

0. Introduction. The classical qualitative theory od ordinary autonomous
differential equations was the origin of the theory of topological dynamical
systems and their several generalizations. In particular, certain general
theories of stability of the Lyapunov type, discussed with respect to very
general systems and so-called semi-systems, have been established and are
still investigated in various books and papers (for instance [1], [2], 3], [6])-
[8], [15]-[18]; for further reference see for example [1], [18], [20], [21]), as
natural extensions of the classical Lyapunov stability theory of differential
equations (see the fundamental paper [14]). The first author of the present
paper proposed in [18] an uniform terminology, giving a kind of
classification of various general (dynamical) systems, which we recall below.

Let X be nonempty set, (G, +) an abelian semi-group with the neutral
element 0, and n be a mapping [rom G x X into X.

DerFiniTioN 0.1, The triple (X, G; n) is said to be a pseudo-dynamical
semi-system if and only if

(0.1) n(0, x) =x for xe X,

(0.2) n(t, n(s, x)) =n(t+s,x) for t,5¢G, xeX.

If G is a group, then the word “semi” should be removed, if X is a
topological space and G is a topological abelian semi-group (or group) and
simultanously = is continuous, then the term “pseudo” is dropped.

Thus in particular, (X, G; n) is a dynamical system if G is a topological
abelian group, X is provided with a topology, n: GxX — X is con-
tinuous and satisfies (0.1) and (0.2). This coincides with the usual meaning
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of the term dynamical system, used in most papers (compare for instance
(11, [20], [21)).

In order to extend and generalize the qualitative theory of ordinary
nonautonomous differential equations by using an idea similar to that used
for general dynamical systems, one has to add another parameter. In this
way we approach the theory of so-called processes and their generalizations.

Let X be a nonempty set, called space in the sequel, (G, +) an abelian
semi-group with the neutral element 0, H a sub-semi-group of G (0Oe H) and
u a mapping from the Cartesian product G x X x H into the space X.

DerintTioN 0.2. The quadruple (X, G, H; u) 1s said to be a pseudo-
process if and only if

(0.3) u(t, x,0)=x for (t, x)eG x X,
(0.4) pu(t, x,s+r)=pu(t+s, u(t, x,s),r) for teG, s,reH, xeX.

This definition, proposed first in [16] (see also [18]), is a minor
modification of the original definition of Dafermos ([4], [5]). We use here the
name “pseudo-process” in order to underline that we do not assume any
continuity condition with respect to yx, while Dafermos in [4] required some
regularity assumption (and of course, some topological structure was
introduced in X in [4]; G and H were simply the real line and half-line).

It is clear that every pseudo-dynamical system is a pseudo-process.
Every dynamical system is a regular process (u is continuous).

Consider two examples:

ExampLe 0.1. Let f: R* > R be continuous and such that for every
(t° y°)e R? there exists exactly one solution y(-;t° y°) of the initial value
Cauchy problem

(0.5) y=fty), y=y°

defined in [¢° oo) (understood, as usual, as a function continuous on [¢°, o),
differentiable on (t°, o) and having the right-hand derivative at ¢°, fulfilling
(0.5) for t = t°).

Putting
(0.6) ul(t, x, s):=y(t+s;x,s) fort,s, xeR, s=0,

we obtain a pseudo-process (R, R, R,; p) with

(0.7) R,:={seR: s>0}
playing the role of the semi-group H of the group (formally: semi-group) G
=R

Remark 0.1. It is clear that we can consider f: R, x R — R and assume
that (0.5) has exactly one solution for > 0. Then the pseudo-process
induced by (0.5) and by (0.6) will correspond to the case G = H = R,.
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ExampLE 0.2. Let r be a fixed positive real number. Denote by % the
space of real continuous functions defined on the interval [ —r, 0], provided
with the usual maximum norm. If a real continuous function y is defined on
[a—r, oo) with some a > 0, then by y, we denote the element of ¥ defined by

(0.8) V,(s):=y(t+s), se[—-r,0]

Suppose that g: Rx % — R is continuous and such that for every °e R
and every x°c % the functional differential initial problem

(0.9) x'(¢) = q(t, x,),
(0.10) X0 = x°,

has exactly one solution x(t° x°; ) in the interval [t°—r, ).

Recall (see for instance [11}-[13]) that a function x: [t°—r, «c) > R is
said to be a solution of (0.9)H0.10) if and only if it is continuous at every
point of its domain, is differentiable in (¢t°, o0) and satisfies (0.9){0.10). For
details concerning such functional differential equations we refer the reader
to the books [9], [10] and papers [11]-[13]; further references can be found
in [9]-[13]. Note that some authors require, moreover, that any solution
have the right-hand derivative at the point t°; this condition is satisfied
automatically in a large number of particular cases.

Let us now put: G=H=R,, X =% and

(0.11) u(t, X, 8):=x,.4(t, X) for t,seR,, X%,
where
x,(t, X) stands for x,(t, X; *)
with (see (0.8))
x,(t, X;s)=x(, X;s+u) for se[—r, 0].

It is easy to show by a direct calculation that formula (0.11) gives a
pseudo-process.

It is clear that our previous Example 0.1 (modified as in Remark 0.1)
can be considered as a “limit case” of Example 0.2, with r = 0.

Remark 0.2. It is known that every nonautonomous system of n
ordinary differential equations can be replaced by a suitable system of (n+1)
autonomous equations. This idea permits us to construct a pseudo-dynamical
(or dynamical) semi-system induced by nonautonomous differential equations
(for details see for instance [21]), as well as to replace (in a general situation)
any given pseudo-process (X, G, H; p) by the pseudo-dynamical semi-system
(Gx X, H; m), where

(0.12) n: Hx(GxX)3(s, (t, y))—(t+s, ult, y, 5)eGx X.

The above method was employed for example in [16]. For our purpose,
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however, this method does not seem to be so useful as direct investigations
with respect to the given pseudo-process.

The paper deals with general stability-like concepts. Stability questions
in various versions have been discussed in a large number of papers.
Recently one can observe some tendency towards relatively uniform
formulations and presentations. One type of such uniform presentation is
proposed by Bushaw in [2], [3] and then developed and used in order to
obtain some general results by Dana [6], Habets and Peiffer [7], [8] and
Trzepizur [22].

We shall apply here the idea of D. Bushaw, introducing below some
formal notation, and prove theorems covering several special cases of the
results. Our main purpose is to state and prove theorems on connections
between some stability-like conditions for given sets and the existence of so-
called Lyapunov functions.

1. W-stability of sets. Before we state our formal definitions we shall fix
the following notation: for a nonempty set Y we denote by #(Y) the family
of nonempty subsets of Y. We shall consider subfamilies of 2(X) and
mappings ranged in 2(2(X)).

1(i) Let (X, G, H; ) be a pseudo-process and let a nonempty subset M
of X be given (and fixed in the sequel). Assume that there is a mapping

(L1) B: M3y — BWY)e P(#(X))
and also a family 4 of nonempty subsets of X is given.
We introduce the following formal convention: instead of
Vl/léM’ HWGM’ V['efi’ al"eféh Vde;ﬁ(w)’ ads-ﬁ(w’

VaeH’ aaeHv VreG’ areG’ vzpe.’l’ awedv
we shall write

P- p, G') g7 D‘) d’ S’ S’ ’I: ta ‘F’f;
respectively.
By (—) we denote the condition
(1.2) u(t, ¢, 0+0el’ for geH.

DerFiniTiON 1.1. Any sequence (ordered subset) of six symbols taken
from the set

(1.3) {P, p, G, g D, 4 8S,s Tt F,f

such that
(a) any capital letter excludes the corresponding small letter,
(b) a capital or small letter p stands before a capital or small letter d,
(c) a capital or small letter d stands before a capital or small letter f
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is called a word of the first type, or — if no misunderstanding is possible —
shortly a word.

DeriniTION 1.2. Let W be a word of the first type. We say that the set
M is W-stable if and only if the sentence

(1.4) w(-)

is true.

Remark 1.1. If a word W has a capital letter S at the last place, then
(1.4) is equivalent to

(1.4) W' (u(z, ¢, @)eI for ge H),

where W’ is the sequence of five letters obtained from the sequence forming
W by droping the last letter S.

1(ii) The definition of W-stability covers various particular definitions of
stability-like notions considered in the theory of differential equations and
functional differential equations as well as in the theory of general dynamical
systems and semi-systems.

Let us discuss some of them, especially those related to functional
differential equations. So, in the first nine examples, let (4, R,, R,; p) be as
in Section 0 (Example 0.2) and, for a given ¢ > 0, let

(1.5) M= {pe%: ol < c}

and

(1.6) G = {I.efe>o0,

where

(1.7) T..={peb: lloll <c+e}

and finally

(1.8) BW) = {43}550 for yeM,

with

(1.9) A43:= {pe%: llo—yl|l <d}.
We shall consider also

(1.10) B° W) = {°43}4>0,

where

(1.11) °4Y.:= {pe%: lloll < d}.

Observe that °4% = A2, where 0 is understood as the constant (zero)
function belonging to %.
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ExampLE 1.1. Let us consider (%, R,, R,; 1), M., 9, #({) as above (see
(1.5)-(1.9)) and take the word -

W = GTPdFS.

According to Remark 1.1 we can remove S, and so, in place of W(—)
defining the W-stability of M_, we can consider the equivalent condition

(1.12) GTPdF (u(z, ¢, 0)e T, for ¢ > 0).

By virtue of the fact that I',, is uniquely determined by ¢ and 4§ by ¢
. (and so we can write V, ., instead of V4 and 3, , instead of 3,4, We can
write condition (1.12) in the form

(1.13) (V.o VrzovweMcaboV(p:ng:—wn <)l1X.4o(1, @)l <c+e for ¢ = 0).

If, in particular, ¢ =0 and so M, = M, = {0} = {the constant function 0},
then the letter P is superfluous; more precisely, in this case, condition (1.13)
is equivalent to the condition

(1.13") (Ves0Vez03s50 Voo <a) (IIxs (T, @)l <& for s> 1).

If the right-hand side of (0.9) vanishes at every point of the form
(t, 0)e R, x %, then x =0 is a solution of (0.9)~(0.10) (with ¢ = 0) and then,
instead of stability questions for M, one discusses stability problems for the
zero solution in the classical way. In particular, the zero solution is said to
be stable (see [11]) if and only if (1.13') holds true. So it seems to be
resonable to call the set M, (for any ¢ = 0) stable if and only if (1.12) holds
true.

ExaMpLE 1.2. Consider again the same pseudo-process and the same M,
% and 43(-), as in Example 1.1. Let us now discuss the word

W, = GP4TFS.
The W,-stability of M, is now equivalent to
(1.14) GPATF (u(t, ¢, g)eI',, for ¢ > 0),

We say that M, is uniformly stable if and only if (1.14) is satisfied.
Condition (1.14) reduces to the uniform stability of the solution x = 0 in the
sense of Definition II in [11] if ¢ =0 and q(t, 0) =0 for ¢t > 0. In this case
we replace #(:) by #°(°).

ExampLE 1.3. Consider the same pseudo-process as in Example 1.1 and
the same family ¢ given by (1.6)—(1.7), but for the special case ¢ = 0 (and so
M, ={0}); take 2°(y) defined by (1.10) in place of Z(y). Let us discuss

(1.15) W, (-),

where

W, = TPdFGs.



Stability in generalized processes 249

It is clear that (1.15) is equivalent to

(Vr20V¢5M036>0 Vw:]](p" <6Ve>036>0) (||-“r+g+a(f, @)l <¢ for o = 0)-
Since M, has exactly one element we can omit V., and so —
replacing ¢+0 by ¢ — we get
(1.16) (Vt3036>0 V¢:||¢|| <6Ve>036>0)(”xt+09 (t, p)ll <& for @' = G),

which is equivalent to

(1.17) (Ves03550) (if ll9ll <9, then lim ||x.,(r, @)l = 0).

Qe— o

The authors of paper [11] call the zero solution quasi-asymptotically
stable if (1.17) is satisfied.

ExaMpLE 1.4. The solution x =0 of (0.9)—(0.10) is said to be quasi-
uniformly-asymptotically stable (see [11], Definition IV) if and only if

(118) (36>0vt?0) (lf “(p“ < 6a lheﬂ hm let+q(t’ (P)” = 0)

e~ w

It i1s not difficult to show that (1.18) can be written in our notation as
Wi(—) for My = {0}, where

(1.19) W, = PdTFGs.

ExampLE 1.5. The solution of (0.9)-(0.10) with ¢(t,00=0 and ¢ =0,
being the zero solution, is said to be asymprotically stable (see [11],
Definition V) if and only if it is stable (compare Example 1.1) and quasi-
asymptotically stable. So x =0 is in our situation asymptotically stable if
and only if the conditions W(—) and W;(—) are satisfied.

ExaMpPLE 1.6. Let us consider once again problem (0.9){0.10) with
q(t,0)=0 and ¢ =0. The zero solution is said to be equiasymptotically
stable if and only if (see [11], Definition VI)

(1.20) (V:2035>0Ve>03a>o V¢;||¢u <a)(”xr+,,, (t, 9)ll <€ for o' > 0)-

As in Examples 1.1-1.3, we can easily show that (1.20) is in our notation
equivalent to

(1.21) TPdGsF (—)

for M, = M,.
ExampLE 1.7. Assuming that q(t, 0) =0 and ¢ = 0, we say that x =0 is
uniform-equiasymptotically stable (Definition VII in [11]) if and only if

(122) (36>0ve>036>0Vtzovcp:ll(pll <J)(”xt+o' (Ta (P)“ <é& fOI' Q, 2 O').
Condition (1.22) is equivalent to
(1.23) PdGsTF(—).
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ExampLE 1.8. Take M, = M, = |0} once again and assume the ¢(t, 0)
=0 and ¢ =0. Take W, = TPdFgs. The W;-stability of M, is equivalent to

(124) (V303550 Ypii0n <63e>03050) (1% 4o (T, @l <& for ¢ > )

(since P can be omitted because M, has only one element). This means that
every solution of (0.9){0.10) starting from any initial function ¢ which is
sufficiently close to zero is bounded. We can say that problem (0.9)«0.10) has
solutions bounded near zero.

There are some other conditions giving a reasonable boundedness
property of solutions of problem (0.9){0.10), such as for instance those given
by the words TPdFgS, TPdgFs, TPdgFS etc. We shall consider again
certain conditions with small g with respect to a slightly more general case in
Example 1.1.

ExaMpLE 1.9. Let us consider the pseudo-process, the set M., the same
family % and mapping # as in Example 1.1. Take the word tpDfgs. The
“stability” condition defined by it means in particular that there is a solution
of (0.9)10.10), belonging to M, and being an accumulation point of bounded
solutions.

ExampLe 1.10. Consider (R, R, R,: u) defined in Example 0.1 and
assume that f(t,00)=0 and »°=0. Take M =Rx{0}, Z((x,0)
= {B((x, 0), a)},»0, Wwhere B((x, 0), a):= {(u, v): (x—u)’+v?> <a®} and
finally % = {I',} with I', = {(x, y): if x is an integer, then |y| <e¢}.

Now the condition W, (—) with W, = PTdFgs means that every solution
of (0.5) starting from a point sufficiently close to the x-axis is “almost
oscillating” for large arguments. The above word W, gives a condition of
“stability” which seems indeed far removed from classical ones.

ExampLe 1.11. We shall now consider a more general situation, showing
that classical stability conditions and their direct generalizations are covered
by a suitable W-stability.

Let (X, G, H; u) be a pseudo-process (arbitrarily fixed). Assume that
Me 2(X), 4 P(# (X)), #: M- 2(2(X)) and if y e M, then y e B for every
Be #(y). In this case the condition

GPAFTS(—)<GPdFT(u(z, ¢, 0)eT for ge H)

is equivalent to the condition S”(%, #) from [16] (Definition 8, p. 544).
ExampLe 1.12. Let (X, G; n) be a pseudo-dynamical semi-system, and
let Me2(X), 94 #(#(X)) and a mapping #: M — 2(2(X)) be given,
Assume that 42 satisfies the condition supposed in Example 1.11. Recall that
M 1is said to be S(¥%, B)-stable (see [16]-[19]) if and only if for every 'e 4
and every xe M, there is a Be #(x) such that n(t, X)e I’ for te G and xe B.
We can consider (X, G;n) as a pseudo-process (X, G, G; u), putting
u(t, x, 0):=mn(g, x). Then the S(¥, #)-stability of the set M in (X, G; n) is
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equivalent to the W-stability of M in (X, G, G; p) with W = GPdFTS; this is
again equivalent (as has been pointed out in Example 1.11) to the condition

GPAFT(u(z, @, ¢) = n(g, p)e I' for ge H = G).

This observation permits us to conclude that also conditions of type S
from [16] (Definition 7, p. 544) are covered by suitable conditions of the type
of W-stability for corresponding product spaces constructed by using the idea
presented in [16]. More precisely, we employ the [ollowing method: a given
pseudo-process is replaced by a suitable pseudo-dynamical semi-system, as is
done in [16], and then we treat the transferred stability conditions with
respect to the “higher dimensional” pseudo-process obtained from the
pseudo-dynamical semi-system by using the formula pu(r, x, 0) = n(e, x)
applied above.

Similarly we can prove that W-stability conditions contain as special
cases the weak semi-stability, semi-stability, etc. from [17].

ExampLE 1.13. Let (X, r) be a metric space. Assume that (X, R, R,; p) is
a pseudo-process, Me 2(X). Put for 1 >0
B(M, }):={xeX: r(x, M) =inf {r(x, yi: yeM] <}
and for pe M

B(op, 4):={p: r(o, ) <A}.

For ye M we now put

BW):= (B, N}, .o,

where N is a given (and fixed) nonempty subset of X.
Finally we put

G:= (B(M, 2))350.

Generalizing Examples 1.1 and 1.2, we shall say that M is stable
(uniformly stable) if and only if M is W-stable with W = GTPdFS (W
= GPdTFS, respectively).

ExampLe 1.14. Assume that X, M, 4 are as in Example 1.13 but put
A(Y):= 4. Generalizing Examples 1.3 and 1.4, we shall say that M is quasi-
asymptotically stable (quasi-uniformly asymptotically stable) if and only if M is
W-stable with W = TPdFGs (W = PdTFGs, respectively).

ExampLE 1.15. Let (X,]||-|]) be a vector normed space and let
(X, R, R,; 1) be a pseudo-process. Assume that M = {¢°} and put
B(9°%):= {B(¢°% A)}150 = {10 lo— 0% < 4] }/1>0» 4= {B(0, A)};50-

The words W, = gPdFts, W, = gPdFTs, W,,, = PdgFTs and similar ones
(all with the small letter g) give conditions which are some boundedness
properties for the trajectories of the pseudo-process discussed here. The



252 A. Pelczar, A. Trzepizur

words W, and W, give, in particular, conditions of a uniform type. The first
word gives example W;(—) which is the condition
3,.035-0 (for every ¢ such that [[¢p—¢?%| < there are Te R and
oe R, for which ||u(z, @, )l <¢ for ¢ > o).

2. Some conditions equivalent to W-stability. Let (X, G, H;u) be a
pseudo-process. Assume that M e 2(X) and there are a mapping (1.1) and a
subfamily 4 of 2(X). We extend the convention adopted in Section 1.

Assume that there is a nonempty subfamily % of 2(G x X). Instead of

Vie and 3,
we shall write
L and [, respectively.

DeriniTION 2.1. Every sequence of six letters chosen out of the elements
of the set

(2.1) {P,p LI, D d S, s Tt F,f}

satisfying conditions (a){c) of Definition 1.1 is said to be a word of the second
type.
If W is a word of the first type, then by W we shall denote the word of

the second type obtained from W by substituting L for G or [ for g¢.
By (=) we denote the condition

(2.2) (t+0, u(z, ¢, 0))e A.
Let us adopt the following notation: if TG, then
(2.3) A= {peX: (1, p)eA}.

Finally, we introduce a convention concerning sequences of three
symbols taken from the set {G, g, L, I, T}, proposing the following

Derinimion 2.2. If W is a word of the first type, then by Z, we denote
the sequence of three elements taken from the above set given by the formula

~_{GIT if G appears in W,
W ={LgT if g appears in W.
DeriNiTIoN 2.3. We say that the pair (M, &) satisfies the condition
C(W) if and only if
(i) W(=) holds true,
(i) Zw(A, = I') holds true,
(iii) (7, @)e A =(t+0, pu(t, @, @))e A for ge H.
We shall now state and prove our first theorem, which will be used in
the sequel as an auxiliary result. '
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THEOREM 1.1. The set M is W-stable if and only if there exists a
subfamily & of #(G x X) such that (M, ¥) satisfies the condition C(W).

Proofl. Assume that M is W-stable and try to construct a nonempty
family ¥ < 2(G x X) satisfying (i)-(ii).

Let us put
(2.9) E(I'):= {(z, ¢): u(t, ¢, 0)erl for geH} for I'e%.

We claim that

¥ ={EI): T'e%}

has the required properties.
We start with condition (iii). Let (z, ¢)e E(I'). So u(t, ¢, @)e I for ge H.
Thus, in particular, for every fixed ge H we have

(2.5) u(t, @, 0+0)el’ for ceH.
Since

u(t, ¢, ¢ +0) = p(t+o, plt, @, @), o),
we get from (2.5)

(2.6) p(t+o, ulz, ¢, 0), 0)el’ for geH,
which — by virtue of definition (24) of E(I') — gives directly
(27) (t+e, (1, @, Q)€ E(I).

Condition (i) is satisfied.
In order to prove (ii) observe that for every 'e % and every 17e G we
have

(2.8) E(I, < T.

Indeed, f e E(I'),, then (z, ) E(I'), which means that u(z, ¢, g)el’
for every oe H. So in particular ¢ = u(z, ¢, 0)e I'; inclusion (2.8) has been
proved.

Now let G be in W. So Z, = GIT. Let I'e % be fixed. Take A = E(I)
and take teG. Inclusion (2.8) means in our case that A, c I'. Zy (A, < T) is
true.

If g is in W, then Z, = LgT. Let Ae ¥ be given. Take I'e ¢ such that
E(I') = A. Let te G be arbitrarily fixed. Applying (2.8), we finish the proof of
Zw(A, c I') also in this case. Thus we have proved ().

In order to prove (i) it is enough to observe that for A = E(I') we have
the following sequence of equivalences

(—)=u(r,9,0+0el’ for pecH
< u(t+o, u(t, @, 0), 0)eI’ for geH
=(14+0, p(t, ¢, 0))e A =(=).
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This proves that for given families ¥ and ¥ = {E(I'): 'e %} we have
the equivalence

(2.9) W(—)=W(=).

Thus & satisfies all the conditions required in C(W).

Let us assume now that there is a nonempty subfamily .¥ of 2(G x X)
such that the pair (M, %) satisfies the condition C(W).

Assume that G appears in W and so condition (ii) means that

(2.10 GIT(A, cT).
Observe that if for some Ae ¥ and 'e % we have
(2.11) A, el for 1eG
and (for some 1, 0, @)
(2.12) (t+0, u(z, 9, 0))e A,
then (because of (iii))
(2.13) (t+o+e, u(t+o, p(z. ¢, a), 0))eAd for geH,
which means that
(2.19) (t+o+e, plz, ¢, 0+0)eA for geH,
and so
(2.15) ut, ¢, 0+0€A 5., for geH,

and then (see (2.11))
(2.16) u(z, ¢, 0+p)el’ for geH.

The above reasoning proves that, assuming that (i1) and (iii) are fulfilled,
we obtain the implication
W(=)=W(-).

This proves the W-stability of M under the assumption that G is in W.
The same method is applied if g is in W. The only one change is that
(2.10) should be replaced by

(2.17) LgT(A, = I).

The proof of the theorem is completed.

Remark 2.1. If S appears in W in the final position, then — as we
know — W(—) is equivalent to W'(u(r, ¢, 0)e I’ for ge H) (see Section 1).
We can extend this observation to words of the second type. If S appears in
W (and so in W) in the final position, then

W(2) W (z, 9)e ),
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where W' is the sequence of five letters obtained by omitting in W the final
one, namely S. Indeed, if S is the last letter in W, then in the condition
(t+0, u(t, @, 6))e A we can put ¢ =0, which gives simply (7, p)e A.

3. Lyapunov functions. Let (X, G, H; y) be a pseudo-process and let
Me 2(X), e ?(?(X)) and #: M - 2(2(X)) be given.

Let (A, <) be a partially ordered space. We put U, := A\{min A} if
min A exists and A, := A if min A does not exist. Let W be a given word of
the first type.

DEerFinITION 3.1. We say that a subset N of X is invariant if and only if
(3.1) oe N=[u(z, ¢, 0)e N for every t1e€G, ge H].
Remark 3.1. If N =@, then N is trivially invariant. In the sequel we

shall consider nonempty invariant sets.
Remark 3.2. Implication (3.1) is equivalent to the following one:

(3.2) [(r, 9,0 eGxX xH and u(z, ¢, 0)e N}
=[u(z, @, o+a)e N for ce H].

Proof of the equivalence (3.1)<«>(3.2). Assume (3.1) and take
(t, @, 0) such that u(z, ¢, 0)eN. Let ¢ be fixed. From (3.1) we get
(7% u(z, @, 0), 0°) e N for every 1°¢ G and ¢°e H, and so, in particular for
1% = 149, 0° =0 we obtain

u(t+e, p(t, @, @), 0) = pu(z, @, g +0)eN.

Thus (3.1)=(3.2).
In order to show the inverse implication we observe that ¢ = u(z, @, 0),
and so

peN<u(t, p,0eN for teG=pu(r, ¢, 0)e N for 1eG and geH.

DeriniTioN 3.2. We say that a function V: 4" — U, where /=G xN
with some invariant subset N of X, N # Q, is a Lyapunov function of the type
[W; U, 4, 3] for the set M if and only if the family

(3.3) L ={A": neU,},

where

(34) A= {(x, @) 4 V(z, ¢) < 1)
satisfies conditions (i}iii) of Definition 2.3, and moreover,
(3.5) Vit+eo, u(r, 9, @) < V(r, 9) lor (z, p)e.AN".

Remark 3.3. Because of the fact that N is invariant, the set satisfies the
condition

(3.6) (t, p)e N =>(t+o, u(t, ¢, g))e A& for geH.
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Conversely, if &= G x N satisfies (3.6), then N is invariant.

THEOREM 3.1. If there exists a Lyapunov function of the type
(W, N, 4, #) for M, defined in some set .4° of the form G x N, the set
Ne P(X) being invariant, then M is W-stable.

Proof. By virtue of Theorem 2.1 it is enough to show that every set A™

satisfies condition (iii) of Definition 2.3. In order to do that we apply (3.5).
Let ne A, be fixed. We have

(v, P)eAP = V(zr, o) <n=V(t+g, u(r, ¢, 0)<n for geH,
<=(t+0, u(t, @, 0))e A® for pe H.
The proof is completed.

Remark 34. Theorem 3.1 generalizes in particular Theorem 4 from
paper [16].

Now we are going to establish an inverse result. This will be effected
with respect to the special case AW =R,, A, = R, =(0, o).

THEOREM 3.2. Suppose that % is indexed by R, in such a way that %
=l }asoand t <s=1T,c ;. Assume that there is a b > 0 and there exists
an Ne P(X) satisfying condition

(3.7) N is invariant and N c I',.

If M is W-stable, then there is a Lyapunov function of the type [W; R,, 4, #]
for M.

Proof. Define #:= G x N, where N is such that (3.7) holds true.
Put
(3.8) V(t, p):=inf{aeR.: pu(z, ¢, 0)eI', for ge H}

and consequently
(3.9) A= {(t, p)eN: V(1, ) < a}.

Definition (3.8) is correct since, for every (1, ¢), we have u(t, ¢, g)e I,
for every ge H (see (3.7)).

We shall show that V satisfies all conditions required {rom Lyapunov
functions.

I. We have for (z, ¢)e.A4":

V(t+e, u(r. ¢, 0) =inf {ae R, : u(t+o, ul(z, ¢, @), 0)e I, for e H}
=inf{ae R,: p(t, @, o+o)el, for cc H}
<inflaeR,: u(z, ¢, eI, for AcH}
= V(1, ¢).

Thus we have proved that V satisfies (3.5).

II. In order to prove condition (ii) of Definition 2.3 for the family
{A@},, o we shall first show the following
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LEmMa. If 0 < a’ < a® < b, with b > 0 satisfying (3.7), then for every 1€ G
(3.10) (A@), < Tq.
Proof of lemma. We have
@e(AW), <=(1, )e A =V (1, 9) < d
<inf{aeR,: u(z, @, @Qel, for peH} < d
=inf{aeR,: u(z, ¢, 9)erl, for ge H} <a°
= there is ce(0, a°] = R, such that u(t, ¢, o)eI'. for pe H
= u(t, ¢, 0)e o for ge H=p(r, ¢, el o<>pel 0. m
By using the above lemma we can now easily prove (ii) in both cases. If
Zy = GIT, then for every I' o (we can assume without loss of generality that
a’® < b) we take A? with any fixed a’'e(0, a°) and for every t1e G we get
(3.10). If Zy = LgT, then for every fixed A such that ce(0, b) we take
ce(c, b) and apply (3.10) for @’ =c¢, a° = ¢, which gives
(A9), = I
Finally, if Z,, = LgT and A“ is given with ¢ > b, then we use the inclusion

'y I', and observe that for every e R, and every teG the following
sequence of implications holds true:

pe(AD), = (1, p)e N = e T,.

So, if ¢ > b, then (A“), = I'.. Thus (ii) is satisfied for both cases.

HI. In order to show that the sentence W (=) is true with respect to &
= {A®), ., it is enough to observe that for every 1€ G, pe X and oe H we
have:

u(t, ¢, a+g)el’, for every ge H<(—)
<p(t+o, ut, @, 0),0el, for geH
= V(t+o, ult, 9, 0) <a<s(t+0, u(t, @, 0))e A9 <(=).

So, if W(—) is true, then W(i) 1s also satisfied in both cases, that is for
G and g appearing in W.
The proojpis completed.

Remark 3.5. It is possible to generalize Theorem 3.2 by replacing R,
by more general partially ordered spaces. Assume that (. <) is partially
ordered space such that

(3.11) for every Me 2(AN) there 1s infIN;
(3.12)  for every Ae U, there is A% A, such that 1° < i;

(3.13) for every Me 2(A) and every ie A, such that infIM < 4
there is ne M such that n < 4.

17 — Annales Polonici Mathematici XLVI
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We easily show that
(3.14) if A2, ne A, then inf{4, n}e U, .

Basing ourselves on the above properties, we can prove the existence of
a Lyapunov function of the type [W; U, ¥4, #], V: &/ > WU for M, if % is
indexed monotonically by A, and M is W-stable, by using the same method
as above. We refer the reader to [18] and [19] for details concerning such
partially ordered spaces (2, <) and for the application of the technical

calculation used there to constructions of Lyapunov functions in pseudo-
dynamical semi-systems.

Remark 3.6. The assumption of the existence of an element b > 0 and a
set N such that (3.7) holds true is satisfied in a large number of particular
cases important for applications. Note for instance that many natural
stability conditions imply the fact that M is invariant; if that case occurs,
then for % such that M is contained in every set of this family (it is enough if
it is contained only in one of those sets) we meet the assumption mentioned
above, which is satisfied trivially with N = M. The condition M < I for
every I'e ¥ is quite natural and frequently satisfied in classical situations.
For applications we usually require that N should contain the set M
together with some neighbourhood (if X is a topological space) or with a
family of sets belonging to #(¥), Y€ M. This is ensured in many cases. We
refer the reader to [19], where the main results concerning the connections
between the stability and the existence of Lyapunov functions are established
in such a form that those functions are defined in invariant sets containing
M together with ) {B,: ¥ e M}, where, for every y, B, is chosen in £(y).
This is done with respect to stabilities simpler than the general W-stabilities
considered above, but the same idea can be applied here. We have for
instance the following

THEOREM 3.3. Assume that (X, G, H; p) is a pseudo-process, M e 2 (X),
Ge P(P(X)) and B: M > 2(.#(X)). If M is W-stable with W = GTPdFS,
then for every I'e 4 there exists a set N such that

(3.15) N is invariant, N = T, and for every yre M there is a Be A (Y) such
that B < N.

Proof. It is enough to observe that for every I' the union of those B,
which are elements of 2(y) ( € M) chosen according to the W-stability of M
for all teG is the set N satisfying all conditions (3.15).

CoROLLARY. If W = GTPdAFS, then the assumption of the existence of I'
and N fulfilling (3.7) is superfluous. Moreover, the set N, obtained by using the
method presented in the proof of Theorem 3.3, has the important additional
property written as the third one in (3.15). Thus in this case Theorem 3.2 can
be stated in a stronger form.
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4. Some sufficient conditions for W-stability. Assume that (X, G, H; p) is
a pseudo-process, M e 2(X), $e 2(#(X)) and #: M — P(P(X)). Let W be
a word of the first type.

THEOREM 4.1. Assume that there is a subfamily ¥° of 2(X), ¥° # O,
such that

i°) Wo(u(z, @, a)e A°),

(ii° Zy(A° <),

(iii°)  every set A% £° is invariant,
where W° is obtained from W by replacing L by <Y o ,o (and | by
°<3 0,0, and Zy, =GI° if @ is in W and Zy, = g if g is in W.

Then M is W-stable.

Proof. It is enough to observe that by putting #:= {G x A% A°c #°)
we obtain a subfamily of 2(G x X) satisfying conditions (1}<iii) of Definition
2.3, and so we can apply Theorem 1.1.

Remark 4.1. If S is in the last place in W, then (i° is equivalent to
W (pe A%, where W is obtained from W° by omitting S and T if T is in
W° or S and ¢t if t is in W° (keeping all the other letters unchanged). Indeed,
if S is in the last position in W (and so in W©°), then in the relation
u(t, @, 0)e A° we can put ¢ = 0, which gives ¢ A° and then S and T (or 1)
are superfluous.

THEOREM 4.2. Assume that there is a nonempty and invariant subset N of
X and a function V: N — R, such that the family ¥°:= {A°®), ,, where
A% =fpeN: V(p)<a} satisfies conditions (i°) and (ii°) assumed in
Theorem 4.1 and, rhoreover,

4.1) V(u(t, 0, 0) < V(p) for peN, 1€G, geH.

Then the set M is W-stable.

Proof. It is easy to see that condition (4.1) implies (iii°) for the family
#°, and so we can apply Theorem 4.1, which finishes the proof.

ExampLE 4.1. Let (X, R, R,; p), M, 4, 44 be as in Example 1.13. Let N
be an invariant subset of X and let V* N — R, be such that (4.1) holds true
(with G = R, H=R,) and

(42) Vt>036>0(yeN: V(,V)<5="(M, y)<6)’
which is equivalent to
(4.2) V,>oinf {V(y): ye N\B(M, n)} >0,

and, moreover,

4.3) Vyem Ve>03550 Voenw, 5o ( V(p) < e).
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Then M is uniformly stable in the sense of the definition introduced in
Example 1.13 and also — obviously — stable. Condition (4.3) implies for W
= PGdFTS the condition W% (pe A°).

Observe that the existence of such a function V is sufficient for uniform
stability; trying to find an analogous function for stability, we come a cross
the same function. This shows that the sufficient conditions considered here
are not necessary.

ExampLE 4.2. Let the pseudo-process, the set M and the family 4 be the

same as before but () = ¥ for ye M. Let V: N— R, be such that (4.1)
and (4.2) are satisfied and, moreover,

(44) V.ier3ds> OvtpsB(M,é)r\NV£> 03azo(V(H(Ta P, 0')) < 8)
or
(4.5) E P OVrsnvqpeB(M.é)r\an> oaaao(V(#(T, @, 0)) < 5)-

Then M is quasi-asymptotically stable if (4.4) holds true or quasi-
uniformly-asymptotically stable in the case of (4.5) (see Example 1.14).

Remark 4.2. There are several practical problems concerning classical
stability conditions such that the function V of the type discussed in
Examples 4.1 or 4.2 is defined a priori in a set N’ which is not necessarily
invariant; inequality (4.1) is supposed to be fulfilled for (z, ¢, g) for which
p(z, @, 0)e N'. It 1s possible to replace N’ by a subset N which will be
invariant. We omit technical details. We refer the reader to [18] for a special
case (where pseudo-dynamical semi-systems are considered).

5. It has been pointed out in Section 0, that any pseudo-process
(X, G, H; y) gives a pseudo-dynamical semi-system (G x X, H; n) with =
defined by (0.12). So it seems to be natural that some stability-like concepts
considered for subsets of X with respect to (X, G, H; u) can be replaced by
suitable conditions of stability type for the corresponding subsets of G x X
with respect to n given by (0.12). Theorems on equivalence for pairs of some
of those conditions are given in [16]. A standard and natural way to
establish theorems of that kind is to define M:=GxM (or M =AxX,
where A is a subset of G) and to introduce subfamilies of the type

Q:={GxI:Te¥
as well as suitable mappings
B: M- 2(2(G x X)),

and then replace W-stabilities for M by some stability-like conditions for M
(with respect to Q and ). As an example let us consider once again the
stability condition S(R2, ff) considered in Section 1 (Example 1.12), discussing,
however, its connection with a W-stability condition in the inverse direction.
Consider a pseudo-process (X, G, H; ), Me Z(X), %c 2?(#(X)) and
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B: M — 2(P(X)). Let W be equal to GPAFTS. Put X:=G xX, M:= G x M,
Q:={GxI: T'e%), and finally B((z, ¥)):= (G xB: BeB(¥)!. It is easy to
see (compare [16], Proposition 3) that M is W-stable if and only if M sat-
isfies the condition S(£2, ff), which means that (see Example 1.12) for every
X =(t,¥)e M and every § = G xI'eQ there is a B = G x Be B(%) such that

feB=n(0,2)e( for aeH.

The same method can be used for many other cases; the case presented
above seems to be the simplest one.

However, there are certain cases of W-stabilities with respect to which
this method seems to be useless. This can be observed for instance if the
capital letters D and F and the small letter + appear simultanously in the
word W. In order to furnish some examples investigate

W, = PDGtFS
and
W, = PgDtFs

with respect to the pseudo-process (R, R, R, ; ), where u is given by (0.6),
considered in Example 0.1, with M = {0} xR and ¥ = {B(0,¢): ¢ > 0}
= A(0). The condition W,(—) is equivalent here to the following one:

Y550 Ve>03,oe,,vxo such that |x°| <53a>o(|}’('°+3, x°, s) <¢ for s > o),

which gives the convergence (of uniform type in some sense) to zero of the
solutions of the equation

(%) y =1t y).

The condition W,(—) means that there is a constant C such that for
every neighbourhood 4 of 0 there is an initial time ¢° such that solutions of
(%) passing through (¢°, x°) with x°e 4 have the absolute values bounded by
C for a large time value.

The method used in [16] and recalled roughly above cannot be used
here with respect to W, and W, stabilities (at least it cannot be used in its
original form). In particular, putting X = G x X and M = R x {0}, we cannot
suggest that Q and f should be defined as in the preceding case. Indeed,
putting 2 = {Rx B(0, ¢): ¢ > 0} we have to find a reasonable B in such a way
that the W,-stability (W,-stability) of M would be replaced by a suitable
condition for M. Recall that =n(o, (1, ¢))=(t+0, u(t, ¢, 6)). So the
condition

(5.1) n(4, (1, 9))e@ for some 1cR,, 1cR, pecB

means in fact that A can be fixed arbitrarily, while (z, ¢) is to be chosen in
some domain according to some rule. This, however, is complicated since the
variable ¢ is preceded by the universal quantifier and, moreover, ¢ is taken
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from A, which is also preceded by the universal quantifier, while t is — on
the contrary — preceded by the existential quantifier.

The above remarks show that the W-stabilities considered in the present
paper do not seem to be reducible — in general — to stability-like
conditions discussed in the theory of pseudo-dynamical systems and semi-
systems. On the other hand, we have to underline that our approach to a
general presentation of stability-like concepts with respect to pseudo-
processes does not cover all possible ones, even for pseudo-dynamical semi-
systems. In particular we have not considered stabilities of motions but only
stabilities of subsets of the (phase) space X. A presentation which seems to be
practically complete with respect to stability-like concepts (including
motions) in the theory of pseudo-dynamical semi-systems (with G = R) is
given by Dana in [6].
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