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On the existence and uniqueness of analytic solutions
of the functional equation g(z) = his, p[f(2)))

by W. SMAYDOR (Katowice)

We consider the problem of the existence and uniqueness of solutions
analytic at a fixed point { of f for the equation

(1) p(2) = h(zJ ?’[f(z)]) ’

where ¢(2) is the unknown function and f(z) and h(z,w) are known
complex-valued functions of complex variables. This problem was in-
vestigated by A. H. Read [7] under more restrictive hypotheses con-
cerning the functions h and f. Equation (1) is a generalization of the
Schrdder equation

plf(2)] = sp(2)
and the Abel equation

elf(#)] = p(2)+1.

An analogous existence and uniqueness theorem for the Schréder equation
was already given by G. Koenigs [4]. Some particular cases of equation (1)
have been treated by . J. Myrberg (6] and V. Ganapathy Iyer [3]. The
method applied in this paper is similar to that used in the proof of an
analogous theorem by B. Choezewski in paper [1] and is due to
M. Kuczma [3].

We assume that the functions f(2) and &(z, w) have the following
properties:

(I) The function f(2) is analytic at the point { and

F&) =+ D bale—0)"

n=1
for |2—¢| <7, where 0 < |b| < 1.
(IT) h(z, w) is an analytic function of two complex variables 2 and w
at the point (¢, 8) and for |z—¢| <7y, [w—f] < Ry:

Mz, 0) = D) Gamle—O"w—B)", = p.

n,me=0
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The necessary condition of the existence of an analytic solution g
of equation (1) fulfilling () = is the existence of a formal solution

of the form

(2) p(e) = f+ D) eale—0)" .

=l

Suppose that (2) is a formal solution of equation (1). Then

< - < 031 L\m
b Y eae—0 = Y amne—0"{ D a] D oute—0/]|",
n=1 f,m=0 I=1 k=1
whence by simple calculations we get
_ (o
cl - 1— bl 0'01 !
¢ Fyey)
2 T .2 !
1-— bl Qpy

Fu(Cyy vovy Cny)
= 1— b:’lbaro]_

I

)

where F(eg, ..., ¢—1) (n=2,3,..) are polynomials of the variables
(€45 +oey €n—1) with coefficients which are functions of ay and bex (¢,j,%
=1,2,..,n).

The following three cases are possible:

(A) For every n we have 1—biay # 0.
(B) There exists an # such that 1—bYa, = 0 and Fu(cy, ...y €u—1) = 0.

(C) There exists an # such that 1—bYay = 0 and Fu(e,, ...y Ca—1) # 0.

In case (A) there exists exactly one formal solution. In case (B)
there exists a one-parameter family of formal solutions of equation (1).
No formal solution exists in case (C). In the sequel we shall assume that (A)
or (B) holds, i.e. that

(ITI) There exists a formal solution of equation (1) in form (2).
Let p be a positive integer such that

ha(E, BN (P < 1.

Such a number exists because |f'({){ = |b;] < 1. Hence there exists a number
6 < 1 such that

Rl €, ISP < 6.
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It follows from the continuity of the functions hy(z, w) and f'(2) that
there exist numbers , and E such that the inequality
(3) hulz, w)| | '(2)[" < 6

is fulfilled for [z—{| <7, and |lw—pB| < R.
Let us define the functions hi(2, w,,, ..., wx) by the recurrent
relations: '

oh oh
iz, w,w)= (z W) + f(2) —— (z w) — W1,
(4)
ol I} Bh ohy
hrsr(2z, 0, wyy o0y Wep) = h_ ‘f‘f( ) v d“‘ 6'w Wy + ...+ '—L‘wk+1]a

k=1,..,p—1.
LeEMMA 1. Let hypotheses (I), (II) and (IXI) be fulfilled. Then
{(5) Elep = helC, B, 0y 2y, ..., klek)

for k=1,..,p, where ¢, ..., ¢, are the coefficients in expansion (2).
Proof. Since there exists a formal solution (2) of equation (1), the
coefficients of equal powers in the expansions

A+ 2 enlz— )" and j G2 — £)" { ;1 o [ LZ: balr— 4‘),‘,];},,,,
Nl nome0 por ~

are equal. Comparing these series and the series obtained by differentiating
tormally % times, we obtain for z={

Eley = hi(C, Py, 2le, oy kler), k=1,...,p.
LeEMMA 2. Let hypotheses (I) and (I1) be fulfilled. T'hei the expressions

he(z, w, 0, ..y wi), k= 1,..,p, are analytic functions of the variables
(2, w, wy, ..., wr) defined in

{2: le—{| <o} x{w: w—f| < Ry} x Ox... x C.

ktimes
Moreover,

(6) hk(z:'w’wli "':wk)

ah(z w)

= Gz, W, Wy, ..., W)+ —— [f’(z)]kwky k=1,2,..,p,

where Qi(z, w, Wy, ..., Wi—,) s an analylic function defined in

{2: |2—| <1} {w: Jw—fl < Ry} x Cx... x C.

(k—1) thmes

Proof. From the definition of the functions k; and from (I) and (1I)
it follows that the functions ki are analytic for |z—{| < 1y, |W—B| < R
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and wye C, 5= 1, ..., k. For k = 1 formula (6) follows from (4). We assume
that (6) holds for % = I. On account of (4) and of the inductive hypothesis
we obtain .

Msa(2y Wy Wiy ooy Wi1) —-3hl +f'(2) (ahl Wyt . +::Zl l+1)
[39' b (@) ot o (P )+
+ :Wli(f'(z))’“wlwﬁf'(z) (%’wl-l—agl Wyt . +£)—Gj-wz)] +
+ :—;‘ (f (@) e
Denoting by Gy+i(2, w, wy, ..., w;) the expression in the square bracket

in the above relation we get (6) for %z = l+1.

LevMa 3. Suppose that hypotheses (I) and (IX) are fulfilled. Then
there exist constants Ly, ..., Ly_y, L, = 6 independent of z and such that for
(Zy W'y Wiy vy wp)y (2,0, w1y ..., wy) € Z we have

() |hplzy W'y W1y vy wp)— hp(2, W'’y w1, ooy wp)|

Y
< Lylw'—w'' |+ ELklw;’c—- wy'|
k=1
where

(8)  Z={e: le—tl <) x{w: w—B| < By xK (a1, 1) X . x K (2, ) -

Here 24 are arbitrary complex numbers and o; are arbitrary positive numbers,
i=1,..,p.

" Proof. It follows from Lemma 2 that the function ho(2, Wy Wyy oony W)
fulfils a Lipschitz condition. The equality L, = 8 follows from (6) and (3).

TaeorEM. If hypotheses (1), (II) and (III) are fulfilled, then there exists
a solution of equation (1) that is analytic at the point ¢ and fulfils the con-
dition @(f) = . In case (A) the solution is unique and in case (B) the solu-
tions form a one-parameter family.

Proof. Let us fix a positive number K. It follows from Lemma 2
that the function &y,(z, #, ¢;, ..., plcy) is continuous at the point {. There
exists a number 7, > 0 such that the inequality

9) otz By € s 210N hy(C, B 1, -y pley)] < T

holds for |2—¢| < 7
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Let us put
P
(10) My= D ile|+E, k=1,..,p—1, M=K,
fefo4-1
(11) ze=1leq, =M, i1=1,..,p.

On account of Lemma 3 the function hy(z, w, w,, ..., wp) fulfils a Lip-
schitz condition with respect to the variables (w, wy, ..., wy) in the set Z
defined by (8) and (11).

Since |f'({)] < 1, there exists an 7, such that for [2—{| < r; we have
|f'(z)] < 1. Hence

If(@)—f(E) < Lue IF(Ee—Ll < le—Cl <15

Thus for z ¢ K({,r;) we have f(2) e K({, 7,).
We choose a positive number # such that

(12) r < min(l, 7o, 71y 75y 75)
Vi
PP
(13) Nlalrt+E—< R,
k=1 p:
p—1 p—k
k+ 1—§)K
(14) P 2( L,,yc,,+,|rf+K2Lp ,,k, <! 2)
k=0 {=m1 k=1
and
rp-k
(16) kZ;Lk( pito<?.

where § < ¢ < 1.

We denote by 4, the set of all functions which fulfil the following
conditions:

(i) @(2) is analytic for [¢—{| <r and ¢®(2) is continuous for
le—{l <.

D (=]
(i) p&) = B+ D enle— )"+ D) dale—0)" |
n=1 n=p+1
where ¢, (n=1, ..., p) are the coefficients occurring in expansion (2).
(iid) lg®(2)—plegl <K for |e—L| < 7.

We define a metric ¢ in the set 4, putting

16)  elpm) = swp P E)—@(@)] for  gupeds.
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One can easily verify that the metric postulates are fulfilled. Applying
the Taylor formula (cf. [2]) for the function q:(")(z) 7 (2) we get

(k)(z) (p(k)(z)
= (- ri“nif (L= "0+ te—O) = ot -+ e O} Atz — ™)
whence

po—lk
a7 o - @) < =

sup PP (2)— i (2)|, k=0,1,..,p—1.

le~{f<r
On account of the definition of the metric and from (17) we have

—k
(18) sup ot (2)— " (0] < g 0l )

It follows from relation (18) that the convergence in the sense of metric (16)
is equivalent to the uniform convergence of functions and their derivatives
up to the order p in the dise [z—{| < ». The space 4, with metric (16)
is complete.

We consider the transformation y = T'{¢] defined by the formulw

2) = hz, p[f(2)]) .

We shall prove that the transformation 7' maps 4, into itself and that

o(Tlpd, Tl.)) < Polgs, ) -

Hence, on’account of Banach’s fixed-point theorem it follows that therc
exists exactly one function ¢(z) from the set 4, fulfilling equation (1)
for |z—C(l < 0.

We shall prove that ¢ € 4, implies T[¢] e 4,. For this purpose we
prove by induction the formula

(19) p2) = hufe, Lf (2], ., qa""[f(z)]) , k=1,2,..
Let & = 1. Differentiating the relation y(2) = hiz, ¢[f(2)]) we get
_ oh(z, o[ f (2)]) N 6h(z,~rp[f(z)])

0z ow

?'[f(2)]f(2)
and in view of (4)

v'(2) = hfz, g[f(2)], ¢'[f (2)]) -
We assume that (19) holds for k = I. Accordingly

oh
B+ (s

ch L
aw

Pri(z) = Uh*l

g L]+ o “+'>[f<z)])/'-<z>.
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By (4) we have
¥O0(@) = s fe, oLf(2)]; o 9T OLF(2))
Condition (iii) implies the relation
(20) @) < pllepl +E  for  fa—i[ <.

On account of Taylor’s theorem and after simple transformations we
get for |z—¢| <7

*) (e+1) (p) ek
2)—klex| < r~+ ..+ B 2
IpP(e)—Flex] < 6“0+t sUD 17
k=0,1,..,p—1, 6G=24§.
Hence and by (20) we have
(21) 7 (2)— Klex] < ﬁ lcmlr -I-K( Y

for |z—{| <. We obtain from (21) for £ = 0
yd
X rp
o(a)— Bl < ) lodri+E
ny p:
and hence by (13)
(22) lp(2)— Bl <R for [—{I<r.

Since the functions f(2) and h(z, w) are analytic for [2—{| <,
lw—B| < R, thus according to (i), (12), (19), and (22) the function w(e)
iy analytic for |2— ¢| < * and the function v (2) is continuous for [z—¢| < 7.

It follows from (19) that

v = Wt 9(0), -, 9P0), k=12,
We infer from (ii) that ¢(¢)= B, ¢®™()=kler, k=1, ...,p, whence
Y®(8) = hill, By eyy ooy Blek), Ek=1,..,7.
On account of Lemma 1 we obtain
() =klex, k=1,..,p.

This together with ¢ ({) = f yields condition (ii).
From (21) and since » < 1 (cf. (12)), we get

p—k

W) — kel < D (i) lepstl + K, k=1,..,p=1.

te=l
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By (10) and (iii) we have
(23) lp®(2)— klox| < My

for ¢ < k=1,..,7.
According to (19) and Lemma 1 we get

lyP(2)—p!op|
= |ho(2, @[F(2)], @Tf(2)], s 9PUF(2)])—PlCpl
< ol PLFE], @R, woos 9PLF(@)) = Pol2, B, €1, ey PLOR)|+
+ [ha(2, By €1y ooy Plop)—p(Ey By €1y ooy D) -
It follows from (22), (23), (12) and (11) that the points (z,«p[f(z)],

e'(f(2)], ""¢’(p)[f(z)])1 (2, By €1y ..y Pley) belong to the set Z (cf. (8)).
Since r < 7, (cf. (12)), we have by (9) and Lemma 3

lp®)(2)—pley
p-1

< Lol f (21— Bl+ Z Lylp®(f(2)]— klex|+ 0 |p®[f(2)]—plep| +(1—0) K[2 .
k=1

In virtue of (21) and (iii) we have

P
B T
[p®(z)—pley| < L.,Z cprk +L0K5!- +

k=1
p-1 p-k y p—-1 o (1 )K
oy ! r
+ g“; il (e i) T +,,§KL" i R+ S
-1 p—k
St L ZZ’Lkch,l(kw'— +KZL,, s
k=0 {=1

whence we get by (14)
(146K  (1—-6)K
2 + 2

Thus the function y fulfils condition (iii). We have proved that the transfor-
mation I maps set 4, into itself.

Let v, = T[¢y], v, = T(p,]). It follows by (19) and (7) that
i) — pi (2)]
= ko2, @il f (&)1 vors PP f(2) ])—hp(z,cvz[f(z)],- , i f(2)])|

Y ()= p eyl < =X.

< Ly | ()] — @il f(2)]] + kZLquo‘“ Al - [f(2))+
+ 019" f(2)]— oL f ()] -
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since by (22), (23), (12) and (11) the points (¢, pi(f(2)], -.., 9Lf(2)])
(¢ = 1, 2) belong to Z. From the above inequality and from the definition
of the metric we infer

p—-1
oy, w) < Bolpr, o)+ D, Li sup. lpi?(2)— p37(2)] .
k=0 z=

It follows from (18) that

p—1
n—k
e (s va) < felpyy po)+ ZLké:k_)! e (g1 o)

k=0

and finally we have by (15)

o (v 1) < Dol pa) .

Consequently 7' is a contraction mapping. Thus there exists exactly one
solution of equation (1) for [#—{| < » belonging to the set 4,. The proof
of the theorem is completed.
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