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Existence of invariant measures for piecewise
continuous transformations

by Giurio Pianigiant (Florence, Italy)

Abstract. We show the existence of absolutely continuous invariant measures for a class
of piecewise continuous transformations from the unit interval into itself.
[}

1. Introduction. Let 7 be a transformation from the unit interval into
itself, piecewise smooth. Lasota and Yorke [2] discovered an interesting
result for such maps. It says that “general instability” implies trajectories
wander so irregularly that their long term behavior can be described
statistically in terms of invariant measures. The instability assumption is
|T'(x)] = A > 1, whenever t'(x) is defined. In particular no fixed points
or periodic orbits are stable. Yet there is a contradictory aspect of their
result. The larger 7/, the more unstable the process is, and yet their result
requires ' to be bounded. We remove this restriction, we do not require 1
to have piecewise continuous second derivative. An example of 7 which has
an unbounded derivative was investigated by Lorenz [3].

In Theorem 2 we consider the case where the process is unstable but
the condition |7(x)] > 1 is not satisfied. The result of Bunimovic [1] is
a corollary.

2. Notations and definitions. In what follows m is the Lebesgue measure
on [0,1]. I! = (I',m) is the space of all integrable functions on [0, 1]
with the usual norm | -||. A transformation 7 is said to be piecewise C' if:
(i) there exists a finite partition of [0,1], 0 =gy < g, <...<a@g,=1
such that the restriction t; of 7 to the open interval (a;_,, a;) is a C'-function;
(it) the function 1/7;(x) is absolutely continuous on (t;(a;-,), t:(a;)).
The Frobenius—Perron operator P, is defined by

d
PSG) == | f()dm.

t~10.x

It is well known that P, is a linear continuous operator from L' into
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itself; P, is positive and preserves the integral, ie. f(x) > O implies P,(f(x))
i t ' .

> 0 and [P, (f(x))dm = | f(x)dm. The condition P (f(x)) = f(x) holds if
0 ‘0

and only if the measure u defined by du = fdm is t-invariant.
3. The existence theorems.

THeOREM 1. Let t be a piecewise C'-transformation from the unit interval
into itself. Let

inflt'(x)] =2 A > 1,

where the infimum is over those x at which t' is defined. Then there exists
an absolutely continuous invariant measure.

Proof. Let0 = a4 < a, < ... < a, = 1, be the partition of [0, 1] relative
to 1. The Frobenius-Perron operator takes the form

@ P(S ) = 3, 6001 (04000 2,09,

where ¢@; = (t)”! and xi; is the characteristic function of the interval
I; = 1(a;-, ay).
Let g be an integer such that ¢ = 177 < 1/3, set 7"(x) = (" 1 (%),

P2 (f(x) = P.(P2"*(f(x)) Let 0 = by <by <...<b, =1 be the partition
of [0, 1] relative to the transformation y = 17 and let y; = (t9)~! = y;/ ..
We have .

(3.2) Py(f(x)) = P{(f(x) = ;1 ;OIS (i () o, (),

where 0 < |yi(x)) < 277 = ¢ and yx,, is the characteristic function of the
interval J; = y(b;_,, b).
We claim that for every function f of bounded variation

lim sup\l/ P(f(x) < o0.
kK 0

Let f be piecewise absolutely continuous. Without loss of generality we
may suppose f to be non-negative. We have:

1 N N
(3 VPE) ST VW@ W)+e T (Fbi-)+ k),
B4 VWIS (ux) = [ (i) f Gua)f|dm+e E1S x4)—f (=),

where the sum is over all discontinuity points of f in [b;_,, b;].



Existence of invariant measures 41
(33) ] |(Wi ) S WuCoNY|dm < § 0 O f (e} dm+ § e |(f ()Y | dm
< e [ |(f W)y |dm-+ § 17 o) S (Wi ) dm

b;
Sebf |/ (x) dm + JfIWE'(X)If('IIi(x))dm-
i-1 i

Then from (3.4) and (3.5) we obtain

b;
(3:6) \/ Wil f (i (x) < e bv S (x)+ ’I Wi ()| f (i (x))dm.

In order to evaluate the last term of (3.6) let t5, 1, ..., t, be such that:
%
ybi—y) =to <ti <..<tp=70b) and § Wi (x)ldm < o.
1

Such 1} exist since 1/t; is absolutely continuous, and so ¢} and Y} are
absolutely continuous,

3.7) 5 Wi 0ol f (¥ () dm < z( sup f(¥:(x))- Mv. (x)|dm)

= tk 11

where I, = [¥:(ti-1), ¥ ()]

Set §; = mm m(Ii). Since y; are strictly monotonic, it follows that §; is

positive. Observe that §; is independent of f, it depends only on 74,
supf(x) < \/ f(x)+ inf f(x) and mff(x) < (1/6) jf(x)dm

I I L Tk i
From (3.7) we obtain

(3.8) § W7 ) f(Wi(x)dm < ¢ Z (V f6+(1/8) 5 f(x)dm)
Ji

k=1 ’t

<e V f(x)+(e/5) I f(x)dm.

by b; -

Then (3.6) and (3.8) imply

b;

(3.9) \/th(x)l fW:i(x) < 2 V f(x)+(e/d) I f(x)dm.

-1
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And from (3.3) we obtain
1 1 N
(3.10) \o/ P,(f(x) <2 \O/f(x)+(0/5) Ifl+e -;1 (f (bi— 1)+ (b)),

where 6 = min §; is positive and independent of f,

N N b
;1 (fBi-)+f (b)) < =Zn bv fx)+2 (biinfb_lf(x)

i —1.b;

1 N b;
<V /Sx)+ Y 2/lbi—b;i_,l) { f(x)dm
0 i=1 by

1
< \o/f(x)+(2/5) (PR

Hence, from 3.10, by setting H = 3¢/, we get
1 1
(3.11) V P (f(x) < 3\ S+ HISY.
0
Since 30 <1 and H is independent on f, by iterating (3.11) we obtain

(312 tim sup \/ P3(f () < (H/A1=30) 111l = K.

Inequality (3.12) is valid for any function f piecewise absolutely con-
tinuous and is independent of the variation of f. Hence for every function
f of bounded variation the set {P}(f(x))}, is uniformly bounded. Since
y = 19, the set {P?(f(x))}s=, is uniformly bounded, too; in fact,

P f(x) < max lPi(f(x)), n=1,2,..
i=1,..., q-
n—1 .
Hence the sequence {(1/n) ) Pi(f(x))} is relatively compact in ' and from
i<o .

the Kakutani—Yoshida Theorem it follows that it converges strongly to
a function f(x) which is a fixed point of P,.
Following [3] we could prove that for every fel' the sequence

n—1
{/n) ¥ P{(f(x))} is convergent. The limit function, say f, satisfies the
i=0

N 1
condition \/ fx)<el f|| with the constant ¢ independent of f. This finishes
o
the proof.
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THEOREM 2. Let t be a piecewise C'-transformation from the unit interval
into itself. If there exists a real function h such that:
(i) h(x) > 0 ae. and [h(x)dm = 1,
(i) inf [T’ ()N h(z(x)/h(x) > 1,
(iii) h(x)/t’(x)h(t(x)) is piecewise absolutely continuous,
then there exists an absolutely continuous invariant measure.

Proof. Set g(x) = jh(t)dm and consider the new transformation T
0
defined by T=gotog~!. We have
T'(g(x)) = g'(t(x)) 7 (x)/g' (x) = T (x) k(T (x))/h(x).

Hence T satisfies the hypothesis of Theorem 1; thus there exists a measure
ur invariant under 7. The measure u = urOg is invariant under t and is
absolutely continuous. Sometimes it is useful to have conditions (ii) and (ii)
in Theorem 2 in terms of the inverse functions ¢; of . The corresponding
conditions are: sup |o;(x)| h(p;(x))/h(x) < 1 and @;(x)h(p,(x))/h(x) piecewise
absolutely continuous.

4. Remarks. Theorem 1 is an extension of the Lasota—Yorke Theorem.
Moreover, the Lasota-Yorke Theorem seems to privilege the Lebesgue
measure with respect to the other absolutely continuous measures; in fact,
by the result of their theorem the density of the invariant measure is
a function of bounded variation. Hence, if the invariant measure is “near”
the Lebesgue measure (in the sense that the density is of bounded variation),
then the Lasota—Yorke Theorem might solve the problem, otherwise not.
In the last case, we can replace the Lebesgue measure by another measure
4y, and if the invariant measure is “near” py,, our Theorem 2 can solve
the problem.

Suppose that the hypotheses of Theorem 2 hold; then if we start with

n—1

f(x) = 1, the sequence {(1/n) ¥ Pi(f(x))} converges to f which is invariant,
i=o

so we have an indication of how to change the measure. We will use this
fact in the applications.

Suppose, once more, that there exists an invariant measure with density
f(x) # 0 a.e. The Frobenius—Perron operator is

fx)=P(f(x) = ‘; li G f (@4 () s, (x)-

By dividing by f(x) we obtain

T 100 T (01 2, (T ) = 1.
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Then if x;,(x) # 0, we have |;(x)| f(@;(x))f(x) <1, i = 1,...,n. This last
inequality shows that our assumptions are “nearly” necessary.

5. Applications. In this section we show some applications.
Consider, for each natural number n > 1, the transformation 1,: [0, 1]
— [0, 1] defined by

7,(x) = n sin (nx) (mod 1).

COROLLARY (Bunimovi€). For every n > 1 there exists an absolutely
continuous invariant measure (with respect to t,).

Proof. The Frobenius—Perron operator relative to 1, is

PLUFW) =%, i) (S (o) 4S (1- i)

where ¢;(x) = (I/r) arcsin ((x+i)/n), i = 0,...,n—1. Let us consider the
sequence an(l). It is easy to see that, for k > 2, Pf"(l) is infinite of

order 1/2 at zero and 1. Hence, let us set h(x) = 1//x(1—x). We will
prove that a;(x) = |} (x)| h(@;(x))/h(x) < B < 1, where ¢; are the inverses
of t,,

Jx(1—x)
JM—(x+i?) (arc sin ((x + i)/n)) (m—arc sin ((x+ i)/n)) ’

i=0,...,n—1. For i = 0 we obtain

Vx(1—x)
/n*—x? \/arc sin (x/n)(r —arc sin (x/n))

T
Jarcsin (x/n) (/n*—x* /m—arcsin (x/n)

For i = n—1 we obtain

a;(x) =

ap(x) =

< J/2rm < 1.

Vx(1—x)

1) = S =x)(2n—1+x)/arc sin ((x +n — 1)/n)(x —arc sin ((x +1— 1)/n))
< —l— < 1.
-1

For 1 < i < n—2 we obtain

Vx(1—x)
Jn?=(x+i)? \/arc sin ((x+ i)/n) (= —arc sin ((x + i)/n))

a;(x) =
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1
<
V2 —(n—1)* \/arc sin (i/n) (n —arc sin (1 +i)/n)

1
< 1.
J2n—1Jifn Jn)2 =

This completes the proof.

Let us now consider, for every integer n > 1, the n-parabola defined
by: 7,(x) =n-4x(1—x)(mod 1). In a completely analogous way we can
prove that for every n there exists an absolutely continuous t,-invariant
measure.

Consider, finally, the transformations t, defined by 1,(x) = (4x(1—x))'?,
a=1.

By similar arguments to those in Theorem 2 we could prove the
existence of an absolutely continuous 7,-invariant measure for 1 < a < §S.

For a = 2 we can exactly compute this measure, obtaining du = dm/2 \/1—x.
For large values of o (¢ > 5,8,...) the diagonal crosses 7, at a point at
which the slope is less than 1, and so in this case an absolutely continuous
invariant measure cannot exist.
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