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Existence and uniqueness of solution
of some integro-differential equation

by ANnTONI LEoN Dawmowicz (Krakow) and Krzyszror Loskot (Katowice)

Abstract. In this paper the existence and unigueness of the solution of the problem
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are proved.

Intreduction. The population dynamic can be described by the first-order
partial differential equation of the form

u Qu
—_—

The coefficients generally deperd on the parameters of population. In the
biological interpretation of this cquation, >0 denotes iime, x>0
proliferation and u(¢, x) > 0 is the density of distribution of individuals. As
yet, this equation was considered if the coefficient ¢ depends on t and x and
the right-hand side of the equation depends on f, x and u [3]. In the
presented paper, ¢ and 4 do not depend on time but depend on the global
number of individuals z(7) at the moment t. Under some assumptions there
are proved the existence and uniqueness of solutions of the problem.

1. Formulation of theorems. Let us consider the system of equations

. au ai‘ 1 "
(l, _C_,.}.-{-c(,\, ‘.(t))e_x' = /\(xa u, Z(L)),

(2) z(t)=?u(l.x)dx

(V]

for t >0 and x> 0 with the initial condition
) u(0, x) = v(x).

In whole of the paper we assume that the coefficients ¢ and A satisfy the
following assumptions.



80 A. L. Dawidowicz, K. Loskot

AssumptioN C,. The coefficient c is of the class C' for x >0 and z > 0.
AssumptioN C;. ¢(0,2) =0.

AssumpTiON C;. |dc/ox| < a.

AssuMPTION A ;. The function 4 is of the class C! for x>0,z>0, u > 0.
ASSUMPTION A,. A(x,0,2z)=0.

ASSUMPTION A,. |0A/Au|l < B(u, z) for a continuous function B.
AssuMPTION A4. 04if0u < B.

THeoreM 1. If v is bounded and continuous on [0, o), v(x) > 0, ana

4) A =})v(x)dx< 0,
0

then there exists a function u(t, x) such that u = 0 and u is the solution of (1),
(2), (3).

Remark. We consider the solution in a generalized sense. The sense of
solution will be precized in the following section.

Now we shall formulate some new assumptions.
AssumptioN C,. |0c/dz] <y,
AssumpTION Cs. The coefficient ¢ is of the class C? and

102 c/0x8z| +10% c/0x?| < u(2).

ASSUMPTION Ag. [04/0x]|+|04/0z] < v(z, u)u.
In Assumptions Cs5 and Ag,

(5) u and v are continuous.

THEOREM 2. Under the assumption of Theorem 1 and Assumptions C,, Cs
and As, the solution of problem (1), (2), (3) is exactly one.

2. The method of characteristics and construction of operator. Let C, (4)
be the set of all continuous and non-negative functions on 4 =[0, T] or
[0, o). At first we consider problem (1), (3) where z is an arbitrary function
from C, (4). We define the solution of (1), (3). Denote by o(t, x) = @(t, x, 2)
and ¥ (¢, x, y) =y (¢, x, v, z) the characteristics of (1), i.e.,, the solutions of

(6) E=c(&z(), ¢O)=x
and
(M n =4 n z(0), n0) =y,

respectively, for te 4.

DeriniTioN 1. The function u: 4 x [0, o0)— R is a solution of (1), (3) if
for every ted, x 20
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(8) u(t, o(t, x)) =y (t, x, v(x)).

Remark. For a given z and for a given v there exists exactly one non-
negative solution of (1), (3). (It follows from the classical theory of first-order
partial differential equations [1], [4])

In the following section we shall prove the proposition

ProprosiTioN 1. Under assumptions C,—C; and A,-A,, if zeC,(4), v
satisfies (4), and u is the solution of (1), (3), then for t >0

9) ajo u(t, x)dx < oo,

0

(= ]
and the function A3t [u(t, x)dx is continuous.
0

In fact, u depends up on z. (We omit this dependence in notation.)
For fixed v > 0 define @z by the formula

(10) Oz(1)= [ult, x)dx.
0

From Proposition 1 follows that @: C, (4)— C, (A).

DeriNiTioN 2. The function u: 4 x[0; oc0)— R is the solution of (1), (2),
(3) if u is the solution of (1), (3) for z satisfying the condition
(11) Oz =:.

Remark. To prove the existence or uniqueness of the solution of (1), (2),
(3) it is sufficient to prove the existence or uniqueness (respectively) of the
fixed point of operator ©.

3. Proof of Theorem 1. We start from the proof of Proposition 1. In the
proof we shall use the following lemmas.

LEmmA 1. The C'function ¢ is defined on A x R, and the C*-function \y
is defined on A x R, x R, . Moreover, for fixed t the function x— @(t, x) is a
bijection of R, onto R, . '

The lemma is a simple consequence of our assumptions.
Let
0
(12) S(t, x, z) = 8(t, x)=(§¢(r, x).

It is obvious that § satisfies the condition
oS _ oc
ot ox

LEmMMA 2. The following inequalities are satisfied

(14) 0<St, x)<e”, 0<olt, x, y)<ey.

(13) (e(t, x), z(1))'S, S0, x)=1.
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The lemma follows from (7), (13), and Assumptions C;, A,.
Proof of Proposition 1. By the substitution x = ¢(t, n) we have

Ju(t, x)dx=j u(t, o(t, n)) cp(r nydn = Jw(r,mv(n))s(t, n)dn.
0 0 0

From Lemma 2 we have

(16) 0<yY(t,n, oM)S(t, M < e P vy <e® AT p(p)

if + < T Hence fu(r x)dx < A" PT < o0,

0
x

Moreover, @z(r) = {u(t, x)dx is a continuous function. This follows

o

from (16) and the Lebesgue dominated convergence theorem. M

CoroLLARY. From (16) it follows that
Oz(1) e 4.

Now we shall prove the continuity of the operator @. We shall consider

C, (4) with compact convergence topology. Hence it is sufficient to prove the
continuity of ® on C, ([0, T]).

ProrosiTioON 2. For every T > 0 the operator
e: C. ([0, T) -~ C. ([0, TH

is continuous.

Proof. Let us consider H: [0, T]x R, xC, ([0, T])— R defined by the
formula

H(@, x,2) =y, x, v(x), z)S(t, x, 2).

From the continuous dependence of the solution on the right-hand side the
function H is continuous. Moreover, from (16),

(17) H(t, x, 2) < AT - p(x).

Hence the function
[0, TIxC, ([0, TD>(t, 2)— | H(z, x, z)dx
0

is continuous, which implies the continuity of ©. B
ProrosITION 3. Let X be the set of all ze C, (4) satisfying the condition

(18) z2(t) < Ae“+Pe,
Then ©(X) is relatively compact.



Solution of integro-differential equation 83

Proof Since v is bounded, from (15) it follows that u is also bounded
for 1 < T Since z 1s also bounded for r < T, there exists a By such that
|¢2/0u| < By for ze X and u satisfying (1), (3). Hence

|r_£ er x, v(x), ‘.)
ot

F.S(l X, :.')l

S(r x, z)+y (1, x, v(x), -)b

l‘ !
g(BT+1)e‘““"T-y(x).
Thus
@z(t+M—0Oz(0 < ABr+0**PT-h for 1, t+he[0, T].

In consequence, if 4 = [0, T] the proof is compleic. If 4 = [0, ov), then the
set K < C(4) is relatively compact if and only if for every T > 0 the set of
restrictions !z| [0, T]): ze K} is relatively compact. This known theorem
completes the proof. B

To prove Theorem 1 it is sufficient to notice that the set K of all
functions from C,(4) bounded by Ae™*# and satislying the Lipschitz
condition with the constant N(T)= A(Br+2z)exp(x+p) T is convex and
compact. From the generalized Schauder fixed-point theorcin [2] we obtain
the theorem.

4. Proof of Theorem 2. To prove Theorem 2 we must claim the following
proposition:

ProrosITION 4. Under the assumptions of Theorem 2 for z,, z,e K the
following inequality is satisfied:

(19) @z, = @zally < M(T| 21 = 2,l7.

where K is defined in the previous section, || ||y denctes the norm in C([0, T))
and

(20) lim M(T) =0.

T -+Q
To prove this proposition we shall at first prove some lemmas.
LEmMmA 3. Under the assumptions of Theorem 2, \ satisfies the inequality

(21) j i'//(', x, t{x), 51)“‘#(?, x, v(x), Zz)!dx S M (Tjllzy —zillr
Q

for te[0, T] and z,, z,€ K. Moreover,
(22) lim M, (T) = 0.
-0

Proof. Let w(t, x)=y(r, x, v(x), z;)— ¥ (1, x, £(2), ;). Obviously,

ow -
w (0, x) = 0. We shall estimate —(r x). At first we notice that for -, -, K
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we have
(23) () < Ae**PT for i=1,2
(24) U, x, v(x), z;) < supw(&)ef”

£>0

and, consequently, there =exists a compact set F such that
(0, ¢ (e, x, v(x), zi))e F. There exists a finite number

(25) Vo =sup {viz, u): (z, ue F}.

Now we estimate -a—r-w(t, x),

-~

0
(26) 5;\v(l,x)=D,+D2+D3,

where
Dy = Ae(z1), ¥ (21), 21)— Ao (z2). ¥ (zy), z4),
Dy = AMo(z2). Y (z1). 2;) = A(@(22), ¥ (23), 21},
D; = i(o(z,), '/’(Zz)s'zl)_i((P(?z)e ¥ (z2), 22)-

(In the last formulae @(z) = o(t, x, 5), ¥(z) = v (e, x, v(x), z;)) From
Assumption As and (295)

D] < volo(t, X, 20— 01, %, 2 ¥ (6, x, p(x). z,).
But

0 .
ar [o(, x. )~ (L, x, 2)] = c(o, x, 24}, 21)—c(@(t, X, ), 23).

From Assumptions C;, C, and the Gronwall inequality [5]
(27) lp(t, x, z,)— @, X, z5)] € M(T),

where lim M(T) = 0, and in consequence
-0

Dy < vo M(The(x)e“" DT, |Dyf < Brwii, x),

where By is defined in Proposition 3,

IDyivolz) (=2, (O g (1. ¥, v(X). 25) < volizy —2,lip T v(x).

Thercfore,

= w i, xl| < Brlw(t. x)|+ M'(T) ||z, — zaliy r (X},
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where lim M'(T) < . From the Gronwall inequality (5]
T -0

w(t, X))  M'(T)v(x)|z, —2z,lly By 1 ("7 -

By integration of the last formula we obtain

o

fwit, x)dx < M'(T)Br ' (expBr T-1) Al|z, — z,lir.

0
Let M, = M'(T)B;'(expBy T—1). We obtain (21). Since we may define
Br=Br, for T<T, and some arbitrary T,, formula (22) is also
obvious. B
The following lemma permits to estimate S(¢, x, z,)~S(t, x, z3).
Lemma 4. Under assumptions of Theorem 2, for t < T and z,, z,ek,

(28) 1S(t, x, 2}~ S(t. %, 25)l € Ma(T)llzy — 2,7
Moreover,
{29) im M,(T) =0.
T -0
Proof. There exists
(30) Mo = sup{u(2): z < Aexp(a+p) T}.
We shall estimate a(t, x) = S(¢, x, z,)—S(t, x, z5). From (13)
Gh o(0,x)=0
and
(32) dajot = E,+E,+E,,
where

[_‘"((P (t X, ‘-l) zl (”) < (‘P(ta X, Zz). zl (I))]s('o X, zl)o

-
[ ((f)(l. X, 22)7 Zy (t))_g_i(‘p“! X, 22), ZZ(t))]S(r.v X, 22)9

Es= 2 (0t % 2. 20)0.

From (27) [E,| < uo M(T)e".
From (14), (30) and Assumption C;
E,)| < polzy ()~ z2 (1) € < pollz, — zallr 7.
From (32) and Assumption Cj,
(33) |dajorl < M"(T)izy —z,llr +alal,
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where lim M"”(T) < =. Hence, using the Gronwall inequality, from (31) and
T-0 ‘

(33) we obtain
la( < M" (T x™ ' (eT—1)|Izy —=,ll7.

Denoting M,(T) =a~'(e#T—1)M"(T) proves Lemma 4. B
Now, we shall prove Proposition 4. For t < T, z,, z,e K

@z, (1) = Oz, (1)
=|§[¥(r, x, v(x), 2,)S(t. xo 2=y (1, x, v(x), 2,)S(1, X, 2,)] dx|

but this is not greater than

g]#:(:, x, 0(x), zg) =¥ (1, X, 0(x), 2,)| S (1, x, z,)dx+

+ [ (1, x, v(x), =)l (1, x)| dx
0
S M (T)e T ||z, — z,lly + AT My (T) ||z, — z,ir-

Denoting M{(T) = M,(T)e*" + AM,(T)e’". we obtain Proposition 4. B

To prove Theorem 2 it is sufficient to notice that for sufficiently small
T the operator @: K, — K fulfils the assumption of the Banach fixed-point
theorem (Ky = {z] [0, T}: ze K)). Hence the operator @ has exactly one
fixed point in Ky. Since @(C, (4)) = K, © has no fixed point out of K and
@ has exactly one fixed point in C, ([0, T]). To prove that © has exactly
one fixed point in C,(R,) we notice that problem (1), (2), (3) is time-
independent, i.e., Theorem 2 remains true in 4 =[t,, T] with initial
condition

(34) u(ty, x) =0(x).

From this follows that the set of all t,e R, for which (1), (2), (3) has exactly
one solution in [0, 1,] x R, is open in R, . Obviously, it is also closed. This
completes the proof. B

Remark. It is obvious that the presented results remain true if they are
considered for x < a. In this case the proof is simpler and some assumptions
about bounding may be omitted.

Remark. Some assumptions about bounding arc essential for the
existence of the solution integrable on R, defined for 1 > 0. The authors
suppose that some assumptions in the theorem on uniqueness may be
omitted. (In this situation the proof must be different from the presented
one.)
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