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Entire functions of bounded index
over non-Archimedean field
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Abstract. The aim of this paper is to develope & non-Archimedean theory for
entire functions of bounded index. The theory proceeds on entirely different lines
although many of the results obtained in this case agree with those in the classical
case. Some interesting departures can also be seen. In this paper we have established
a sufficient condition for the funcfions of bounded index. This result is used to con-
struct a non-polynomial entire function of bounded index with any given index greater
than or equal to 1. It is shown that entire functions of zero index other than con-
stants do not exist. Some more results treating the class of entire functions of bounded
index as a subset of the space of entire functions arc obtained.

1. Introduction. The idea of an entire function of bounded index
in the complex plane was introduced by B. Lepson [8] in connection
with his study of the differenfial equations of infinite order. Following
his preliminary investigations Fred Gross [3], S. M. Shah [10] and others
established some further properties of these functions. The purpose of
this paper and the papers to follow is to extend the theory of functions
of bounded index to the non-Archimedean case. We make use of the
idea of the maximum term of an entire function. The theory bears some
analogy to what is obtained. in the classical case although entirely different
techniques are needed to prove the results. Interesting departures also
oceur.

2. Notation and statement of results. Let K be a non-Archimedean
non-trivial valued complete field which is algebraically closed and has
characteristic zero, where the valuation is of rank 1. Throughout we
assume that the non-Archimedean valuation | | is from K to R, the field
of real numbers. Then, an entire function with coefficients from K and 2
taking its values from K can be written as a power series of the form

f2) = Y adn)z—a)

n=0

where
(1) ‘

nl

a’n(zl) =
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DEFINITION. An entire function f(z) is said to be of bounded index
iff there exists an integer k such that for all zeK

1 k .
(A) Max(lf(z)[ f f k(!Z) )> fj(!z)

(fO(2) denotes f(2)). We shall say that f(z) is of index % if ¥ is the smallest
integer for which the above inequality holds. An entire function which
is not of bounded index is said to be of nnbounded index.

, j=0’1,2’.l0

y ary

o0
For an entire function f(z) = ) @,2" and for every r there exists
n=0

a term |a,|r" (|2|=r) which is greater than or equal to the remaining
terms of the sequence (|a,|7")n-, and is denoted by u(r,f). The index
of the maximum term is called the rank of the maximum term for |z| = »
and is denoted by »(r,f). If for a given r there is but one term equal to
the maximum term, we call » an ordinary point. But, if for a given r the
terms equal to the maximum term are not less than two, we call » a critical
point. It is useful to note that wu(r, f) = |f(z)| for 2, ]zl = 7 being an ordi-

nary point. Let us say that an entire function f(z) = Zanz” is of bounded
n=0

(0)-index % iff % is the least positive integer for which (A) is satistied for
all zeK, where |2| = r are ordinary points of f(z).

In the following theorem we obtain a sufficient condition for an
entire function to be of bounded index.

TEEOREM 1. Let C(f) and C(f') denote the eritical points of f(z) and
fH(2) respectively. If for an entire function f(2) = ) a,z"
n=20
(1) 1&] lag] = la;l, 3 = 0,1, ..., where k = 1 is the least positive inieger
Jor which the inequality holds,
(i) C(fINC(fY) =0 (an emply set),

(iii) for every ze<C(f), 2| > 1,
then f(z) is of bounded index k.

Every polynomial is of bounded index. In Theorem 2, we give a method
of constructing a non-polynomial entire function of any given index
k> 1. It may be noted that such functions can also be constructed by
using the Weierstrass product theorem. But we prefer to follow the methods
laid down in Chaptfer 3, 9 and use Theorem 1 to prove Theorem 2.

THEOREM 2. Given a positive integer k > 1, there exists an entire
function of bounded index with index k.

THEOREM 3. (i) An entire function f(z) = 2, a, 2" of bounded (0) index

n=0
k=1 can be expressed as a sum of an entire function of bounded (0) index 0
and a polynomial of degree k.
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(i) An entire function f(z) = > a,2", of bounded (0) index k>1
n=0

can be expressed as a product of an entire function of bounded (0)-index
0 and a polynomial of degree k.

It is Jmown that an entire function having no zeros is a constant.
See [2], Proposition 3, p. 114. An entire function which has zeros of arbi-
trarily high order is obviously of unbounded index. So, if it is of bounded
index, then it has zeros of finite order. Hence, it is clear that there exists
no entire function which is of bounded index with index 0. For, if 2 = a
is a zero of order », then at the same point 2 = a we have |f(z)] = 0,
whereas |f**! (2)/(»+1)!| > 0. In fact, we prove much more in the follow-
ing theorem. For convenience, we write

f'(2) I)

n!l

Ci(z) = Max(

n=0

for the point =.

THROREM 4. There exists no non-constant entire function f(2) for which
¥ (z)
| !
Jor aoll zeK and for any positive integer N.

Let I' denote the space of all entire functions topologized into a metric
space with the metric defined by the functional

(B) Of(z) =

If—gll = 811P(|a;—»bo|, Ia'n—bnllm, n > 1)

for f(2) = ) a,2" and g(2) = } b,2" belonging to I. In addition to the
n=0 n=0
usual triangular inequality, |...| satisfies the ultra metric inequality by
virtue of the non-Archimedean valuation. Also, let 4 denote the set
of all entire functions which are of bounded index. We now study 4 as
a subset of I". The space I' in the complex case has been studied exausti-
vely by V. G. Iyer [4], [6], [6] and [7]. Most of these results are also
true in the non-Archimedean case, and they follow by essentially the
same arguments. We refer to such results without giving any proof.

We prove the following two theorems for the set A.

THEOREM b. A is a closed set; Ay, = {fe A| f is of index < k}.

It is natural to ask the following question: Given any two entire
functions which are of bounded index, is it true that their sum is also
of bounded index? We answer this question in the negative. In fact,
we prove the following

THEOREM 6. A is mon-linear.

By an analogue of Theorem 3 (see [4]) and Theorem 4 we imme-
diately get
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CoroLLARY 1. If a sequence of eniire functions ( fa(2)) of bounded
indexr < k converges uniformly to f(z) in |2| < r, where r is finite, then
f(2) 48 of bounded inder < k.

3. Proofs of the theorems, Proof of Theorem 1 requires the following
LEMMA 1. An entirve function f(z) = 3 a,2" is of bounded (0) index %,

n=0

iff k& 18 the least positive integer for which
(1) lag) > lgyl, Jj =0,1,...

Proof. Let (1) hold. For all zeK, |2| = = 1, where r is an ordinary
point of f(z), we have
(2) If(#)] = u(r, f) = |“u(r,r)|7’"(r’”
> |a'v(f.ﬂn Ic;(rsﬂ)l r"(r-ﬂ)_j
_ a0 f) | P
- ) - »
17! jt
j =1,2,... So, if we assume that f(2) is of bounded (0) index ¢ # k,

then there is at least a ze¢K, |2] = r <1, where 7 i§ an ordinary point
of f(2) such that

b

f*(2)
!

f'(2)

Tk

?

if > 0. From (1) and the above inequality, observing that any » < 1
is an ordinary point of f*(z), we get

p(n ) _ p0of)

a.,| >
] > It 7]

= |ay,

which is an impossibility. If ¢ = 0, then, as # = 0 is an ordinary point
of f(2), we have |f(0)]= |a,] > |f*(0)/k!|= |ay|, Which refutes our assump-
tion. So f(2) is of bounded (0) index &.

Let f(2) be of bounded (0) index k. We proceed to establish (1). And
this completes the proof of the lemma. Suppose (1) holds with ¢ instead
of &, 1 # k. Then, for all zeK, |2) =+ <1 we have

f@|  plnf

| = = I > lavg, | 10"

J'j)l ’.v(r, ﬂ)-—j _ ,u(r, f]) fj(z)
[t

I5!] J!
j=0,1,... So, from (2) and the above inequality it follows that f(z)

is of bounded (0) index ¢. Thus, we have a contradiction and hence (1)
holds for f(z).

H
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Proof of Theorem 1. From Lemma 1 and (i) it follows that f(2)
is of bounded (0) index %. So, in view of (ii) and (iii), to prove the result
we show that

(3) If1 (=)=

I

F(2) ‘,

j=1,2,... for all #, || =r>1, which are ordinary points of f1(z). We
consider the following two cases: When u(r,f) = || [f(t—1) ... (E—j+
+1)|7#% ¢t >j+1, for all »>1 which are ordinary points of f(z) and
when u(r, /) = la;||j!] for j > 1. In the first case we have »(r, /)—1 > j,
s0 that

]fl(z)l = ‘U-("’ fl) = [“v(r,fl)l l,”(-,r, fl)]ru(r'!l)_l
= @y ) Iv(7, M c;(r.ﬁ)_1lrv(r,ﬂ)_1
— (7, 1) i1
131
fi(2)

3!

>

y j=1.

In the second case

u(r, f} ) > f (2)
) - -
131 J!

So, (3) holds for all z¢K, |2| =r>1 which are ordinary points of f*(z).

Proof of Theorem 2. As the valuation is non-trivial and any valua-
tion which is non-Archimedean on the rationals is p-adic ([1], p. 13),
we can choose positive integers

I (@) =pr ) = o k171 = | ay) = , §>1.

1<k=k<k<...

such that
k
tis1, t=1,2,..
kt+1
Let
‘Rk]_ =-2’ 3
Fy_y 2
B = M Re+1—% kkt+1) t=2,3,... R, > .
41 ax( keyy i (ki) | Ty ke %4
Also let
k,_
1< ay(ky) < I ;th I t=1,2,...
and |

o (k) Ry, = By t=1,2,...



168 V. Sreenivasulu

Now define
f(2) = > ay, 2,
=1
where
1 _ 1 > lay| > 1
2 R, O R’
@ Ik, | lay,| > gy ] > |, |
sz “ R;Cz
and
log,_,| N
— - = 3,4
Rkl laktl -Rk! 9 y &y
As

1
< R,;t”"‘ <~———=>0, asi—>oo

ke,
f(2) i8 an entire function. Obviously,
ll(kl-l-l_ki) [ k 1/(k£+1-k‘) oo
a O, Kt -
8, = ( £ ) and 8, = ( — )
Frey t=1 Oy y o1 t=1

are the sets of critical points of f(z) and f!(z) respectively. We now show
that these are the only critical points of f(2) and f1(#), respectively. Suppose
there exists a r¢8; which is a critical point of f(2). Then, for this » there
should exist at least two terms equal to u(r, f). So, let

ﬂ(", f) = la'ktllrktl = Iaktlrktl tl < t_]"
Then we have

O, Oy 41 ey
Now
(6) pirs f) = lag,|7™.
a, __r
As r¢8,, there exists a 4 > 1 such that r = A 7‘;‘ k-1 From (4),
k.

(8) and (6), we get t

kt_kt -k,
1 a (it 0} a;
¥ — Ry |——m0o 7] a
Akt R ’,ﬁi—k‘—l < ARy | 2L Ry = ! M1
By, akt1+1 Oy,

? ’ 7
< By Ry .. By
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This vields -k
¥ ARFy oy (B ay () < ay () o (Byy),

which is an impossibility. So, 8§, consists of all the critical points of f(z).
Let

1
ky_
alk) < oall) <| =28,
and
chi(kl)=1‘k Ma(k)r =1" t=12.
e 1! ]ft 1\ kt k1 Rt B
Then, clearly , o B || 0, ,
(7 By, <myp, < T _ak, <ty <Ry,

Proceeding as above and making use of the above inequality instead
of (4), we can show that the set of all critical points of f(2) is §,. From (4)
and (7) we see that f(2) and f1(2) have no common critical points. Clearly,
(i)and (iii) of Theorem 1 are satisfied. So, the result follows from Theorem 1.

Proof of Theorem 3. (i) Let
Hid) = aptazt...+ayd+a L
P (2) = (@, — ag) + (@ — az).

From Lemma 1, we have a,—a, # 0 and f,(2) is of bounded (0) index 0.
So, p(2) is of degree k. Clearly, f(2) = fy(2) +p(2). Hence the result is
proved.

(ii) Let by, by ..., by, ... all belong to K and |b| = |b], 7 =1, 2,...,
k, |by| = |ag). Now define '

—b_’ 6 = b b Cp = (“k —(b10k-1+~--+0kbo))/bo
o 0 0

and
bey1 = (a'k+1_(b10k+bzck—l ‘|‘~--+bk01))/007

Clearly, by ;| < laxl < |Bol, 5 = 1,2, ... So, if fo(2) = ) b,e" and p(2) =

n={

= Y ¢, 75, then from Lemma 1 it follows that f,(z) is of bounded (0)

n=0
index 0 and p(2) is 2 polynomial of degree k. Clearly, f(2) = fo(z)p(z).
So, the result is proved.
Proof of Theorem 4. The case N = 0 is discussed earlier in Sec-
tion 2. So, we assume N > 1. If possible, let there be a non-constant entire
function for which (B) holds for all zeK. Then

)| | £
4! N!
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for all z¢K, and j=0,1,... f¥(2) cannot vanish anywhere in K. For,
f¥(2) = 0 for some point 2, implies by the above inequality that f/(z) = 0
for all j = 0,1, ... Hence, f(2) vanishes identically in K, which refutes
our supposition. So, from a known result [2] refered to eatlier, f¥(2)
is a constant, which means that f(2) is a polynomial or a constant (when
f~(2) =0, N =1). Now, if f(2) is a polynomial, we have, as (B) holds
for all 2¢K and j =0,1,2,...

Y (z)

i = B = a constant.

p(r, )<

Since w(r, f) is @ monotonic increasing function of » which can be taken
to be greater than B for an arbitrarily large », we have an impossibility.
So, the result is proved.

Proof of Theorem 5. To prove that 4, is closed, we prove that C4,
is open. Let f(2)eCA,. For any z¢K, let B denote the set of all /(2)s for
which f/(2) = 0, if such f(2)’s cxist and

m = Min(|f(2){, f (¢)¢ B).

Let
1 m
< Min |—
0<e Mm(z’ 147r(1+m) )’
where 7 is fixed. If g(2) = ) b,2"<I" be such that ||g(2)|| < ¢, then
no=0
N, . (e=1)(1—er) 41
|g(z)1s§|bﬂ|o < —im
and '
oo o9 ]-
i < A ,u—j< v—j £
g (z)l\glb.llc, L ‘; ol <=
j=1,2,... As e< 1, we have '
(8) lge)l <m, lg@I<m, j=12..
Hence,
; Iff) i f(2)¢B
(9) P (2)+ (2 =| B
g’ (2)] it  f(e)eB,] = 0,1,

If possible, let

h(z) = f(&)+9(2) ;
be of bounded index. Then, for all z¢ X, there is a positive integer % such
that "

(10) Max (lh(z)l,

)2' k (2)
i

B (2)
1!

¥ (2)
k!

, i=0,1,...

y ey
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As f(#) is of index greater than k, we have a 2z, and a positive integer
I > % sueh that

f k(zl)
f( 1)‘ k! *

f.l(zl)
!

Clearly, f'(z,) s 0. So, from (9) we have If’(z,)] = |W'(#,)|. Also, from (8)

we have

=) 1)

> Ma.x

y ey

P ) <m<Iffz)l, §=01,...,%.

So
<z) ‘f =|h‘(z1)
n o’
since [I!| < |j!, § =0, 1,...,70. Hence
I W (z, h¥(z,
Lz( L >Max(|h( 2, ‘1(7) eres k(f))

This contradicts (10). So, h(2)eCA;. Hence, CA, is open.
Proof of Theorem 6. Let

f(z) = ag+ a2+ Zaniznja

i=
where
Ny
2<m<ny <., >1, n,=1,
g1
R, =2,
;i _ _ )
By =max( ! R:;H n’a(""j+1)n"+1)r J=12 ...,
(S}
M .
1< ag(n) < , §=1,2,...,
1
o(n)B, =R, j=1,2
gl = laf —a, l<a<?, = =—> 5>
oo T T S
and
(@, .| (@,
“1-1 i1
— > e, | > —92.3
Ru, |n’| Rﬂj ’ 3Dy

Proceeding as in Theorem 2, we can show that f(2) is of bounded index 1.

Now let
o(e) = H(l——) —1+ Soe

t=l k=1

b= D (—1(ey - 007

1i) <ig <., <y,

4 — Annales Polonici Mathematicl XX VIII.2
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where
M= e =1,

1+M&x(ﬂm, C("’j: ')1)) > Mﬂ.l = |9n(n+i)]2l = e = Igln(n-!-l)/z]-ul

n(n+1 .

> Ma.x(n"z, C(ny, n)), n; = —iz—) >y §=2,8,...
and
I_ll(nﬂ.n—w)

?

n(n+1) n(n+1)
(522

—1/(n,-+n-— l‘ﬂ'zi'-ll))

A('n/j,'n) = lan,-el'"en(n;l) n

B(n;yn) = Max ( %

oy 1,05ty

(n,-...('n,,-—t+1))/(11'£?'-2--ﬂ —v) (ﬁ@gﬂ—v—i)

C(ny, n) = Max (4 (n;, n), 4 (n;, n)B(ny, n)).

X

As
Bl =] > (e -0

1<ty <ig<... <y,
n(n+1)
2

n{n+1
for ——(E_u—ngk

A

2
= oy ..o V¥ < ( 13 ) (n*+m) >0, as Mm—>o0,
,n'n.
¢(2) is an entire function. Obviously, it is of unbounded index. In what
follows we show that f(2)+ g(2) is of bounded index with index 1. Since
—f(2) i3 of bounded index 1, we have f(2)+g(®)—f(2) = g(z) is of un-
bounded index. So, the result is proved. We now proceed to show that
f(2)+g(z) is of bounded index 1. First, we prove for all |¢|=r,zeK,

(11) piry fy>u(rgh, t=0,1,...
Let @ denote all » for which u(r, g) = 1. Then, for all re¢G we have
p(ry f)
= lagl > 1
pir,g) ” 70T

s0 that (11) holds for all r¢@, when t = 0. For r<C@, if u(r, g) = [bylrY,
then there is a positive integer n such that

n{n+1) -
piry g) = |b n{n+1) _v|1‘ 2 , 0<y<<n—1,
2

and r satisfies the inequality

Y= |Qn(n+1)_v|'
—3
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Now

u(f) oy N

> 1a,,01..- Pty
,u(r, g) = I 4 &1 Qn(n;-l) _',|

—n— n{n+1)
2
= ia’nj Q.- 9n~(;z+l) ,J |9n(n2+1) ”+11
o BE)
> Aj(nj’, '"l) 2 |a!”7, 91 cee eﬂ(ﬂ-l‘l) _nl = 1’
a

so that (11) holds with ¢ = 0 for r<CG also. Similarly, we can prove (11)
when ¢ =1, 2,... For the function f(z), for all z for which |2| = r are
ordinary points of f(z), we have

(12) wlr ) > £ )

and for all 2, 2] = » being critical points of f(2) (which are ordinary points
of f1(z)), we have

, j=1,2...

7]
(13) atn gy > £ oas,
From (11)-(13) we have clearly
4] i
Max{lf(e)+ g(a), [P (&)o@ = | TELEE o,

for all ze K. So, f(2)+g(2) is of bounded index 1.
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