ANNALES
POLONICI MATHEMATICI
XIIT (1963)

The prof of the uniqueness of the solution of a mixed
problem for a class of partial differentatial equations
of even order

by Z. SToIEK (Krakow)

In this paper we present the proof of the uniqueness of the solution
of a mixed problem in the cylinder for linear partial differential equa-
tions of even order; these equations correspond to the Euler-Lagrange
equation of given variation problems. The method of the proof is similar
to that applied by S. Zaremba, K. Friedrichs and others [1} to hyper-
bolic equations.

Let us consider the partial differential equation of the 2n-th order
in the form
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and the corresponding homogenous equation
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and we assume the continuity of the function u(X) in 0.
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Further, we assume that the domain {2 is closed, bounded and
normal with respect to the system (x,, a,, ..., r») and its boundary FQ
is an surface of the class C) (cf. [1], p. 132).

THEOREM 1. If the quadratic form
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is positive semi-definite in Q, and u(X) > 0 in 2, then equation (1) within
the range of the functions of class C® with continuous derivatives of 2n-th
order with regard to spatial variables in the semi-cylinder X: {(X,1); X € 0,
t > 0} can have at most one solution satisfying the initial conditions
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and the boundary conditions
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for X eFQ2 and t>0.
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The truth of this theorem is easily demonstrated by the following

THEOREM 2. If the quadratic form is positive semi-definite in 2, and
p(X) > 0 in 2, then the only solution of the homogenous equation (2) within
the range of the functions of class C* with continuous derivatives of 2n-th
order with respect to spatial variables in X, fulfilling the initial conditions
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and the boundary conditions
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is the function identically equal to zero in the semi-cylinder 2.

Proof. We multiply both sides of equation (2) by dw/ét and inte-
grate over the area D(X ¢ 2, 0 <1 < T, where T is an arbitrary number
0 < T < o0); we obtain the equality
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From the formula for integration by parts the m-fold integrals [1]
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resulting from Green’s theorem, we arrive by induction, for an arbitrary
te[0,T], at the equality
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From the boundary conditions (8) it follows that the derivatives
of the functions w(X, ?) on the boundary FS? equal zero in an arbitrary
tangential direction as far as the range n—1 for each ¢{> 0, and the
derivatives in the dircction of the normal as far as n—1 equal zero:
hence, for X ¢ F2 and ¢ >0, we have
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From (13) it follows that the surface integrals in inequality (11)
equal zero, and thus we obtain:
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Substituting equality (14) in (9) we arrive at
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Considering relations (3), after having integrated the left side of
equality (15) with respect to the parameter !, we obtain the following
equality:
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Since the initial conditions are (7) by ¢ =0, the subintegral ex-
pression equals zero; and since 7' has been an arbitrary positive number,
hence for each ¢ > 0 the equality
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is true.
The quadratic form (4) being positive semi-definite in 2, p(X) > 0

in 2 and the continuous derivative of the function w(X,t) being dw/at,
it follows from the equality (17) that in the semi-cylinder X we have

ow(X, 1) _



The solution of a mized problem 283

and that means that the function w(X,?) is independent of the para-
meter ¢; being continuous in X, this function must also satisfy the homo-
geneous initial conditions (7); hence w(X,?) =0 in X. Q.e.d.
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