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Strong maximum and minimum principles for parabolic
functional-differential problems with non-local inequalities

[w/(ty, x)— K]+ Y. h(x) [W/(T;, x)—K/] €0
i ()

by Lubpwix Byszewski (Krakow)

Abstract. The aim of the paper is to give strong maximum and minimum principles for
parabolic functional-differential problems with non-local inequalities in relatively arbitrary
(n+ 1)-dimensional time-space sets more general than the cylindrical domain. The results obtained
can be applied in the theory of diffusion and in the theory of heat conduction.

1. Introduction. Recently, a number of papers on parabolic problems with
non-local conditions were published (e.g. [5], [8], [3], [4])

In this paper, we also consider parabolic non-local problems. Namely, we
consider diagonal systems of non-linear parabolic functional-differential in-
equalities of the form
(L) ui(e, x) < (e, x, ule, x), ui(t, x), wly(e, x), u) (i=1,...,m)

(2)
for (¢, x) = (¢, x,,..., x,)€D, where D c (t,, t,+ T1x R" is one of six relatively
arbitrary sets more general than the cylindrical domain (¢, to+ 7]
x D, < R"*!' The symbol u denotes the mapping

u: Da(t, x)—u(t, x) = (u'(L, x),..., u"(t, x))eR™,

where D is an arbitrary set contained in (— oo, to+ T] x R" such that D c D.
The right-hand sides f* (i=1,..., m) of systems (1.1) are functionals of u;
uk(t, x) = grad u'(t, x) (i=1,...,m) and u (¢, x) (i=1,..., m) denote the
matrices of second order derivatives with respect to x of u'(t, x) i =1,..., m).
We give two theorems on strong maximum and minimum principles for
problems with inequalities (1.1) and with the non-local inequalities
[W(ty, x)— KT+ ¥, h()[w(T, x)— K1 <0 for xeS, (j=1,..., m),
iel, (2)

respectively, where K = (K',..., K™) is a constant function, I, is a subset of
a countable set | of natural indices, to < T, < ty+ T (iel), h;: S,;=(—c0, 0]
(iel,) atre some functions and

S, :=int{xeR": (ty, x)eD}.
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The results obtained are a continuation of those given by the author in [1]
and [2], and generalize some results of Chabrowski [3]. If the non-local
inequalities considered here are initial inequalities, then the results obtained in
this paper reduce to those from [2] and are based on results of Redheffer and
Walter (6], of Szarski [7] and of the author [1].

2. Preliminaries. The notation and definitions given in this section are valid
throughout the paper.

We use the following notation: R =(—o0, ®), R_=(~-0o,0],
N={1,2,..}, x =(x,..., x,) (neN).

For any vectors z = (z',..., 2" eR™, Z=(',..., 7")e R™ we write

27 if 2T (i=1,..., m).

Let t, be a real number and let 0 < T< 0. Aset D < {(t, x): ¢t > ¢t,, xeR"}
(bounded or unbounded) is called a set of type (P) if:

1. The projection of the interior of D on the t-axis is the interval (t,, t5+ T).

2, For every (i, H)eD there is a positive r such that
{t, x): =1+ 3, (x,;—%)* <r, t<t}cD.
=1

For any te[t,, to+T] we define the following sets:
int{xeR" (t,, x)eD} for t=1,,
‘" |{xeR" (t, x)e D} for t #1t,

and
. < {int[D_n({to} xR"M]  for t =t,,
“ |Dn({t} xR for ¢ # t,.
It is obvious that S, and o, are open sets in R" and R"*!, respectively.

Let D be a set contained in (—o0, t,+ T)xR" such that D c D. We
introduce the following sets:

9,D:=D\D and [I:=d,D\c,,.

For an arbitrary fixed point (¢, X) € D, we denote by S~ (7, %) the set of points
(t, x)e D that can be joined with (¢, X) by a polygonal line contained in D along
which the t-coordinate is weakly increasing from (t, x) to (i, %).

Let Z,(D) denote the space of mappings

w: Da(t, x)-w(t, x) = (w'(t, x),..., w"(t, x)) e R"

continuous in D.

In the set of mappings bounded from above in D and belonging to Z,,(D)
we define the functional

(w], = max sup{0, w'(t, x): (¢, x)eD, f<t}, where t<t,+T
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By X we denote a fixed subset (not necessarily a linear subspace) of Z, (D)
and by M, ., (R) we denote the space of real square symmetric matrices

r= [rjk]n xn ) . )
A mapping ue X is called regular in D if u}, v\ = grad, o', uf, = (1,5, ]uxn
(i=1,..., m) are continuous in D.

Let the mappings
fL DXR"XR"x M« (R)x X>3(t, X, 2, q, 7, W)= f'(t, X, z, q, r, W)ER
i=1,...,m
be given and let the operators P, (i =1,..., m) be defined by the formulae
Pu(t, x) = ui(t, x)=f*(t, x, u(t, x), uk(t, x), ub,(t, x), u),
ueX, (t,x)eD (i=1,...,m).

A regular mapping u [v] in D is called a solution of the system of the
functional-differential inequalities

(2.1) Pu(t,x)<0, (¢, xeD(i=1,...,m)
[2.1 Po(t,x)=0, (t,x)eD (i=1,...,m)]

in D if (2.1) [(2.1°), respectively] is satisfied.
Let us define the following set:

zZ=) oy,

iel

where I is a-countable set of all mutually different natural numbers such that:

(i) to<T;<t,+T foriel and T, # T, for i,jel, i#],
(i) Ty:= inIfT; >t, if cardl =N,
le
(iii) Sy, 28, foriel,
(iv) §,>8, forevery te[T,, to+T] if card ] = X,.
An unbounded set D of type (P) is called a set of type (P) (see Fig. 1) if:
(a) Z+0,
(b) I'no,, #9.

Let Z, denote a non-empty subset of Z. We define the following set:
I, ={iel: op, = Z}.

A bounded set D of type (P) satisfying condition (a) of the definition of a set
of type (P,,) is called a set of type (Pgzp).
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It is easy to see that if D is a set of type (P,z), then D satisfies condition (b) of
the definition of a set of type (P,;). Moreover, it is obvious that if D, is
a bounded subset [D, is an unbounded proper subset] of R", then
D ={ty, to+T]x D, is a set of type (P,) [(P,) respectively].

+A

rna|
1]

Fig. 1. The sct D of type (Py) il D = (intDyua,.v, I =11,23, 4
and o< T <Th< Ty <T,=t,+T

3. Strong maximum and minimum principles with non-local inequalities in sets
of types (P,) and (P;;). Now we shall prove the following theorem on strong
maximum principles with non-local inequalities in sets of types (P,,-) and (P,p):

THEOREM 3.1. Assume that:

(1) D is a set of type (P,;) or (Pyp).

(2) The mappings f* (i=1, ..., m) are weakly increasing with respect 1o
2, 2T A 2 =L, m). Moreover, there is a posilive constant L such
that

fit, x, z, q, v, w—=fi{t, x, Z, 4, F, W)

n n
< L{ max =2 +1x ¥ g~ @I+ Y = Ful+Dw—11)

k=1,..,m i=1 Jhk=1

for all (t,x)eD, z, ZeR", ¢q, ;fe R", r,Fe M, (R), w, We X, where

sup—[w(‘t, X)—wit,x)] <o (i=1,..., m)
(t.x)eD
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(3) The mapping u belongs to X and the maximum of u on I' is attained.
Moreover,

(3.1) K := max u(t, x)
(r.x)el’
and KeX.
(4) The inequalities
(3.2) [W(to, x)— K1+ ¥ () [W/(T;, x) - K] < 0
lel, .

Jor xe§, (j=1,...,m)

are satisfied, where h;: S, —R_ (iel,) are given functions such that —1

<), h(x) <0 for xe8,, and, additionally, if cardI, = N,, then the series
el

Y. h(x)w(T, x) (j=1,..., m) are convergent for xeS,,.

iel,

(5) The maximum of u in D is attained. Moreover,

(3.3) M= max u(t, x)

(t,x)eD
and MeX.
(6) fi(t, x, M, 0,0, M) <0 for (t,x)eD (i=1,..., m).
(7) The mapping u is a solution of system (2.1) in D.

(8) The mappings f* (i = 1,..., m) are parabolic with respect to u in D and
uniformly parabolic with respect to M in any compact subset of D (see [1] or [2]).

Then

(3.4) max u(t, x) = max u(t, x).
(t.x)eD {t,x)erl

Moreover, if there is a point (f, ¥)eD such that u(t, ¥) = max u(t, x), then
(t.x)eD

u(t, x) = max u(t, x) for (t, x)eS~ (¢, %).
(t,x)el’

Proof. We shall prove Theorem 3.1 for a set of type (P;) only since the
proof for a set of type (P,p) is analogous.

Since each set of type (P,) is a set of type (P,) from [2], it follows that in
the case where ) hi(x)=0 for xeS§,, Theorem 3.1 is a consequence of

iel, .

Theorem 4.1 of [2]. Therefore, we shall give the proof of Theorem 3.1 only in
the case where
(3.5) -1< ) hix) <0 for xeS,.

iel |

1n?
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Assume, so, that (3.5) holds and, since we shall argue by contradiction,
suppose

(3.6) M #K.
From (3.1) and (3.3) we have

3.7 K<M.
Consequently,

(3.8) K< M.

Observe, from assumption (5), that

(39)  There is (t*, x*)eD such that u(t*, x*)=M:= max u(t, x).
(t,x)eD

By (3.9), by assumption (3) and by (3.8) we have

(3.10) (t*, x»e D\I' = Duo,..

An argument analogous to the proof of Theorem 4.1 from [2] yields
(t*, x*)¢ D.

Hence

(3.11) (t*, x*)ea,,.

On the other hand, by the definition of the sets I and I, we must consider
the following cases:

(A) 1, is a finite set, i.e., without loss generality there is a number pe N
such that I, = {1,..., p}.

(B) cardl, = ¥,.

First we shall consider case (A). By (3.2) and by the inequalities
u(T, x*) <u(ty, x*) (i=1,..., p), which are consequences of (3.9) and (3.11)
and of (a) (i) and (a) (iii} of the definition of a set of type (P,), we have

03 [W(te, x*) K+ 3 hy(e*) [W(T;, x*) = K]
=1

= [w/(ty, x*)—KI)-[1+ i h(x¥] (G=1,..., m).
i=1
Hence

p
(3.12) ute, )< K if 1+ 3 hx*) > 0.
=1
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Then, from (3.8) and (3.11), we obtain a contradiction of (3.12) with (3.9).
P

Assume now Y h(x*) = —1. Since for every je{l,...,m} there is
i=1

l,e{1,..., p} such that

u (T, x*) = max (T, x*),

we obtain by (3.2)
Witg, x¥)— (T, x¥) = [(tg, x¥)— K]~ [#(T;,, x¥)— K]
= [Wlto, )~ KT+ Y, h(x") [(T;, 39— K]

i=1

< [W(ty, x*)— K]+ i h(x*) [W/(T,, x*)— K] <0
i=1

Hence
P
(3.13) w(te, x*) <W/(T, x*) (=1,....m if Y h(x*=-1
=1

Since, by (a) (i) of the definition of a set of type (P,), T;, > to (j = 1,..., m), we
see from (3.11) that (3.13) contradicts (3.9). This completes the proof of (3.4) if I,
is a finite set.

It remains to investigate case (B). Analogously to the proof of (3.4) in case
(A), by assumption (4) and by the inequalities u(T;, x*) < u(to, x*) (iel,) we
have

0 > [u/(to, x*)— K1+ 3 h(x*)[W/(T,, x*)—K]

iel,
= [W(t, x)—K1[1+ Y h(x] (G=1,...,m).
iel,
Hence
(3.14) u(ty, x*)< K if 14 h(x*)>0.
ief,
Then, from (3.8) and (3.11), we obtain a contradiction of (3.14) with (3.9).
Assume now Y h(x*)= —1 and let
lel,
T§:=infT,.
iel,

Since u e C(D) and since, by (a) (iv) of the definition of a set of type (Pzp), x* €S,
for every te[Ty, to+ T if card] = N,, it follows that for every je{l,..., m}
there is fje[Tg, to+ T] such that

W(f;, x*)= max 4(, x*).
te[To.to+ T)
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Consequently, by assumption (4), we obtain
W(to, x*)—w(f), x*) = [ (te, x*)— K] —[w/(£;, x*)— K’]
= [W(tq, x*) = KT+ Y hy(x*) [W/(£,, x*)— K]

iel,
< [W(tg, x*) = K]+ ) h(x¥) [W(T, x*)—K/]<0
iel,
(.’ = ]Q . 2 m)
Hence
(315 Witg, x) < W(f, x*) (j=1,...,m il Y h(x*) = —1.

iel,

Since, by (a) (i) of the definition of a set of type (P,), {; > 1, (j=1,..., m), we
see from (3.11) that (3.15) contradicts (3.9). This completes the proof of (3.4).

The second part of Theorem 3.1 is a consequence of (3.4) and of Lemma 3.1
from [2]. Therefore, the proof of Theorem 3.1 is complete.

Arguing analogously to the proof of Theorem 3.1, we obtain the following
theorem on strong minimum principles with non-local inequalities in sets of
types (P,r) and (Pgp):

THEOREM 3.2. Assume that:
1. Assumptions (1) and (2) of Theorem 3.1 hold.

2. The mapping v belongs to X and the minimum of v on I' is attained.

Moreover,
k:= min o(t, x)
t.xel’

and ke X.

3. [Y(ty, x)— K]+ Y h(X)[V(T, x)—k]1 20  for xeS, (j=1,...,m),

iel,
where h;: S, —+R_ (icl,) are given functions such that —1< ) h(x)<0
lel,

Jor x€S, and, additionally, if cardl, = Wy, then the series ) h/(x)v/(T;, x)

lel,
(J=1,...,m) are convergent for xeS§,.

4. The minimum of v in D is attained. Moreover,

m:= min v(t, x)
(t.x)ed

and meX.
5 fi(t,x,m,0,0,m)>0 for (t, x)eD (i=1,..., m).

6. The mapping v is a solution of system (2.1'} in D.



Maximum principles for parabolic problems 203

7. The mappings ' (i=1,..., m) are parabolic with respect to mt in D and
uniformly paraholic with respect to v in any compact subset of D.

Then
min v(t, x) = min v(t, x).

(t,x)eD (1.x)el’
Moreover, if there is a point (t, X)eD such that v(f, %) = min v(t, x), then
(t.x)eD
o(t, x) = min v(t, x) for (t, x)eS™(f, X).
(L.x)el’

4. Remarks.

Remark 4.1. It is easy to see, by the proof of Theorem 3.1 from this paper
and by the proof of Theorem 4.1 from [2], that if the functions k; (ieI,) from
assumptions (4) and 3 of Theorems 3.1 and 3.2, respectively, satisfy the
condition

[ m(x)=0] —1<Yh(x)<0 for xeS,,
iel, iel,
then it is sufficient to assume in these theorems that [D is an unbounded set of
type (P) satisfying condition (b) of the definition of a set of type (P,,) or D is
a bounded set of type (P), i.e., according to the terminology of [2], D is a set of
type (P,) or (Pp), respectively] D is an unbounded set of type (P) satisfying
conditions (a) (i), (a) (iii) and (b) of the definition of a set of type (P,/) or D is
a bounded set of type (P) satisfying conditions (a) (i) and (a) (iii} of the definition
of a set of type (P,). Moreover, if I, is a finite set and —1 < ) h,(x) <0 for
iel
x€S,,, then it is sufficient to assume in Theorems 3.1 and 3.2 that D is an
unbounded set of type (P) satisfying conditions (a) (i), (a) (iii) and (b), or D is
a bounded set of type (P) satislying conditions (a) (i) and (a) (iii).

Remark 4.2, If D is a set of type (P,,) and if D = D, then the first parts of
assumptions (3) and 2 of Theorems 3.1 and 3.2 relative to the maximum of
u and the minimum of v and the first parts of assumptions (5) and 4 of thcse
theorems are trivially satisfied since u, ve C(D) and I' is 2 bounded and closed set
in this case.

Remark 4.3. If the mappings f' (i=1,..., m) do not depend on the
functional argument w, then Theorems 3.1 and 3.2 reduce to theorems on
parabolic differential inequalities of the form

ullt, x) < [ty x, ue, x), ui(t, x), ui(t, X)) (i=1.....m)
(2)

and in this case we can put D =D.

Remark 4.4. Non-local conditions have very interesting physical ap-
plications. Namely, non-local conditions together with boundary conditions
often give better descriptions of diffusion phenomena than the initial conditions
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together with the boundary conditions from the non-local problems. For
example, in gaseous diffusion the measurement of amount of a gas in the form
of the following sum
u(ty, x)+ Y. h(x)u(T, x)
iel,

(h; (i€ 1,) are known functions) is usually more precise than the measurement of
amount of this gas at the initial instant t,.

If I,={1}, T, =to+T and hy(x) = —1 for xeS,, then the non-local
condition

u(ty, x)+ ). h(x)u(T, x) =0 for xeS,

iel,

reduces to the following periodic condition:
u(ty, x) =ulty+7, x) for xe§,,

and this condition can be used to the description of heat effects in atomic
reactors.
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