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Abstract. The paper deals with composition operators T,: f— foa (a: R — R) in the space

1
L’(-\/—__e“‘z’2 dx) and tensor products as well some unitarily equivalent operators of T,—s.
2r

The present paper is partly expository. We point out some relations between several
models and interpretations of operators in question. Some applications to certain integral
equations are presented. We are interested mostly in pointing out the basic ideas and do not
formulate the whole of more or less simple consequences.

1. In all what follows we consider merely Borel measurable functions.
The reason is that the class of such functions is closed with respect to the
operation of composition of functions. The classical examples for Lebesgue
measurable functions show, that the composition of two such functions need
not be a Lebesgue measurable function. It follows then that if we consider a
class of functions on R =(—o0, + o) and the map (T.f)(x) = f (a(x)) for f
and a defined on R (a: R — R), then T, preserves the measurability, if both f
and a are Borel measurable functions; this is not the case in the class of
Lebesgue measurability, i.e. if we allow f and a to be Lebesgue measurable.
Since we need a nicely defined T,, we define the Hilbert space

9

I? (p) = I? (_\/l?e—;ﬂ/z dx)

as the space of Borel measurable complex functions on R, with square
summable modulus with respect to the measure

1 2
dp=-——=e*"2dx
V2
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defined on Borel subsets of R, with the natural identification of two functions
which differ on a Borel set of zero Lebesgue measure m.
This identification requires that a should satisfy the following condition:

(1.0) a is Borel measurable and p(a~'(0))=0 if p(s) =0 (for each
Borel set ¢ — R); see [5], Chapter 8,5.

Notice that the following condition holds true:

(1.1) If a: R— R is strictly monotonic and a™'; the inverse of a is
absolutely continuous (i.e. absolutely continuous on each finite
interval [a, f] < a(R)), then a satisfies (1.0).

The requirement of absolute continuity of a™! is needed, because in general,
even if a is absolutely continuous and strictly increasing, a~' need not be
absolutely continuous.

If c: R— R is increasing strictly and continuous and maps p-zero Borel
sets onto p-zero Borel sets, then c is absolutely continuous (Banach—-Zarecky
theorem). Thus the absolute continuity in (1.1) is needed essentially in order
to conclude that (1.1) implies in this case (1.0). The non-monotonic function a
which satisfies (1.0} is for example a(x) = |x|. Going back to the operator T,
within I?(p) we will recall the following property — see [5], Chapter 8,5:

(1.2) Suppose a satisfies (1.0). Let D = {fe I*(p): foae I*(p)}. Then the
operator T,: D — I*(p) defined by formula (T f)(x) =f (a(x)) for p-
almost all x is closed.

Proof. Suppose T.f,—g, f,—f in LI*(p) for f,eI*(p). There is a
subsequence {m}, mz=5>c0, such that (T.fo) (x) = f,,k(a(x))—>g(x) for xe
R—a, where p(a) =0 and f,,k(y)-—»f(y) for yeR—f, where p(f)=0. It
follows that if x¢a™'(B) and xea, then g(x) =f(a(x)). Since p(a™'(B)) =0
and p(x) =0, then g(x) =f(a(x)) for p-ae. as was to be proved.

Notice that the operator T, of (1.2) is maximal in the sense, that when
we define (T,f)(x) = f (a(x)) on a dense manifold of I?(p), then T, is closable
and its closure is included in T, of (1.2). This is the case for instance if

+jm la(x)%*e **2dx < + o0 for all k=1,2,... and (T.f)(x) =f(a(x) for

fe P = the linear manifold of all complex polynomials on R. The following
example illustrates (1.2):

ExampLE 1.0. Assume that a is absolutely continuous on R and O
<p,<d(x)<q, <+ for almost all x and a(0) = 0. It follows that b
=a~ ! is Lipschitzian and increases strictly. Moreover, —|a(x)|? < —p,|x|?

for all x and consequently lim a(x) = +ov. Moreover, b’'(y) exists p-a.e.
X =+
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and 0< b, s, =1/q, < b'(y)<1/p,, p-ae. Hence —|b(y)*>< —s,|y?* and
consequently '

+ a0 +w
[ la(x)| e~ **12 dx = J |y b’ (y)e~ b0 12 gy,
(Y
2 .
< j |y e ba?d < oo for all k=1,2,3,...
Ps

—@®
In previous notations 7, and T, make now sense.

Let us notice finally that for pretty nice functions a the operator T, of
(1.2) need not be extendable to a bounded one. Indeed, take a(x) = 2x and
the function f(x) = e**/%. It is plain that fe I2(p), but

+

If (2x)2e”**2dx = + 0

as was to be proved.
All we have done above may be interpreted in terms of the simplest
elementary Gaussian random variable £(x) = x, the probability measure

1 o
being equal to dp=fe"2’2dx. The operator T, is induced by a
T

transformation ¢ — a(£) of this random variable. Moreover, the whole space
of all second order variables for p is just I?(p) = the I?(p) closure of P.

2. This section deals with bounded T,. We start with the following
definition:

DEerINITION 2.0. We say that the function a: R— R 1s of class A, if it is
absolutely continuous and satisfies the following conditions:

i) a(0)=0;

() O<p,<d(x)<gq,<1 for almost all x for constants p,, q,.
It follows from (ii) that a is strictly increasing. Also x;—x; < g,(a(x;)—
—a(x,)) if x; <x,. Let a=' =b. It follows that b satisfies the Lipschitz
condition, and consequently b is absolutely continuous and

(111) 0<1/q, <b(y)<1/p, for almost all y.
Using arguments similar to that ones in Example 1.0 we conclude that for

acA,, b=a"! we have:
(iv) lim a(x) = +o0;
(iiv) —b(y)?* < ——| y|>  for almost all y;
(iiiv) lim b(y) = + .

yoto



200 W. Mlak

We notice that A, is a unital semi-group with respect to compositions,
ie if a, ce A, then d =aoce A,. That d is absolutely continuous follows
from the absolute continuity of ¢ and the property that a is Lipschitzian. The
unit e in A, is the identity function e(x) = x.

THEOREM 2.0. Suppose that ac A,. Then the map T,: f— foa is a well

defined bounded operator within the space I2(p) and ||T|| < 1/./s(a), where
s(a) = infessa’.
R

Proof. It is plain that for feI?(p) the function f(a(x)) is Borel
measurable. Next, taking b=a"' and making the change of variables
x = b(y) we get by (i), (itv), (iitv) that

+ a0 + @

: IIf(y)I2b’(y)e""""z’zdy

U

%ﬂ J If (@(x)>e "2 dx =

Y

- a0

+ o

1 1 2
< ||fII?supessb’ < — | |2e~72dy.
LA RP \727”)‘ j Sy y

Since T, is linear, we conclude that it is a bounded operator in I?(p) and
IIT,||> < supessb’ = 1/infessa’. Since in (ii) we can take p, = s(a), then by (iii)
R

we can conclude that supessb’ < 1/s(a) which completes the proof of our
assertion.

CoroLLARY 2.0. Let A_ be the totality of all absolutely continuous
functions ¢c: R — R which satisfy the following conditions:

(1Y ¢(0)=0;
(i) =1<r.<c(x) <m. <0 for almost all x and some constants r., m,.

It is plain that if ce A_ then a(x) = c(—x) isin A, . Let V be the unitary map
in *(p) defined by formula (Vg)(x) = g(—x). Then since (T,f)(x) = f(a(x))
=f(c(=x) then (VTN)(x) =f(c(x)) = (Tf)(x), ie. VT, =T..

It follows now from Theorem 2.0 that T, is a well defined bounded
operator in I?(p) and ||TJ|*> < 1/s(a). The definition of a implies that s(a)
= —supessc’. Notice yet that A_ is not closed under composition of its
elements, but A, = A, U A_ is. It follows that the map ¢: 4, — Z((p))
= the algebra of all linear bounded operators in I?(p)) defined by formula
@(a) = T, is a unital semi-group homomorphism; its restriction to A, is also
a unital homomorphism.

Let us-define A* (A7, respectively) the subset of A, (A_, respectively)
of all linear maps in A, (A_), i.e. the totality of functions d(x) = ax, where
0<a<1 (—1<a<0, respectively).
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ProposITION 2.0. If e AT UA~, then ||TJ| = 1/./|a|, where d(x) = ax.

Proof. We conclude from Theorem 2.0 that ||T)| < 1/./]a]. On the
other hand, by general theorem (see [5], Chapter 8.5)

p(@ '(9)
b plo)

for Borel sets 0. We take x > 0 and o, = [0, x]. Then, for a > 0,

= I T

x/la

j e 542 gs.

ple,) = 1 J e *%2ds  and p(@ (o)) =

-

V2 :
Now
x/a
—32/2
_ e ds
p(@ (o)) _ g N
p(ax) I e-szlz dS a

by de L’Hospital rule, which completes the proof.

CorOLLARY 2.1. If ae Ay is continuously differentiable in a neighbouhood
of x=0 and |a'(x)| = |a’(0)) > O for almost all x, then ||T|| = 1/./|a’(0) for
this being the case we can use the de L'Hospital rule.

3. Suppose the functions a,, a,,...,a, belong to A4,. Then by Theorem
2.0 the operators T, (k= ., n) are bounded. Let T, = ®7},2® ®T .
T, is defined on the n-fold tensor power of the space L’(p), i.e. on

B(p)®" = 2(p)RL(p)® ... ®2(p,), where dp, = ——e" %2 dx,.

2n
The last tensor product is just the space [*(p®"), where p®"
=p,®p,®... ®p,, because it is spanned by functions products
[i(x) f2(x2) ... fu(x) (fie (py)) which are identified with tensor products

fi®f;® ... ®f,. The space I?(p®") is the Hilbert space of Borel measurable
functions on R" with the inner product

(f,9) =

1 I
(/2n)" ‘;[f (x)g(x) e~ X1%72 dx

(x> =Y x}, x=(x;...x,), dx =dx, ...dx,).
Jl1

With these indentifications the operator T, is defined by formula.
(3.0) (Tf)(xy - x) =S (ar(x1) ... @p(x,)).
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This formula makes sense because the map a: x=(x;...x,)
—(a,(xy)...a,(x,) is invertible, maps all Borel sets B(R") in R" on B(R")
= the totality of all Borel sets in R" (each ga; is invertible and
homeomorphism within R!) and if m,(¢) = 0 (m, = the Lebesgue measure in
B(R"), then m,(a”'(c))=0. Indeed, taking b, =a,' and b(x,...x,)
= (b (%), ., ba(x) and 7a(0) = (p, ®p2® - .. ) (b(0)) we have p, = p®” and
dp,/dp > 0 m,-almost everywhere.

Summing up, and using the Brown-Pearcy theorem [4], we get the
following theorem:

THEOREM 3.0. Suppose that a,e A, for k =1, 2,...,n. Then the operator
L=T,8..QT, in I?(p®") is well defined by formula

(Ta.f)(xl e xn) =f(a1 (xl) an(xn))

n n n
and | T = [T 1T, < [T~ and the spectrum Sp(T) equals to [ Sp(T,)
i1 k1 /s(ay) K1
={z:z=2"25...2,, 2,€SP(T) for i=1,...,n}.

Suppose now that we given an infinite sequence a,, a,,... of functions
belonging to 4, . For each n we can construct the operator 7,. The natural
question arises, namely in which space some lLimit of 7, exists if n tends to
infinity. In order to avoid the general “tensoring” theory of infinite sequences
of Hilbert spaces as well of infinite tensor products of operators in such
spaces, we will show that in our situation some natural candidates for these
objects can be directly constructed.

To begin with, notice first that the sequence a,, a,€ A, defines a natural
map a, namely that one coordinatewise mapping, i€. a maps
(%1, X3,...5 Xp,.-.) ON the infinite sequence (a; (x,), a;(x,),..., a,(x,),...). The
natural candidate of a space, in which a can be considered is the classical
Fréchet space R*, the countable product of copies of R' equipped with the
coordinatewise topology defined by metric

e
X W=) T
C D=2 Sy
for x =(Xy, X3,.ees Xmy- )y ¥V =AV15 YaseesVns-- )

Let B(R™) be the o-field of Borel sets in R® with the above metric.

B(R®) is generated by cylinder sets, namely by sets X a,, o,e B(R')

nj1
(= — the o-field of Borel sets in R') where only a finite number of o, is
different from R!. That such a o-field is included in B(R*) is obvious. In fact
B(R™) is generated by half planes =, = {xe R*: u(x) < c} (c real), where u
runs over the complete set of continuous linear functionals on R™ (see [10],

Chapter I, 9.1). Since every continuous linear functional u is of the form u(x)
nu)

=Y u;x;, n(u) < + oo, and 7, is a cylinder set, we get what has been to be
i1
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proved. Next, if aqed, then the map a: (x;, X3,...,%,,...)
—(a, (xy), az(x3),...,a,(x,),...) is a homeomorphism of R* onto itself, so a
(B(R®)) = B(R™), i.e. a maps Borel sets in R* onto Borel sets as well its
inverse a~ ! does the same, i.e. a and b =a~! are both Borel measurable.

Let p, be a copy of the Gaussian measure on R' written as dpy

= 1 e Tl dx,. The Jessen—Fubini theorem yields (see [9] for general

V2
theory and [11] for direct construction) that there is the unique regular
probability measure p on B(R™) such that p(c) = p,(6,) p2(03)-.. p.(a,) for

ao
every cylinder set o=o0;x...xa,x( X R,), where R,=R; for
kin+1
k=n+1, n+2,..., 6,6 B(R'). The measure p is just the countable infinite

aD
e~ **2dx and we then write 5= ® p,.

1
J2n it
Let us consider the complex Hilbert space I2(p) of B(R®) measurable and
p be square summable functions on R® with the inner product

tensor power of the measure

s 9= [ f(x)g(x) dp,.

Rw

Certainly (R®, B(R®), P) is a probability space and the functions u, (x) = x,
(x =(xy, x2,..., X,,...)6 R®) are Gaussian independent, hence orthogonal in
I?(p), random variables over R®.

Let us fix how an n and take ?(p, ® .. ®p,,) It is plaln that there is the
unique unitary map U,: Z(p;®... ®p) QL ( ® p)—»L2 (P) which maps

Kn+1

£,.®gn frePB(pi® ... ®py), gnELZ(kI®+1pk) on the function f,(x;...X,) x

X Gn(Xps+1,--) = (fg) (%1, X2,..., Xn,...). Indeed, by Fubini’s theorem, if f,, f,'e
F(py®... ®p), gu» gne F( ® p), then

kin+1

(fa G, Jn' 90) = If g, 1y 9n dp

jf,. fid(p® ... ®py)- Rd[ gngh dp( ® Pi)

+1
n+1 kln

(frn )Lz(p1® .®pp) Gn 9 ")Lz( ®
kjn+1

We can consequently just write the equality

E@)=LEp®... 000 ( ® p).

kin+1



204 W. Mlak

We define now on I?(p) the operator 7, = (® T )®I,, where @ T, is the
K1 K1

operator T, discussed previously for a(x, ...x,) = (@, (xy)...a,(x,) and I, is

the identity operator in I?( ® p,). It is plain that || 7| = ||T)| and Sp(T})

kin+1
= Sp(7)). On the other hand the following condition is true, see [11]:
(3.1) The functions f(x, ...x,)e >(p), where n=1, 2, 3..., ie. cylinder

functions are dense in I?(p).

Since, for k>0, (40 /) (X1y-vs Xy Xpy15--) =F(a1(x), G2(X2),- .., Bp(x))€
e 2(p) if f(x) =f(x, ...x,)e I?(p), then having in view (3.1) and Theorem 2.0
one proves easily the following proposition:

1
ProposiTioN 3.0. If a,e A, and su
K 3 e

sequence T, of operators in I?(p) converges strongly.
When keeping in mind our previous discussion, we define formally 7,

<c< +oo, then the

=s=limT, = ® T, This definition would be intuitively more justified, if
K1
we could prove that for any fe I*(p),

(3.2) ((C%) T)f) (%1, X20-.) =1 (@1 (%1), 83(X2), ., Gy(%,), )

for p almost all x =(x,...x,...), and, moreover, that the map a~' = b:
(% ... %,..) = (a7 1(xy), a3 ' (x2),..., @, *(x,),...) maps p-zero sets on p-zero
sets, in order to have f(a(x)) in L?(p). Indeed, in this case the right-hand side
of (3.2) would define the value of a maximal closed operator T,: f(x,, x,,...)
— f(a,(x,), a;(x,),...) (see [5] in this matter and recall (1.2)), which coincides
with the strong limit s-lim T, on cylinder functions, and consequently T,
itself would be a bounded operator in I?(p). Our next goal is to show that
this is really the case, provided the assumptions of Proposition 3.0 hold true.
As easily seen, we have merely to show that if j(c) =0, then p(a™'(0)) =0
for ce B(R®). We shall apply the Kakutani’s theorem on product measures
([7], (6], p. 15). Let u,, v, be two probability measures on a o-field B, of
subsets of Q,. Let 5, be a probability measure on B, such that u, < n, and

v, € 1, and define
dp, dv,
Q(ﬂ'm vu) - J dﬂ" d'," d"n’

0y

(i, v,) does not depend on the choice of n,. The Kakutani’s theorem says

a aD @ .
that if [] e(p, vs) > O, then @ p, = ® v,, ie. the countable products are
nl1 nj1 nl1l

mutually absolutely continuous. Suppose now that a,e A, and Q, = R!, take
Hn = p, and v, = p,0a, and 7, = p,.
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+ o
1 —(ays)2+5s2 .
J Ja.(sye "V 4. Since a,e A,
J2r

then 0< a,(s) < g, <1 which implies that a,(s)* <qi, s<s’ Since 0
<q,<1,ie q2+1 <2 then q,(s)* +5% < (g2 +1)s* < 2% ie. — (ay(5)* +5?)
> —2s2 It follows now that

+ o

Vs(ay) tf —(ap(s)2 +52)/8 Vs(an) j _2 ——
Q(pm vu) > 2 e ds ; - — e s°/2 ds = S(au)'
/2n /2n

- @ - @

It follows that o(p,, v,) =

aD
< + 0. Since s(a,) <1 then ¢ =[] s(g,) is finite and
| .

-

n 1
Suppose su
ppose sepl 1 e

positive, and consequently +ao > [] e(pa, va) > 0. By Kakutani’s theorem p
n1

= p,= ® p,oa, 4 P.. Hence, p(a(s))=0 if and only if j(c)=0 for

n|1 n|1
aellB(R"), i!e. pla(@a () =F(e) =0 if and only if j(a !(s)) = 0. This
means that j = p _,. When keeping in mind all we said above we summarize
it in the following theorem:
THEOREM 3.1. Assume that a,c A, for n=1, 2, 3,... and define a: R®
— R™ by the equality a(x)=/(a,(x,)...a,(x,)...) for x =(xy, X2,...; Xp,...).

1
Suppose that sup[] < +. Then the formula (T.f)(x)=f(a(x))
Js(a,

n ok
determines a well defined operator in I>(R®, B(R®),p) T,=1T, and

a

1
Tl < .
I !'l—! Vs(an)

4. Suppose that ae A, and denote by m the Lebesgue measure on R'.
Let I?(m) stand for the complex Hilbert space of m-square summable

-2
e *%dx.

functions on (— o0, + o). We denote by p the measure dp =

2n
1
The operator U: I2(p) —» [*(m) defined by formula (Uf)(x) = W f(x)e x4
n

is unitary. This is an easy exercise to show that the operator UT, U™ ! =§,
in I?(m) is defined by formula

(S, 1)) = h(a(x)e™ 20

for he I?(m). Let now a be linear namely a(x) =ax with 0 <a <1 and
denote by F the Fourier-Plancherel operator in I*(m). We define R,

= FS,F~!. It is plain that R, is unitary equivalent to 7;. Let h be a complex
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function on R' in the Schwartz space #(R'). Recall that F.¥ = & and is
dense in IZ(m).
Define g = F~'h. Then
+
1 [
(FS.g9)(x) = —= | €¥(S,9)(s)ds

— eixsg(a(s))e—(l—azjszm dS

_ ¢ixs o~ (L=adsid (B =1y (6) ds

+ o + ao

eixse—(sz—ﬂzs2)/4%_l._ J e""“h(a)du}ds
V2n
+ o

— % 1 J‘ ei(xs—asu)e—(l -a2)s2/4 ds} h(u) du.

Since
+ a
e—%vz — __!_ j eiuse—sz/Zb dS
2nb
(b > 0) we get that taking b = 2/(1—a?), v=x—au
+ o
(FS,9)(x) = . — j e~ maw1-ad) ppy gy,
J(1—a?n
- a0

It follows that if a(x) =ax, 0 <a <1, then

+ @
J ex= e =ad by gy

= @

1

Nier

We see just that in our case T, is unitarily equivalent to the integral operator
R, determined by formula (4.0). If a =1 then R, is the identity operator,
which simply means that if a —» 1 — in (4.0), then R, approaches identity, by
simple properties of singular Poisson integral.

Suppose now that 0 < g, <1 for k=1, 2,:.,n and take a,(x) = g, x.

4.0) (R hy(x) =(FS,F~"h)(x) =
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Then ® T, is unitarily equivalent to an operator in I* (m®") namely to R®
T

= @ R,,, defined by formula

k1
4.1) (RY)X,...X)
=~ 1 Jf(xn ...x,.)e_"%'—:lw_a,‘x,‘)zm_a'%)dxl cdx,.
(IT(—adn) o

k|1

It follows from Proposition 2.0 that ||[R%| =] L
W1 \/ay

5. The present section deals with the spectrum of T,. Suppose a(x) = ax
and a > 0. Then for f(x) = x* (k =1, 2,...) (Tf)(x) = @ f (x), i.e. a* are in the
point spectrum of T,. Suppose now that z = u+iv (u, v real) and define f, (x)
= ¢™"* for x # 0. Suppose that Rez = u > 0. Since 1+In|x| < |x| for x # 0,
then |f, (x)|? = ¥ < e20¥=V if 4 > 0. It follows that f,eI?(p). On the
other hand, f,(ax) = e?®l9*! = gurlal givinlal ¢ () If u runs over [0, + o), then
since In|a] <0, ¢“"'*! runs over the interval (0, 1]. But v is arbitrary. Hence
the set of numbers ¢ = ¢"!* for Rez > 0 covers the set 0 < |¢] < 1. It follows
that z such that Rez > 0 are in the point spectrum Sp,(T,) of T,. Notice now
that our f, is a bounded function. This is the observation of J. Janas (private
communication) that f, even for u = Rez > —3 are in I?(p). We argue as
follows: let 0 > u = Rez > —1. For positive ¢ < d,

d d

jlf; (X)lz dx = v[\e2uln|»:| dx =

¢ <

x20+ 1|d

u+1|,

d
Hence the improper Lebesgue integral [ |f,(x)|*dx =d***'2u+1 is finite.
0

0
By a similar taken we get that, for ¢ <0, [|f;(x)?dx is also finite.

Consequently |f,(x)|? is Lebesgue summable in [—1, +1]. It follows that
f.e I? (p) because If.(x)|2e" =2 < |f.(x)|? for |x| <1 and [f,(x)|* is bounded
by 1 for |x| > 1 because u < 0. Applying now the arguments similar to that
ones used previously, we conclude that f,(ax) = e*"f,(x) and the numbers
& = e™, where 0 > Rez > —3 cover the annulus 1 < [{] < 1/,/a. Summing

uwp 1€ 0< (¢ < 1/\/5} < Sp,(T,). Notice now that T,”! exists. The range of
T, contains all monomials x*; k=0, 1, 2,... and consequently is a dense
subset of I?(p). It follows that OeSp,(T,) = the continuous spectrum of T,.
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Observe that the circle C, = {¢: || = 1/\/a} = Sp,(T). Indeed, there is no
point spectrum in C,. To see this suppose that T,f = ¢f for € C,. Then

4+ @ +
n= j lf(ax)|le-;2/z dx = ‘11 j If(x)lze-xZ/Z dx
and 1= j 1 ()2 e dx

-

and consequently f'= 0. It follows now that there is no point spectrum on C,
of adjoint operator T.*. Hence C, =Sp.(T)) q.ed. We just proved the
following theorem:

THEOREM 5.0. Suppose a(x) = ax where 0 <a < 1. Then Sp,(T)) = {z: 0
<|z] < 1/\/;1}, Sp.(T}) = {0} U C, and consequently Sp.(T;¥) = {0} U C, and
{z: 0 <|z| 1/\/;1} equals to the residual spectrum of TF.

The operator T, of our theorem is unitarily equivalent to the integral
operator R, in I2(m) defined by formula

+ o

(R.,k)(x)=—l—— J e~ xma?1=a k) dy

J(1=-a¥)rn

It follows now from Theorem 3.0 that the following theorem holds true:

THEOREM S.1. Suppose a(x) = ax where 0 <a < 1. Then the integral
equation

-

—(x—aw)2/(1 —az) f (u) du

+ @
1
Af (%) = — f e
) J(1=-a¥)n
- @
has non-trivial solution feI?(m) if and only if 0 <|i] < 1/\/5.

1
6. The space I*(p) where dp=—— e *2dx is spanned by poly-

N

nomials, i.e. the linear manifold of polynomials is dense I[*(p). The
orthonormalization procedure applied to the sequence of monomials g,(x)
=x" n=0,1, 2,..., leads to the orthonormal basis of I?(p), namely to the

sequence {h,,(x)/\/n—!}, n=0,1,2,..., where h,(x) =(— 1).‘?;/2‘%(6,-;2/2) is

: i . . 1
the n-th Hermite polynomial for the weight function —2e"2’2. The
n



Operators induced by transformations of Gaussian variables 209

> h

generating function for {h,} is the function ¢,(x)=) %u" = gux—v12
nl0 .

defined for real x and arbitrary complex u. It is plain that ¢, e I[?(p) for each

u. Moreover, the functions ¢, span I?(p). Indeed if

e—x/2 eux—uzlzg(x) dx =0

1
((put g) - \/2—1[ )

for ge *(p) and all ueC, then | e"*g(x) e **2dx = 0 for ueC. Taking

u=is, s real we infer that the Fourier transform of the m-summable
function g(x) e~ *"/2 yanishes. Consequently g(x) = 0 m-a.e. which implies that
g(x) =0 p-ae. qed.

One can get an isomorphic picture of I?(p) as a Hilbert space of
function with a Reproducing Kernel. For references of such spaces see [1]

and [8]. To begin with we notice that to every f e I?(p) there corresponds the
function f (u) = (f, P, 2, ” of the complex variable ue C. Since the functions
@, span I?(p), then f (u) g (u) for all u (f, geLz(p)) if and only if f=g. We
define now the inner product (f, g) by formula ( 1.9 =, g)Lz‘ Notice now
that the correspondence between f and fis linear. Let H be the imear span of
f—s. Notice that

If @) < Uullyzg, 1/ll,2, for fe ().
Since ||flls = IIfll 2, by definition, the linear space H of f—es is a Hilbert
space with Reproducing Kernel equal to @;(u) = (¢, (pﬁ)Lz(m = K (u, v).

Indeed (7(-), K(-, u = (s @ =/ @s),2,, =F (v) by definition of f and
(’, ")u- We have now to figure out the explicit form of K (u, v). By definition

+ @
Ty — 72 —_u42 2
j evx C/Zeux u IZe x /de

T ®

1
K(u, U) = ((pE’ ‘Pi) =
N

— 2
J T Wx o= %2 gy

- Qo

—v2/2-u2j2 1

N

=e

+ @

1

< 2nb

1
— 521942 (52 + 25 2 &
K(u, v) e " /2—u /Zez(v + 20u+u4) __ euv.

bz2/2 _

Since ¢ J e#*~**12b dx for b > 0 and arbitrary complex z, then

- an
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+ o

1
Since f(u) = —— J f()e*%*2.¢7**2 gx then f(u) is an entire function

o

of ue C. Moreover, since { ,,/\/_ } is an orthonormal basis in I?(p), and the
correspondence f— f is a unitary map in H, we have the formula

N (f hn) u - h n_ _u"
—_ = s “) b4
W= e L2(p) nIO \/— \/_ ,% (f’ \/m)\/t?

1 .
which, when taking f = h,,/\/— yields, that ( \/m- )(u) = \/n7 &£ w,(u), 1L.e.

the sequence {w,(u)} = {u"/\/r_z_!} is an orthonormal basis of H. We know
that f(u) is an entire function and

6.0 )
(6.0) fw)= };,)(f w )\/_
as well

6.0) S, w2 < + 0.

nO

h,
Conversely, if ) |a,|* < + o0, then defining f = Z a,——e I?(p) we get that

n|0 nl0 \/’T

f(u)—Za for ueC.

n|0 \/'T.

It follows that H consists of entire functions of form as in (6.0) and the
coefficients satisfy (6.1). This means that H is exactly thcABargmann space B?,
see [2], namely the Hilbert space of entire functions f (1) such that

[1f @) e~ dm, < + oo
c

(m, = the planar Lebesgue measure) with the inner product

. 9= j ()G (w) e ™ dm,

- €

and as we have seen with the reproducing kernel K (u, v) = ¢*°. Suppose now
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that aeA, and let us take the operator T, and its image 7, in the space

P a - A
H = B>, 1t follows that T,f = T.f for fe B* and for ueC
o P
(L)) = (L)W = (T, 0.2, =, T2,

+ o

— 1 J f(x)e"“(""“zlz“z/zdx

N

+ a

=e v j € f(x)e”*"12 dx.

If a(x) =ax (0 <a< 1), then

(s Loa) =/, ¢a)e” 2“ a?w? =f(au)e 2 (l_"z’"2=(ﬁ*f)(u).

This gives us the explicit formula for T*. T* is obviously unitarily equivalent
to T*. Using the reproducing kernel ¢“° we can now write

(62 (Tf)w) = % Jf (v) ™20 ~ePm darml? gy
(o

The kernel Q of T =(T*)* is hermitian conjugate to the kernel P(u, v)
1 ]
=e7“_“2)"2+""", ie. Q(u, v) = P(v, u). It follows that

(63) if’“ ( J‘f(v)e—%(l—az)ﬁz+aﬁue—l!7|2dmu. ~
c
Formula (6.3) can be proved directly when using the equality (T,1)(u)
=/, T* (pa), (6.2) and an easy computation of @4 v) = (¢, (oﬁ)Lz . We see
now that T, and T* can be figure out as an explicit integral type operators.
It is plain now that we can use all the previous unitarily invariant results
concerning 1;, T,;* with a(x) = ax (0 <a < 1) to the operators T, T*. In
particular, we can apply these ones concerning tensor products of operators
in question. The infinite product can be constructed like in Section 3 using
results of [3]. The suitable space will consist of entire functions of a
countable number of variables.

Referemces

[1] Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404.
[2] V. Bargmann, On a Hilbert space of analytic functions and an associated integral
transform, Comm. Pure Appl. Math. 14 (1961), 187-214.



212 W. Mlak

[3] V. Bargmann, Remarks on a Hilbert space of analytic functions, Proc. NAS 18 (1962),
199--204. ,

[4] A. Brown, C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc.
17 (1966), 162-166.

[5] N. Dunford, J. T. Schwartz, Linear Operators, Part 1, New York-London 1958.

[6]1 T. Hida, Brownian motion, Appl. Math. 11, Springer, New York—Heidelberg.

[71 S. Kakutani, On equivalence of infinite product measures, Ann. Math. 49 (1948), 214-224.

[8] H. Meschkowski, Hilbertsche Raume mit Kernfunktion, Springer, Ser. 113, Berlin—
Heidelberg 1962.

[91 J. Neveu, Bases mathématiques du calcul des probabilités, Masson et CIE, Paris 1964.

[10] J.I Petunin, A. N. Plichko, Theory of characteristics of subspaces and the applications,
Kiev 1980.

[11] G.E.Shilov, Fan Dik Tin, Integral, measure and derivative on linear spaces, Moscow
1967.

INSTYTUT MATEMATYCZNY PAN, KRAKOW

Recu par la Rédaction le 8.08.1983



