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Existence of solutions of functional-differential inclusion
in nonconvex case

by Anprzes Fryszkowskr (Warszawa)

Abstract. In this paper we give conditions for existence of solutions of the functional-
differential Cauchy problem in the form:

x(MeF(t, x(1) if tel[a, b],
x(t)=o(t) if tefa—r, a],
where r >0, x(-) is a continuous function from interval [a—r, b] into R™ and the map

F defined on [a, b] is ¥ ® #-measurable, lower semicontinuous in x and has nonconvex values
in R™.

1. Consider the following Cauchy problem:

) X(eF(, x()) if te[a, b],
() x(t) = o@(t) if tefa-r, a],

where r >0, x(-) belongs to the space C([a—r, b], R") of continuous
functions from the closed interval [a—r, b] into R™, ¢ is a fixed continuous
function from [a—r, a] into R™, and F (¢, x) is a multifunction from (a, b] x
x C([a—r, b], R™ into closed subsets of R™ not necessarily convex.

‘By a solution of (1) we mean a continuous function xe C([a—r, b], R™
such that x(t) = ¢(¢t) for each te[a—r, a], x restricted to [a, b] is absolutly
continuous and x(t)e F(t, x) almost everywhere in [a, b].

Equation (1) is a generalization of a functional-differential equation and
may be called a functional-differential inclusion.

A special case of (1) studied in literature is a functional-differential
inclusion with deviating argument of the form

x()eF(t, x) if te[a,b],

2 x() =@  if tela—r, al,

where x, belongs to C([—r, 0], ) and is defined by x,(0) = x(t+0).

In this paper we give sufficient conditions for existence of solutions for
problem (1). This more general setting does not require any new tools, quite
opposite it simplifies the notation.
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We prove the following:

ExisTENCE THEOREM. Assume that the values of the map F(t, x) are closed
subsets of R™ for each (t, x)e[a, b]xC([a—r, b], R™) and the following
assumptions hold:

(@) F is £([a, b)®%(C([a—r, b], R™))-measurable (shortly, L®%
measurable), where ¥ is the Lebesgue o-field of subsets of [a, b] and 23 is the
Borel a-field of C([a—r, b], R™),

(i) F is lower semicontinuous (ls.c)) in x for each fixed t,

(iii) F is integrably bounded; that is, there exists an integrable function
p: [a, b] - [0, 4+ 0] such that

sup !|z]: zeF(t, x)} < p(t) ae. in [a, b].

Under "those assumptions problem (1) admits a solution.

This theorem extends similar results for differential inclusions of
Fillippov [S], Kaczynski and Olech [7], Antosiewicz and Cellina [1],
Bressan [2] and Lojasiewicz [8] (see also [4]).

One should notice that we do not assume convexity of F which makes
the problem more difficult. The proof of this theorem follows the same idea
as in Antosiewicz and Cellina [1], which consists in constructing a con-
tinuous selection k(s) from a compact and convex subset S of C([a—
—r, b], R™ into the Banach space L'([a, b], R™ such that k(s)(t)eF(t, s)
a.e. in [a, b]. The existence of such selection is proved in author’s paper [6].
This result is stated in Section 2. Section 3 contains the proof of the existence
theorem above.

2. Selection theorem. Let S and Z be topological spaces. Denote by cl(Z)
the space of closed subsets of Z and let P: S — cl(Z) be a multifunction. The
mapping P is lower semicontinuous (ls.c.) if

3) P~ U ={seS: P(s\nU # @)

is open for each open subset U of Z.
If S and Z satisfy the first axiom of countability, then the ls.c. can be
expressed equivalently as:

(4) for each soeS and zoe P(so) and any sequence s, —>so there is
z,€ P(s,) such that z, =2 Zo-
If additionally we assume that Z is a metric space with the metric d and
values of P are compact, then (3) is equivalent to the condition:
(5) the map (s, z) > d(z, P(s)) is upper semicontinuous.

Suppose that in S a o-field X is given. Then the map P is Z-measurable
if P~ UeX for each open U.
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For this and others properties of multifunctions we refer the reader to
Castaing and Valadier [3] and Parthasarathy [10].

Consider now a compact space T with the o-field M of subsets of T
generated by nonnegative regular Borel measure dt on T. By L'(T, R™) we
denote the Banach space of integrable functions u: T— R™ with the usual
norm |jul| = {|u(t)|dt, where |-| stands for the norm in R™

T

We say that K = L'(T, R™) is decomposable if, for each u, ve K and any
Ae u-y,+v-xr4€ K, where y, is the characteristic function of A.

We say that the mapping K: S — cl(L' (T, R™) is decomposable if K (s)
is decomposable for each seS.

The following selection theorem is proved in [6]:

SELECTION THEOREM. Assume that S is compact and K: S — cl(L* (T, R™)
is decomposable and ls.c. Then there exists a continuous selection k: S
— IMT. R™) of K; that is, k(s)e K(s) for each seS.

We will apply this theorem to the mapping K given by
(6) K(s) = {ueL}([a, b], R™): u(t)eF(t, s) ae. in [a, b]}

for se§, where S is the compact space of continuous functions from
[a—r, b] into R™ such that s(t) = ¢(t) if te[a—r, a], s(t) is absolutely
continuous on [a, b] and [s()] < p(t). F and p are given in the existence
theorem. _
To apply the selection theorem to K defined by (6) we need to check
that (i), (i1), (1) imply that K is ls.c., since K is obviously decomposable. We
will prove that (4) holds. For this purpose fix so€S, uo€ K (so) and s, — so.

Let u,e K(s,) be such that
Iun(t)—uO(t)I = d(uO (t)s F(ta sn))'

The existence of such measurable u, follows from (i). From (ii) and (5) we get
that

lim sup d(uo(?), F(t, 5,)) < d(uo(t), F(t,s50)) =0 ae. in [a, b],
which means that u,(t) - uy(f) a.e. in [a, b].
Since from (iii), 4, are uniformly bounded by an integrable function, it
follows that, u, — u, in L'-norm, which completes the proof that K is ls.c.

3. Proof ot the Existence Theorem. Let S be defined as in the previous
section. Clearly, S is a compact and convex subset of C([a—r, b], R™).
Consider the multifunction K: S —cl(L'([a, b], R™) defined by (6). We have
proved that K is ls.c. and decomposable. Therefore from the selection
theorem there exists k: S — L'([a, b], R™ which is continuous and such that

(7 k(s)(t)e F(t,s) ae. in [a, b].
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Define I: S - S by the formula
o(t) if te[a—r, a],

®) I(s)(1) = (p(a)+'jk(S)(€)d¢ if te[a, b].

< p(p)

a.c. in [a, b]. Hence I(s)€S. Continuity of k implies continuity of I. Therefore
from the Schauder fixed-point theorem there exists x€S such that !(x) = x,
and, by (7) and (8), x(t)eF(t, x) ae. in [a, b] and x(t) = ¢(t) for te
€[a—r, a]. Hence x is a solution of (1) which completes the proof.

Remark 1. The existence of solution of problem (2) follows from the
theorem we proved under the same assumption. It is enough to check that
if F(t, x,) is ls.c. in x,, then the mapping G(t, x) = F(t, x,) for each xe
eC([a—r, b], R™) is also lsc. in x. The ¥ ® #-measurability of G follows
from £ ® #-measurability of F.

Remark 2. Notice that in the case where F(t, x) is convex the mapping
K (s) is also convex and the existence of continuous selection k(s) can be
obtained from a general selection theorem of Michael [9].

It is clear that I(s)(t) is absolutely continuous on [a, b] and |%l(s)(t)
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