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Further results concerning
the Norlund summability of orthogonal series

by J. MEDER (Szczecin)

1. The aim of the present paper is to investigate the Norlund
summability of orthogonal series. It contains also a result (Lemma 1)
obtained by H. Zaremba, which establishes a solution of a problem
raised by the author of this paper. Since this result is strictly connected
with a new approach to certain classes of Norlund means, I thought
it proper to include it in this paper.

Let {p,} denote an arbitrary sequence of real numbers such that

Pot+ Pt .-+ Pa=Pr#0 for n=0,1,2,..

A sequence {s,} is said to be limzitable by the method (N, pp) to the
value s if t, >s, where

: _ 1y
(T) lyn = Pn% Pr-kSk -

The transform (T) will be called the n-th (N, py)-mean of the se-
quence {8} and s the generalized limit of this sequence (). We then write

(N, pa)—lims, =s.

By the theorem of Toeplitz the nth (N, p,)-mean is regular if and
only if

(a) DNipal = 0(Pw),
r=0
(b) _r{i_{gafl;;e;f= , v>0.

(1) Cesaro’s method of summability (C, a), a > 0, is a special case of the (N, pa)-
means if we write -

Pu = ( a—1 | T Fm+)I'(@ "
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The last condition may be replaced by

(e) limﬁzo,

n-oooPn

for we have (with M -=a constant)

n
|Pal < D) |pol < M|Pal, n>=m>0,
v=0
P._,
P,

Prn—v
Pn—'v

Pr—v

Py,

Pn—v

0<
Py,

<M

, nz=v2=0,

where M is an absolute constant (see [10], p. 27).

Thus, condition (¢) being satisfied, condition (b) is also satisfied.
Conversely, condition (b) implies condition (¢), with v = 0.

In the previous paper (see [6], pp. 231-232) we have introduced
the following two classes of Norlund means:

The sequence {p,} is said to belong to the class M°, or shortly
{pa} ¢ M°, if the following conditions are satisfied:

(i) 0<Ppt1<Pn OF O0<Pp<pPpt1 (n=0,1,2,..),
(ii) Po+Prt it pn =Py S+ oo

. (‘n+1)Pn .

() Lo

It is easy to verify that in the case a > 0 conditions (i) and (iii)
imply condition (ii).

The sequence {p,} is said to belong to the class BVM", a> 0, if
{pn} e M and if

is a sequence of bounded variation.
In the case of the methods (C, a), {ps} e BV.M" for 0 <a <1.

In the note mentioned above I have dealt with (N, p,)-summa-
bility of orthogonal series restricting myself in general to the case where
{pa} e M" or {ps} e BVM", with a > }.

The aim of this note is to generalize some of our previous results,
and to extend them partially to the case 0 < a < 1. I have succeeded
in this owing to a new approach to the class M° of (N, p,)-means.
Before we define this new class of Norlund means, we first prove the
following
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LEMMA 1 (2). There exist certain sequences {p»} € M°, a > 0, for which
the sequence {n(pPn— Pn-1){Pn} may be unbounded.

Proof. We shall distinguish three cases: 1° a>1, 2° 0 < a < 1,
3° @ = 1. The proof in the first two cases is based upon the following
sequence:

1

— for n#2™,
21!
n =) 4 (n,m=1,2,..).
— for n=2",
Vn

oo
Of course, the series ) a, is convergent and its partial sums form
n=1

an increasing sequence {sp} convergent to a value s > 1.

1° We set a, = a—A(s—8,) (n =1,2,..), where A denotes an arbi-
2(a—1)
2s—1 "
We find at once that {a,} is an increasing sequence, convergent to a.
Choosing an arbitrary positive number upon p,, we define the sequence
{ps} and {P,} by the following recurrent formulae:

Pﬂ/P -1 =1+a,‘/n,
Pn = Ppn—Ppy_,y (P-,=0), (n=1,2,..).

trary real and positive number satisfying the condition 0 < 4 <

Hence we find that
P, = Py(1+4 ayf1) (14 @p/2) oo (14 apfn),
Pn = Po(1+ af1)(1+ ayf2) .. 1+ anoaf(n—1)) an/n  (n =1,2,...).

Basing ourselves upon the last formulae, we state that the sequence
{pa} satisfies conditions (ii) and (iii). In order to show that it satisfies
also condition (i), we observe that in view of as>1 (n=1,2,..)
we have

Ql—apq)n < ina, for a2 =2,3,..
Hence

an—1 An—1\ dy
n—1 < (1+ n—l) n

and

an- n—
Poy 2t < Paa(14+ 2) 2P (02,30,

(*) This lemma has been proved by H. Zaremba.
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whence it follows that p,_; < pn, for n = 2, 3, ... These inequalities are
also true for n = 1, because a; > 1. Thus we have proved that {p,} ¢ M°.

It remains to show that {n(ps— pa-1)/p»} 1s unbounded. For this purpose
we write.

Bn=Puoy) _ o (Frx, G ] —1) =n[<1+ a”-l) =0 -1],

Pai \Pnz an m n—1) a1 N

whence it follows that

(1) 'n(.'pﬂ_pn—l) =y — Ay + A"n’a’ﬂ

n=1,2,...
Pn-1 Un-1 Qp-1 ( )25 0)

Since the sequence {na,} tends to infinity for » =2™ (m =1,2,...)
then according to the last equalities the sequence {n(p,— pn—1)/pPn} cannot
be bounded.

2° We set

ap =a+u(8—s8,) for nn=1,2,..,

where x denotes an arbitrary real and positive number, satisfying the
condition
2(1—a)

O<u< o5 1

We infer at once that {a,} is a decreasing sequence convergent to a,
and that a < ap, <1.

Arguing as in the first part of the proof, we get the same formulae
as previously, and, moreover, we find that {p,} is a decreasing sequence
belonging to the class M® for 0 < a < 1.

Basing ourselves on the equalities

(2) % (Pn—1 — Pn) _ O _%+ﬂazan

=2,3, ..
Pn—1 an-1 Un—1 (m SEESE

we prove that the sequence {#(pn—1—Pn)/Pn} tends to infinity for n = 2™
(m =1,2,..), which ends the proof of the second part of Lemma 1.

3° We shall examine two subcases: p, /", and p,\,. Suppose that
pn/". We construct the following sequence:

B for n=1and 0 <f<1,

1 m
ﬁ"='@ for n 2™ (m=1,2,..),

logn for n =2" (m=1,2,..).

Obviously, we have lim B, = + oo.

n—00
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Let p, be an arbitrary positive number, and let

N (Pn— Pn—1) =B, for wm=1,2,..
Prn—1

Hence we find that
Pn = Po(1+ﬂ1/1)(1+ﬂ2/2) (1+ﬂn/n) for n=1,2,..,

whence we conclude that {n(pn,— pn-1)/Pn—1} is an unbounded sequence
and, moreover, that

0<Prn1<pn for =n=1,2,.. (condition (i)).

Since

then the infinite product
© po [ [ 1+ Bam)
n=1

diverges to infinity. We then have lim p, = + oo, and Py '+ oo (con-

n—>00
dition (ii)).
It remains to show that the sequence {p,} satisfies condition (iii)
for a =1. We write

_ NPn :1’0+(P1‘—Po)+ (2p.—P1)+ ---+[’”'pn—('"'_1)Pn—11

= Pn—l Pn_l
_Pot (P1—Po) + 21+ 2(pe—p1) + - FPur £ 0 (P Pra)
Pn—l
14 (Pr— Do)+ (Pe— P2+ ooe + (Pn— Pu1)
Py
— 1 Po{P1 = Po)Pot PP — P1) 2[P1 - ... + Pr—1{Pn— Pu—1) W/ Pr
' P
— 1+ Polgl'i"plﬂ:rl.j" ---+pn~lﬂn .
n -1

Hence we have

a, = 1+ poﬁl‘l‘plﬁ}‘l'_-l--‘l“f)nqﬂn .

In order to show that lim «, = 1, it suffices to prove that the sequence
p°ﬂ‘+p'ﬂ}+"'+p"'lﬁ" tends to 0. W
n—1

e observe that
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Pobi+P1Bat .o Pn-1Pn
P,_,

Pobr 10+ PeBatPa0+ ...+ Pni 0 1 P1BatPabut ..+ pom s 032"_‘
P, Py

for n =2™ (m =1,2,..),

P1Bat Pafst ...+ Pam 1 fom
P, .

for 2" <n < 2™ (m=1,2,..).

Pobrt+ 210+ Dafs+ Pa0—+ ...+ Pr1 0
Py

+

The first terms of the above two sums always tend to 0, as the
weighed means of a null-convergent sequence (considering that P,_,—
—>+4o00), The second components also tend to 0, as is evident from
the following estimations (considering that g, <1 for 2™ ' < n < 2™,
m=1,2,..)

Pam 1 lOg 2m
.Pgm_l _— sz—l._l
N mpem_y log2 < mpem_, log2

Pemr+ Pem-141+ .o Pomy g™ Pam—1

m(1+ fom-141/2" " +1) (1 + fom-149/2" " +2) ... (1 + fom_y/2™ —1) log 2

2‘"‘"1

m(2™ ' 4+2)(2" 7 +3)...2"log2  m2"log2  4mlog2

2m e 1) (2™ 4 2) ... (2™ 1) 2" TNe™ ' 41)  2m4e

We then have

4m lo_g _2_ _

lim Per-1log2” 0.

m—>0o Pgm_l—‘Pgm—l -1 m—00 2m+—2

Let us notice that

0 < PrBat Dbt tPomsfom _ 1yt Pafit ot Pomoifiom
Pn—-l Pz’"-l ’

for 2" <n < 2™ (m=1,2,..). Applying to the last expression the
Stolz lemma (see e.g. [6], p. 232) we conclude, in view of the above
estimations, that the sequence in question is a null-convergent sequence.
Thus we have proved that lim a, =1 (condition (iii)).

ni—00
The proof of the second subcase of 3° is based upon the same
sequence {fp}, which we have used in the statement of the first
subcase of 3°. We construet the sequence {p,} choosing an arbitrary
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positive number upon p, and for {p,} the numbers satisfying the
equalities

mPa=Pact) gy —1,2,..).
Pn—

Hence we find that
Pn = Po(1 —B1/1) (1 — Baf2) (1 — B5[3) ... (1 — Ba/n) .

We infer at once that {p,} is a positive and decreasing sequence,
and that the sequence {n(p,— Pn-1)/Pn-1} is unbounded.
In fact, we have

fim M(Pr1—Pa) _ —lim (—,) = lim g, = lim log2™ = + co.

N—=00 p'n—l n—00

After analogous transformations to those made before, we get the
formula

i— Pobr+P1Be+t oo+ DPu—1Bn '
Py

Op —

In order to show that lim «, = 1, it suffices to prove that

fi—00

lim Pof 1+ P1Bet .+ Pn—1Pn —0.

A—>00 Pn—l

For this purpose we first prove that P, "+ co. In fact, considering
that 8, <1 for 2™ <u < 2™ (m=1,2,..), we can write

_ }) (1—log2/2) ... (1 —1log2™[2™)

Pa > Po(1—B) (1“‘ %) (1 " (1-1/2)...(1-1/2™)

> po(1—B) % g n—;—l-(l—-log2/2) ... (1—1log2™/2™),

> po(1— ) | [ (1-10g2712™) = ps(1—prajn.

Therefore

Pr=pot+p1t..+Pn ?Po"‘?o(l_ﬂ); +Po(1—ﬁ)%

11
> pl1—fla D)7 >oo.
k=1
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Arguing as before, we find that

lim PrBat Pefat o+ pom_i fiom

n~—>00 -P%—l

=0,

whence, with regard to the formula for «,, it follows that lim a, = 1.

n—>00

This completes the proof of Lemma 1.

Remark. The sequence {p,} considered above tends monotonically
o0

to 0, for p, is the nth partial product of the infinite product p, [] (1 — Bn/n)

n=1
divergent to zero.
In order to formulate the next lemma, we introduce the following
class of (N, pn)-means:

A sequence {p,} is said to belong to the class M* if

(A) >0 (n=0,1,..),

(B) {ps} is convex or concave,

(‘C) 0 <7l‘i_r>2(np,./Pn) <Tm (npa/Pp) < + 00 (Pn = pot+p1+ ..+ Pa) -

n—-00

LEMMA 2. If {p,} € M*, then the sequence {n(pn— Pn—1)/Pr} is bounded.

Proof. Suppose that {p,}e M*. We shall examine three cases:
1) {p»} i8 convex and bounded, 2) {p,} is convex and unbounded, 3) {p.}
is concave. Passing to the examination of the first case, we notice that
{p»} is non-increasing (see [11], p. 93). Let us assume that the sequence
{n(pn— Pn-1)/p»} is unbounded. Then there exist such a strictly increasing
and lacunary sequence {k,} of indices that for an arbitrary positive
number M the following inequalities are satisfied:

(3) kﬂ(pkn—l—pkn) ~ .Zl[
DPin

for =»n=1,2,..,

where kn/kpn—1 > q>1 for n =1,2,..; ¢ = constant.

Analysing the proof of the author’s lemma (see [6], Lemma 6, p. 235-
236), we find that it remains valid if we assume that {p,} ¢ M*. Hence
it follows that {Pg,}, where P, = py+ p:+ ...+ Pa, is a strictly increasing
and lacunary sequence. Then there exists a constant g, > 1 such that
Pio/Pipy =2 qn>1 for n=1,2,... We distinguish two subcases: 1) the

[o 2] (oo}
series ), py, is divergent, 2) the scries ) Pk, 18 convergent.

v=1 v=1
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We write
Proey— Pkn = (pkn—l —pkn—1+1) + (Pkn-1+1 —pkn—1+2) + oo + (Pk,.—l ‘pk")
= (kn_kn—l)(pkn—l_Pkn) >0.

Hence and from inequalities (3) it follows that

n

Py = Z (pku—l_pku)-l_pkn > (kv_k"_l)(pk”_l_hpk")

N+1 N+1

S 1\ v
> M pil—Fposfk) > M(l— ?1) D pu.-

N+1 N+1

_ 1 &
pkN>M(1""é)Zpkw

N+1

Then we have

which in subcase 1) contradicts the boundedness of the sequence {pa}.
In subcase 2) there exists for the number M defined above such a pos-
itive integer N that the following inequalities are satisfied:

1 -1
Py >1, Pku/le<M(1*;l)1]—

2 y
(4)
¢—1
Prn+1+ Prys2t oo+ Physn—1 < 5
We write
n
1
PkN > M(l—-—) Zpk”
g N+1

1
> M (1 — @) [Pryss — Pry — (Pry+1 4 Pry+2 + o + Pikna—1)] -

Dividing the last inequalities by Py, and taking into account the first
and the third inequalities of (4), we find that

N —1
_pkN/-PkN > M(I—E)qlT ’
contrary to the second inequality of (4).
Passing to the next case, let us assume that {p,} is convex and
unbounded. By hypothesis, {ps— pr+1} i8 non-increasing, and this implies
the existence of the limit lim (p,— Pn+1) (finite or infinite). It cannot

n=—>r00
be positive, for then {p,} would be strictly decreasing for sufficiently

large values n, which would imply the existence of the finite limit lim p,
n—o0
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({ps} being still positive) contrary to hypothesis. Thus {p,} is non-
decreasing. Suppose the sequence {n(p,— pn-1)/Pn} to be unbounded.
Then there exists such a strictly increasing and lacunary sequence {k,}
of indices that the following inequalities are satisfied:

(a) kpnia/kw>q¢q>1 for n=0,1,2,..., ¢=a constant,
(b) ’f’-“-(—pL;'-:P—k—"—)- >M for n=0,1,2,..,
kn

where M denotes an arbitrarily large positive number such that
M >=2M,q/(¢q—1)? with M, satisfying the condition: (n+1)p,/Pr < M,
for n =0,1,2, ...

We write

Prn— Pkp-, = (pkn —pkn'-l) + (pk,.,-—l _pku—2) + ...+ (pkn—-l'*l —pku—l) .

Taking into consideration the convexity of the sequence {p,}, we
find that

(5) Prn — Phny = (k‘n— kn—-l)(Pkn-ﬁl ’”’pkn-x) >0 ’
whence with regard to (b) it follows that

Pin = Z(Pk»—ka-x)"'Pko > M(q_l) Zpkv—: > M(q—l)pkﬂ—’ :
v=1

P=1

Then we should have

(ka+1)Pr, Pra

> M(q—1)Py,_[ln_s+1.

(kn—l +1)pkn—1. Pkn—;

M, Py, [(kn+1) > Py fn-1+1

> M(q—1)

Since {p,} is non-decreasing, {P,/(n+1)}, is also non-decreasing. In virtue
of the last inequalities, we then obtain
M, Piy[kn > M(q—1) Pr[(ko+1) > M(q—1) Po[2ky (0 =0,1,2,..).

Summing up the last inequalities from n =0 to n = 4 oo, and con-
sidering that by condition (a) ko/k, < 1/q, ky/k, < 1/, ..., kylkn < 1/¢", ...,
we find that

M,q
q—1

: 1 1 1 _ mﬁ1
- M‘(H'TLE +'"+?"’+"') > M,k.,n%: P

qg—1 7 1 q—1
M _— 2 — >} 3
>M 2 Phk OPkn> M 2 ()

———— -

(*) The series appearing here are convergent, which is evident from the lacunarity
of the sequences {k,} and {Pi,}.
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or ultimately
2M,q
(¢—1)"’

contrary to the definition of the number M.

According to the examination of the last case, we assume that {p,}
is concave. Then {p,} is non-decreasing. In fact, the sequence {pn— Ppi1}
1§ non-positive, for otherwise there would exist such a positive integer %
that p,_1—p. >0 for » =k, %k+1,... This would imply the existence
of the finite limit lim p, and, of course, the convergence of the series

n—>00

M <

[= o]

2 (Pn_1—ps). However, this is impossible as {Pn-1—pn} 18 a positive
n=1

and non-decreasing sequence.

Suppose that {n(p,—pn—1)/ps} is unbounded. Then there exists
a strictly increasing and lacunary sequence {k,} of indices such that
for an arbitrarily large positive number M > ¢/(¢—1) the following
inequalities are satisfied:

ku(Pk,.—Pkn_l) - zu—
Pka ”

for 2 =0,1,2,...

(where kp/k, ,>q>1 for n=1,2,.., ¢ =a constant). Hence, with
respect to the concavity of the sequence {p,}, we find that

S 1\ 1
Pk = Z (Pk1)—pk»—1)+pko > M(l_ _)2‘ Pk, > M (1_ —)pkn .
v=1 q v=1 q

Then we have M(1—1/q) <1, which contradicts the definition of the
number M and completes at the same time the proof of Lemma 2.

Remark. Lemma 2 is also true if we assume only that {p,} is con-
vex and bounded and that the method (N, ps) is positive and regular.
H. Zaremba has noticed that it is also valid if we assume only that
Po>0 and pp, >0 for n =1,2, ..., provided that {p,} is concave.

In order to formulate the next lemma we introduce the following
classes of (N, p,)-means:

If for some sequence {p,} conditions (i) and (ii) (see p.238) are
satisfied and, moreover, if

Lim APy _y

n—oo  Pn

=1—a, where a>=0, App_1 = Pp-1—"Pn,

then we shall say that the sequence {p,} belongs to the class M".
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If {p.} is convex or concave, conditions (i), (ii) are satisfied and,
moreover, if

2
1im%—_2. _ 9

I T —a, where a0, A2%p,_p —=Ap, 2— APp_1,

then we shall say that the sequence {p,} belongs to the class M° (%).
From these definitions and from the well-known theorems (see

e.g. [4], p. 84 (44), 4, p. 116 (69), 19, p. 134 (80)) it follows that if

{pn} € M°, then {p,} e M°, and if {p,} ¢ M*, then {p,} e M* and {p,} ¢ M".

LEMMA 3. If {Ps} e M° a> 1}, {qu) e M°, B> %, then

. (n4+1)r,
( ) nsco Rﬂ a+ﬁ H
where py = Py, pp = Pp—Ppy (n =1,2,..), 1p =k.§)pu-qu, R, =k2; Tk -
Proof. We write
To = Potoy
71 = Podit P19

"n = Podnt P1dn-1+ .-+ Pno-
Summing up both sides of equations (7) we find that

n n
(8) RBo= D pi@Qu-t Of Ro= ) durPs.
k=0

k=0

Under the assumptions of Lemma 3 it follows from the last for-

mula that
R,>0 for 2=0,1,2,..

Differentiating both sides of the equality
. (anwn+1) (ana;nﬁ) = Zrnw""'l (lol <1),
n=0 n=0 n=0

and multiplying it subsequently by z, we compare the coefficients of
zr*1, Dividing the equality obtained by R,, we find the formula

1\ (k+1)ps 1 \O (k+1)ge  (n+1)r,
®) E%qn-km—m—JrE%pn_ka s

(*) It is easy to verify that (U, a)-means belong to the classes: M® and M° for
a> 0,
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We now remark that the method ||a,xl, where

G-k Pk
Any = R,
0 otherwise

for £=0,1,2,..,n,

V-

is regular if and only if

(10) lim apy =0 for %k=0,1,2,..,n.

n—00

Let {Pn}e M° Lt<a<1, {gz} e M, § > % We remark that in this
case 0 < P,\ and p, > 0, pp < 0 for n =1, 2, ... Moreover, the sequence
{P»} is a null-convergent sequence. In fact, there would be lim P,

=00
=g # 0; then
n n
. \ . 1
llm—APk=g;bO and llmZPk=+00-
00 %—0
Hence, according to the Stolz lemma, we should have

lim gn—tl)P"’ = lim &=

P,
N=—>00 Z n—oo n
Py
k=0

+l=a<1,

contrary to
lim D P _ P

o ¥ n+l S "

Hence, and from some theorems of the author (see [6], Th. 4, p. 247
and Th. 8, p. 251), it follows that

=1.

n

.1\ 2 1
Mogf,% 26—1
(11)  (b) nPy +oo0 as n /S +oo,
.1 - 2 1
¢ lim Py = .
( ) N->00 "’[,1'),,2,,L %—0 * 2a—1

Basing ourselves upon relation (11)p), we may estimate the elements
of the method |jas/|. We shall examine two cases: 0 < g, and 0 < ¢, .
Since 0 < Py\(, then R, > P,Q,. By a lemma (see [6], Lemma 3, p. 232)
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we infer that PpQ,—>-+ co as n—>oco, whence it follows that R,->- oo
as n—>—+oco. If 0 <gn\, then

Gt Pr _ G M
P”Qﬂ PnQ"

and if 0 < ¢ /%, then

Upg <

for k=0,1,2,..,n,

Qn—kPk<(n+1)q'u_ M
PrQn @ 0P,

Ay <

for k=0,1,..,n,

where M denotes a positive number such that P, < M (»n =0,1,...).
Hence it follows that am,c—0 for £k =0,1,2,...,n, in both cases con-
sidered. Consequently, the method ||a.| satisfies condition (10) of regu-
larity.

Let us denote by A, and B,, respectively, the first and the second
expression on the right side of formula (9).

The regularity of the method ||ask| implies the formula

(12) limd4, =a-1.
n—>00

Passing to the estimation of the expression B,, we notice that the
method |bax||, where

Pn—1Qx
R,

0 otherwise,

for %£=0,1,2,..,n,

is in general not regular.

In order to ‘prove this we remark that from (11)4), (11), and
from the evident inequality

_P n@n < / Qi . 'n-Pfa.
R, = n n
n g X Pi
k=0

[\l

k=0
it follows that

PQn
By

tim £ >y @a=1)(8T)

n—oo

Suppose the method {lbu.ll to be regular; thus by the Toeplitz’s
theorem there would exist a finite and positive number M such that

n

sup Z |Dak| < M .

n k=0
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Let us choose for an arbitrarily given small number £ > 0 such a pos-
itive integer N that for n > N

Dol ~ Y @a-DEF 1)~

Now taking » > N, we can write

n n

Dbl =2 Z [P sl —Ri(z Pel@ni— D, Pila)

k=0 k=0 k=N+1
1 EN 2 Q
= \’ — pO.LlL
- Rn,k_o (lpkl_*_pk)Q"l -k 1 - P" R 1
2P0 (oS
>E(' (2a—1)(28—-1)—¢)—1.

Since P,—>0, the last expression tends to infinity, which proves that
the method [bu| is not regular.

This fact enables us to make a certain transformation of expres-
sion By, which will show the convergence of the sequence under con-
sideration. We introduce the following notations:

PRCES T TV ASC B

Qn ’ ﬂ'n - n ’ Aﬁn—l - ﬂn-—l - ﬁn .

We infer at once that

(13) Afns = = (Bn— 1)

Now we can write (with P_, == p_, = 0)

ZPan kPu—x = Z(Pk"Pk 1)@n—& Pk

* k=0 ? k=0
= Z PkQu Icﬂn E— B R ZPan k— IAﬂn—k 1
k=0
== Z-Pan—kﬂn—- - Z Pan—k(ﬂn k— ﬂn k_l)
lf'=0 k=0

=14 —- Zpkq'n—kﬂn k-

k-O
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Hence we have

1 n _
(14) By =14 = 0Py s
n

k=0

We observe that the method ||a}4ll, where

0 otherwise

is regular, because [lax| is so.
Hence and from (14) we get the formula

(15) lim B, = §.

n—oo

Finally, from (9), (12) and (15) it follows that

(16) limw'-‘ —a+f—1,

00 -Rn
and this is the required result.

LEMMA 4. If {pa} ¢ M*, then

sup lpn—k-Pn'_pnPn—kl <
kin>k kpnpn-k

+ oo

Proof. We shall distinguish two cases: 1) {ps} is convex and

bounded, 2) {p,} is concave or convex and unbounded.

Passing to the first case, we notice that {p,} is then non-increasing.

Therefore

P P,_
0 < Pﬂ_pn—k—P‘n-—kPn = kpnpn—k( k)

m B kpn—k
< kpuPn-k Por/kper = O (kprpn—x)
for w =k, k-+1,k+2, ..., 2k.

For the remaining values of n (required by Lemma 4), we write

0< -Pnp'n-k—-P —kPn = -Pn—k(Pn—k_'pn)'l’ (Pn—'Pn—k)pn—k
= Ppot[(Pn—k— Prn—rs1) + (Prps1— Prn-kre)+ .. + (Pa1—Pn)] +
T Pn—k(?n—k+l+ +pn) .
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The proof runs further after the following estimate:

Pnpn—k‘—Pn—lan — Py [(n_k+1)(pn-k_pn—k+l) Pr—k +
PuPn—k (n—F +1)Pn~k Pr-k Pr
+ (‘n—k+2)(]’n—k+1'-pn—k+2).Pn—k+1.’"l—k“}'l +
_'p'n—k+1 pn n—k+2
(n4+1)(Pa_1—Pn) n—k+1] ( Pr—1 Pn—lc+l)
. 14—+ ..+ 1=0(k

+ ...+ 7 n1 + +pn++ Dn (k)
for n=2k+1,2k+2,2k+3,..., which completes the proof in the
first case.

Passing to the second case, we remark that {p,} is then non-de-
creasing. Hence

Ponvpt—Prn_1Pn P _
I nPn—~k— 1y 4 I n—k (p — D v) - Pn—tt1t -+ Pn

PnPn—k Pnpn ko - Pn
P (2+1)(Pn— pn-n),n—k-}-l_'_
(n k+1)pn- n n-l—l
N(Pn—1—Pn—2) N —k+1 ppy (n—k+1)(Pn—k+1— Pn—k) Pn-k+1]
+ Prn—1 n Pn Tt Prn—k+1 Pn T

Prn-1 |, Pn—2 Pr—k+1
14—+ ———=4 .. 4+ =—)=0(k
+( + Pan T Pn Tt Pn ) (k)

for n = k,k+1,%k+2, ..., which completes the proof of Lemma 4.

Remark. Lemma 4 holds if we replace class M* by the class M°,
with a > 0.

2. Let ON {p,(x)} denote an orthonormal system, defined in the
interval <{0,1>. Moreover, let

17) D enpn(®)
n=0

denote an orthogonal series, whose coefficients satisfy the condition
{Gn} € 12’ i.e.
o0

(18) D < +oo.

n=9
In order to formulate (in a more concise form) further theorems
we introduce the following definition: The orthogonal series (17),
whose coefficients satisfy condition (18), is said to be an orthonormal
series.
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LEMMA 5. Suppose that {pa} € M", a > %, and let t,(x) denote the n-th
(N, pn)-mean of orthomormal series (17). Then the series

o0

Z n (tn(w) - tn—l(m))2

n=1

18 convergent a.e. (almost everywhere).

Proof. Assuming p_, = P_, =0, we can write

(o)~ tosl8) = 55— Z cxpu(@) Z (Pa-oPr-1— Pr-o-1 Pa)

o=k

ﬂ1
= A\J ck‘?k(w)[(Pn—pn)Pn—k—Pn—k—IPn]

or omitting the argument x (for the sake of brevity)

n

t,—1 = -—1— )ﬁ (P — D P, )
n ‘n—1 — PnPn—-lkfg CoPi\LnPn-k— PnLn-=k)-.
Hence we find that
oo 1
2 (tn —tn— 1) do = 2‘%2'—‘_'—' (pn xPn pn n— k)
n=1 0J n=Fk Psz

Decomposing the inner sum of the last expression in two sums
from »n =% to n =2k and from » =2k+1 to m = 4 o0, and then
applying Lemma 4 and the author’s lemma (see [6], Lemma 4, p. 233),
we find that

Sefuwtumool S dg Doa § g

a=2k+1
—0(1)[2%1%2?&@7? 2 ]<+oo
v=k+1

Thus the series

2 n (tu(m) _ tn—l(w))2

no=l

converges a.e., and this is the required result.
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In order to formulate the next theorems we introduce the following
definition:

A series D u, is said to be strongly (N, p)-summable to s, with
{pa} e X%, a >0, if

n
F1 D, (=
mk-o (tk 8) -0 as n—>+ oo ’

where

k
1 § 1
e =— (Pr—v— Pk—v—-1) 80 ,
Pk

=0
and

Sp = Ut U+ ...tu (v=0,1,2,..), p_1=0(%H.

THEOREM 1. Suppose that {p.}e M°, o> 13, {@}eM’, }<p<1,
a+pB # 2. Then the strong (N, pa)-summability of the series D, 4y, implies
its (N, ry)-summability, with

T
Tn = Z (Pr—Pk—1)qn-k and  {r,) e M"Y,

k=0
for sufficiently large n (°).

Proof. Assuming that the series D u, is strongly (N, ps)-summable
to s, let us denote by 3, T, and ?,, respectively, the nth partial sum,
the nth (N, r;)-mean and the nth (N, p,—pn_1)-mean of the series:

(uo—8)+ Uy + 4+ ...+ un+... (see [1], pp. 73-74). Then the strong
(N, pn)-summability of the series ) u, means the same as

(19) dh—on as n->too.

k=0

n
Since 7, = 2, (Pr— Pk-1)qn_%, then with respect to
k=0

o [~ 2] oV
25,.99"‘2 (Pn—Pn—1) 2™ anw"
n=0 n=0 n=0
= Z-’l?" Z(Pn—k—pn—k—1)§k Z%w” = Zw”ZQn—kpkfk
R=0 k=0 n=0 n=0 k=0

(*) The definition of strong (C, a)-summability coincides with the definition
of strong (N, pa)-summability if we take p, = (n+:—l) , with a > 0.

(*) That is, if the sequence {r,} satisfies condition (i) for sufficiently large n.
In this sense this relation is understood in the next theorems.

18%
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and
00 o0 o0 [= o]
23‘1;37"2 — Pn) T 2 2" = anwnZw” 2 (Pr—tk — Pa—r—1)q
n=0 n=0 n=0 n=0 n=0 k=0
o0 (o] o0 n
= ana}"Zrnw" = Zm" Z?n R
n=>0 n=0 n=0 k=0
we get the formula
1\ 1\
(20) Tn = Ezlrn—kgk = 'FZQn—kpkzk,
k=0 " k=0

where R, 2 Qn_1x Dk -
Applymg the Cauchy inequality to formula (20), we obtain the

inequality
_ 1 n n
| Tal <—R—]/Zpiqi_k PR
n k=0 k=0

In order to estimate the last expression we shall distinguish two
cases: 0 < pp\, and 0 < p, /. Since, by hypothesis, 0 < ¢\, then in
the first case (for » > 2)

n

m
2 2 2 2 3 2 2
PrGQn—-t kE Pan—k-l-k Z PrQn—x
— =0 —

=m+1

3

PrQn- k) (ZPan—H- P Pan—k)2
k=0 k=m+1

n " n n
G D Prtpm D @i 16 Z D 16 D gx
k=0 k=0 k=0

< -
M P G+ M G P npn/Pi)Pi (n°q5/Qn)Qr

~od)(z Srirk Mat)-ofY),

where m = [n/2] (7).
It remains to examine the second case. We have for n > N
n

2 Pida-r < 2 = an" (nzq;/qn) an i~ o] )

k=o n ‘" k=0 k=0

<

(") By [z] we denote the integral part of z.
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Thus, according to formula (19) and the last inequality for |7,
we find in both cases the relation

T, —o0(l) as n-—>oo.

Now we shall show that {r,} ¢ M*"?~" for sufficiently large n. Since
Ry, >0 and in view of Lemma 3 lim (n+1)r/Rr =a+f—-1> 0, we

n—o0
have r; > 0 (%) for sufficiently large ». Hence it follows that R, "+ oo
as m—>oo.
In order to prove that {r,} is a strictly monotone sequence, we write

n
(21) rno1—" = 2 (pk_pk—l)(Qn—k—l_ Qn—k) (p_1 =(q_1 = 0) y
k=0

and we introduce the following notations:

(n+1)pn T — (n4+1)App_1 (n+4+1)A%pp_,

ay = P.,,,_ ) n — I'N ’ a, = APn—l ’
and analogously
g NG 5 (DA g ()l
" @ ! " qn ’ “ Agn_r

Multiplying both sides of equality (21) by (»n-+2), we obtain the
formula

(R4 2)(Tn-1—170) = Z (Pr—ic— Pr-k—1)Q Pr + 2 (n—k— qn—k—1)PrTi -
k=0 k=0

Multiplying again both sides of the last equality by (n+2), we
find that

(n+2)%(rn-1—7n)

= D =k —1) (Prk— Prte-1) Br @it D, (n— kA1) (k= 1)@ Prc +
k=0 k=0

n L3

+ ) (A1) ook — Pui) PGt D, (k1) (gnk— Gnk-1)3rPr
k=0

k=0

= Zakak(Qn—k — qn-k-1) Pk -I—Z: Bic B Pr—k— Pr—t—1) Qi — 2ZEk Pk Pkln—k -
k=0 k=0

k=0

(®) If 0 < ga\(, then {gn} tends to zero. The sequence {r,} is in the case of de-
creasing {pn»} also a null-convergent sequence, which is evident from the following
theorem: Let both {z.} and {y.} be null-convergent sequences, the second of which
satisfies, moreover, the condition that the sums y,+y,+ ys+ ...+ yn are for every n
less than a certain constant K. Then the numbers z, = Zo¥a+ T, ¥n-1+ ...+ Ty, also
form a null-convergent sequence (see e.g. [4], p. 85, (44) 9b).
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Finally, we obtain the formula

(22) (0 20(rns—7n) = D, @k (Gnr— nt—1) Prt
k=0

+ Zﬂkl—gk(Pn—k_Pn—k—l)Qk—z Zyakﬁn—kpk%z—k .
k=0 k=0

The last formula may also be written in the form

n

(n+2)(rp_1—7a) = Zakaan—kpk"}‘ 2 B Br Pt Qe+
k=0

k=0

[ k2 2k+1 _
+Zkan—k L_ Trip arar+ | ak_akak]+

n n

+ 2 QePn—k | — - % _k:l)z ﬁkﬂk+ 2::: ﬂ ﬂkﬂk:l —2 Zakﬁn—kpk%a—k .

k=0 - k=0

Applying the Cauchy inequality to the last expression, and remark-
ing that the method ||las|, where

oy — pk‘%:—k for k=0,1,2,...,n,

0 otherwise
is regular, we find that

Tim (”+2)%’*'— WS (g f—1)(2—a—f) >0, if atp<2
or
lim (”+2)2g’°—’“") > (a+f-1)(a+B—2)>0, if at+tp>2.

n—0o

Consequently, 0 <7, or 0 <7, for sufficiently large n, which
completes the proof of Theorem.

Remark. If « > 1, then 0 < p, ", and the formula on 7, implies
that r, > 0 for n = 0,1, 2, ... If, moreover, a > 2, then {p,} is convex
and from the formula on 7, we deduce immediately that 0 < 74 < 741
for n =0,1, 2, ...

THEOREM 2. If orthonormal series (17) is (N, pn)-summable to a func-
tion s(z) a.e., with {p,} ¢ M°, a > %, then it is sirongly (N, ps)-summable
to this function a.c.?

Proof. Denoting by Ty(x) and t,(x), respectively, the nth (N, p,)-
mean and the nth (N, p,—ps-1)-mean of orthonmormal series (17), we
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set s(x) = lim T,(z) at the point z of convergence of the sequence
n—+00 .
{Ta(x)}. Omitting for the sake of brevity the argument z, we can write
2 (te—8)? < 2 Z(tk—Tk)2+2 Z (Tu—s) .
k=0 k=0

By hypothesis the last expression is of the order o(n) a.e.
Obviously, our statement will be proved if we show that

n

(23) D (t—Tu =o(n+1) as n->+oo(").
k=0
We write
k
7 e N o Pl PP Pr-o

Hence we find that

2 ik—Tk (Pk —o Pr—pr Py v)
et k4 ;k—{—lz‘ Pr P
_ Z Z (pk—oPk_kak—v)2
et k+1 PkPk ’

Proceeding as in the proof of Lemma 5, we find that

Zf(tk—[k)g _0(1)[Zok Zp,,—l—chk ]<+oo

k=0 0 v=0 k=1 o=k+1

The series D (t—T%)¥/(k+1) is then convergent a.e., whence by means
k=0

of the well-known Kronecker’s theorem we obtain relation (23).

In order to formulate the next theorem we introduce the following
definition:

The orthonormal series (17) is said to be wvery strongly (N, pa)-sum-
mable to a function s(x) a.e. if for every increasing sequence {v,} of
indices the relation

D [ton(@)—s(@)F = 0(n+1) a5 n->+oo,

m=1

(°) If the sequence {fa(x)/gn(x)} tends to zero, resp. is bounded in the interval
<0, 1> a.e. (almost everywhere), then we shall write: fu(%) == 0(gn(z)), resp., fa(x)

=0 (ga(2)).
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holds, where i,(r) denotes the nth (N, p,— p,—1)-mean of orthonormal
series (17).

THEOREM 3a. Let {A,} be an increasing and positi've sequence such
that {n/Az} is also an increasing sequence, and let 2 1/nd, be a convergent

sertes. If orthonormal series (17) is (N, pa)- summable on a set B a.e.,
with {pn} € M, a >}, then the condition

[ 1
(24) ¢ =0 \]/%ln)

implies its very strong (N, pn)-summability on E a.e.

Proof. As in the proof of Theorem 2 our statement will be proved
if we show that

(25) D [Hon(@) — Ton(@) = o(n)

m=1

where t,(x) and Tn(x) denote, resp., the nth (N, pp— psn—1)-mean and
the nth (N, p,)-mean of orthonormal series (17) (see [1], 2.6.3, p. 104-105).
In virtue of Lemma 4, we can write

Sif[tom(w) Ton(@)dz = 0(1)2

According to condition (24) kc; = O(%k/A), and from the monotonicality
of the sequence {k/4x} and by (11),, it follows that for a > }

1 [ o tacatas o) 3o S
©

m

2 2 2
pvm—kk Cr .

"mkl

m=1 Ym k=0

—0Q1) ﬁ@x

m=1

Z 2 [tun(@) — Lo (@)

is then convergent a.e., whence we conclude by Kronecker’s theorem
the validity of relation (25).

THEOREM 3b. Let {c,} denote a positive numerical sequence satisfying
the following conditions:

The series

o

(26) Y &< oo,

n=0

(27) nen = (n+1)cae  (m=1,2,..).
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Further lel
(28) 2 @ Pn(T)
w=0

denote an orthogonal series with coefficients satisfying the condition
(29) an = O(ch) .

Suppose that the orthogonal series (28) is under these assumplions (N, pn)-
summable to a function f(x) a. e., with {p,} e M°, a> }; then it is very
strongly (N, pn)-summable to this function a.e.

Proof. Let t,(x) and T,(x) have the same meaning as previously
but with respect to the orthogonal series (28). By arguing as before,
it remains to show only relation (25). In virtue of Lemma 4 and con-
dition (29), we can write (omitting the argument z for the sake of
brevity)

[»+] 1 [= <] ¥m

\'(1 T 2 1 2 2 2

yd - ( ’l?m—t‘vm) dx = 0(1) k A PDom—k
o a’ m £t Py, &=

o[ S

Denoting by A and B, resp., the first and the second term con-
tained in the last brackets, we shall estimate them distinguishing two
cases: 1) 0 < paN\, 2) 0 < pp /. Let 0 < p,\. Changing the order of
summation in the expression A and decomposing the inner sum into
two sums from m = k+1 to m = 2k and from m = 2k+1 to m = oo,
we can write

Z Fiphoers D o2 s,

’Umk 'Dmkm

[o o]

S = 2 o
4= )i p“"‘ 2 kck( p"’";"+ p_——”"';").
k=1 mek mPo,, mPy,

m=k+1 m=2k+1

Considering that v, > m (m =1,2,..) and applying a lemma (seé [6],
Lemma 4, pp. 233-234), we obtain

o0

Sva Sriere Sg Dria. D Lk Vi
:0(1)jci<oo,

k=1
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and
o 00 o
t
Sea 3 it _ow Sua z o
k=1 m=2k+1 mP"’m m=2k+1 (’Um k)

1)21«:,c 12 = 0(1) D) d < oo.
k=1

m=k

If 0 <ps/7 then

A<2k 1"’"' 0(1)21&‘;2 1

k=1
1)273‘;’,2 1 —0(1)ch<oo
m=k k=1

Passing to the estimate of the expression B, we find after (27) and
the lemma quoted above that in both cases

o0

B<2”’""’"2 _0(1)243,,.< .

m=1 "V LeQ

From the above estimations it follows that the series

1
D) [T (@) tog (@)
mm=1
is convergent a.e., whence we obtain relation (25) and at the same time
the required result.

Remark. An analogous theorem concerning the (C, a)-method,
with the additional condition n*c: < (n+1)*chs1 (v =1,2,...), has been
proved by G. Alexits (see [2]). K. Tandori has proved (see [9]) that this
theorem is also valid without the last assumption. Recently, L. Leindler
(see [5]) has solved a problem raised by K. Tandori, proving that:
The strictly increasing sequence {v,} of indices, used in the definition
of the very strong (C, a)-summability, can be replaced by an arbitrary
sequence of natural numbers, all distinet, tending to infinity. This sta-
tement can be transferred without any essential difficulty to the very

strong (N, pa)-summability. Theorem 3b constitutes an analogue to that
of Tandori.

3. Proceeding in the same way as in the proof of the author’s
theorem (see [6], Th. 3, pp. 244-245), we obtain according to Lemma 4
the following
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THEOREM 4. Let sy(x) be the n-th partial sum of orthonormal series (17),
and let {nx} demote a lacunary sequence of indices satisfying the condition

(26) l<g<mppfm<r for k=0,1,2,..,

where r and q are constants greafer than 1.

In order that orthonormal series (17) be (N, ps)-summable a.e., with
arbitrary {ps} ¢ M°, a > %, it is necessary and sufficient that the sequence
{8n. (@)} be convergent a.e.

THEOREM 5. If orthonormal series (17) is (N, p,)-summable, with
{pn} € M* a >0, to a function f(x) e L® a.e., then it is also (N, gn)-sum-
mable 1o this function a.e., with arbitrary {g.} e }’, > }.

Proof. Suppose that the sequences {s,(x)} and {n:} have the same
meaning as previously, and let T,(x) denote the nth (N, p,)-mean of
orthonormal series (17). The sequence {T,(x)} is by hypothesis convergent
to a function f(z) e L* a.e. and, of course, also the sequence {T,(z)}.
Hence, by a lemma (see [6], Lemma 9, p. 242) it follows that the se-
quence {s,.(x)} converges also to f(x) a.e. Applying now Theorem 4, we
conclude that the series under consideration is (N, ¢,)-summable to this
function a.e., with arbitrary {g.} ¢ M?, § > }, and this is the required
result.

THEOREM 6. If orthonormal series (17) is (N, pa)-summable to a func-
tion f(x) € LI* a.e., with arbitrary {ps} ¢ M°, a> %, then it is (N, rs)-sum-
mable to this function a.e., with {ry} ¢ M? for sufficiently large n and arbi-
trary 0 <f <1.

Proof. In virtue of Theorem 4 orthonormal series (17) is in partie-
ular (N, ¢,)-summable to f(z) a.e., with {gs} ¢ M"*P? and arbitrary
0 < f < 1. Then by Theorem 2 and Theorem 1 it is (N, r,)-summable

n
to this funetion a.e., with 7, = kZ; Gn—1(Qe— Qe-1) and {r,} e M* for suf-
ficiently large =.

In order to formulate the next theorem, we extend the sequence
{ng} satisfying the condition of lacunarity (26) to a continuous and
strictly increasing function n(x), assuming the value n(k) = nx at =k
for ¥ =0,1,2,..., by means of linear interpolation. We denote the
inverse of the function n(xz) by I(z). Evidently, the function I(x) is con-
tinuously and strictly increasing.

THEOREM 7. If

2 2 log’ [1(m)] < + oo (1),

(%) By log.|f| we mean log|f| wherever |f| = 1, and O otherwise,.
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them orthonormal series (17) is (N, pz)-summable a.e., with arbitrary
{pa} e M°, a> %, and (N,r,)-summable a.e., with certain {r,} e MP,
0 < B <1, for sufficiently large n.

The proof of this theorem follows immediately from the proof of
an analogous theorem (see [6], Th. 2, pp. 245-246), from Theorem 4
and Theorem 6.

THEOREM 8. Let {v(n)} be an arbitrary sequence of numbers satisfying
the condition
0<v(n) <v(n+l), v(n)=o{log[l(n)]}.

Moreover, let {ps} € M°, with « > %, and {rn} ¢ M*, with

n
Tn = 2 Gr-i(Qk— Qx—1), Where {g.} e MU 0 <p <1,

k=0

Then there exist a system ON {y,(x)} and a sequence of real numbers
{ba} such that

1° D bio(n) < o,
n=0

2° the series D, bpyn(w) is mot summable by the methods (N, ps) and

n=0
(N, ), with {ra} e M? for sufficiently large n, at any point of the inter-
val {0,1).
The proof runs similarly to the proof of an analogous theorem
(see [6], Th. 3, pp. 246-247), on the basis of Theorem 4.

THEOREM 9. Suppose that {ps}e J°, with a> }, and {r.} e M° for
0 <B <1 and sufficiently large n, where

Tn = Zq"—k(!h— Qr—1) and  {qn} € e
k=0

If tx(x) denotes the n-th (N, pa)-mean or the n-th (N, r,)-mean of
orthonormal series (17), then

ta(z) = o{log[l(n)]} as n—->+oco.

The proof is based on Theorem 7 and on the proof of an analogous
theorem (see [6], Th. 4, p. 247).

THEOREM 10. Suppose that the assumptions of Theorem 9 are satis-
fied. Moreover, let {v(n)} denote an arbitrary sequence of positive numbers
increastng monotonically to infinity and satisfying the condition

v(n) = o{log¥l(n)]} as n—->+oo.
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Then there exist a system ON {Pp(x)} and a sequence of real numbers

{an} € ¥ such that
m|Tn(-’v)|
nooo V(M)

— +oo’

at every point of the interval (0, 1), where Ty(x) denote the n-th (N, pu)

oo

resp. n-th (N, ra)-mean of the orthonormal series D 4. D, (x).
n=0

The proof is based on Theorems 8 and 9, and on the proof of an
analogous theorem (see [6], Th. 5, pp. 248-250).

Remark. The condition {p,} ¢ BV.M*, a > 0, holds for the method
(C, a) only if 0 < a <1, while the condition {p,} ¢ M, a > 0, is satis-
fied for all Cesaro’s methods of positive order. In this sense Lemma 5
and Theorems 2-10 generalize our previous results. Moreover, Theorems 9
and 10 establish a generalization of theorems VII and VIII of K. Tandori
concerning the estimation of the (C, a)-means for all a > 0 (see e.g. [1],
pp. 112-113 and p. 173).
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