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On the existence and uniqueness of solutions of systems
of differential equations with a deviated argument

by T. JANKOWSKI and M. KwAP1sz (Gdansk)

In this paper we consider the differential vector equation

(1) @’ (t) = F(ta w(al(t)), reey :t(a,.(t)), ' (ﬁl(t))’ (A @' (ﬂs(t)))r

where _
x(t) = (@), ..., 2°@), F()=(F'()y..., F))-

It is known that, for r =8 = 1 and e,(¢) =1, B,(¢) < t, for te [0, a),

equation (1) with the initial condition z(f) = ¢(t), te E,,
Ey ={z: 2 = 4,(1) < 0,1t [0, a)},

has in the interval [0, a) a unique solution which is a limit of ordinary
successive approximation (see [2]) if among other things we suppose
that the function I' satisfies a Lipschitz condition with respect to the
last two variables with Lipschitz constants k,, k,> 0 and k,<<1. If
f.(t) <t—a, a> 0 for te [0, a), then the condition k, < 1 is superfluous.
But this is not the only case where this condition may be weakened.

Equation (1) was considered in [4] under the conditions

() <t, Bi)<t, te[0,a], i=1,2,...,7, §=1,2,...,s.

There was established a theorem on the existence and uniqueness
of solution of this equation, involving some relation between the Lipschitz
constants of function ¥ with respect to the last s variables and the functions
B; (). :

In our paper we obtain, by the successive approximation method,
a result more general than that of paper [4].

At first let a;(t) <0, B;(t) < 0 for all te [0,a], 1V, = {r+1,...,7,},
jeVy, ={s+1,...,8,}, r,>7, s > s. Further, let us have the equation

(1) &' (t) = f(t, ®(ar(t), ---, @ (a, (), &' (B2(8), - -+, &' (B, (1)),

with the initial condition z(t) = ¢(t), te E, where E is the so-called initial
set of equation (1'),

E=U{e:2z=0a(t)<0,tc[0,al}u U {&: 2z = §;(t) <0, te [0, al}.
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254 T. Jankowski and M. Kwapisz

By putting p(a;(?), ¢'(8;(t)) instead of z(a;(t)), ' (B;(t)), 1€ V4, jeV, we
can reduce equation (1') to equation (1), which does not contain o s,
B;’s of that sort.

T v, ={,2..r} V., =1{1,2,...,s,}, then equation (1) is the
one considered in papers [5] and [6].

Now, we assume that

a;(t), B;(t)e[0,a] for te[0,al, i =1,2,...,7,j =1,2,...,5,

and we consider equation (1) with the initial condition x(0) = &’ (0) = O,
O = (0,..., 0) (by the substitution ¥ (¢ —1?,) = x(t) —c— (t—1,)z the general

————

aq
initial condition x(¢,) = ¢, 2'(f,) = 2 can be reduced to the condition
considered here). By the substitution (f) = 2'(t), equation (1) with the
initial condition x(0) = «’(0) = @ is equivalent to the equation
ay(t) a(t)

@) oy =F(t, [ y@dr, ..., [ y(@)dr,y(B:0), ..., y(B,),

0 (1}
where

b b b
y(@® = (30, -, 70, [y@dr = ([ @)z, ..., [ y9()d1).
0 0 0

We shall show that the sequence {y,(t)}
yo(t) =99 te [O,G],

ay() ap(t)

3) Yarr® = F(t, [ yu(@dr, .oy [ 4D v, 4 (B10) s -5 ¥l 1),
for te[0,a],n =0,1,...,

is uniformly convergent to a solution of equation (2).

We give theorems on the uniqueness and continuous dependence
of the solution of the right-hand side of equation (2).

Moreover, we shall consider in more detail a special case for the
functions a;(t), B;(t) satisfying the relations

0<a;(t)<t, O0<B)<Bt, 0<p<1, 1te[0,a],
t=12,...,7, jJ=1,2,...,8.

The paper contains a generalization of some results of [3].

Finally, we shall give an example proving that our result is better
than that of [4].

We do not discuss the case where the functions a;(t), f;(¢) change
their signs in the interval [0, a].
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1. Assumption and lemmas. We introduce

AssumptioN H,. Suppose that

1° the vector function F(t, 2y, ..., 2., Py, ..., Ps) 18 defined and contin-
uous for te[0,al, = = (1’}7 ooy T, p; = (p;’ ---’P;'J)7 mnl”ijq’ i =
=1,2,...,n) =14L2,...,8 F(t, &1, ..., T4y Py, ..., Ds) e R?, F(0, 0, ..., O)
=6,

2° the funmctions a;(t), p;(1), ¢ =1,2,...,7, j =1,2,...,8 are defined
and continuous for te [0, a] and a;(0) = B;(0) = 0, a;(2), p;(t)e [0, a];

3° for any (f, @y ovvy @iy Pryy vy Psi) e [0, ] X RIX ... X RY, 1 =1,2,

we have the inequality rrs

[F(Ey @ygyeevy Bppy Prry oooy Psd) — F (B Zagy ooy Tpgy Pray evvy Do)l
< Yk lza — ool + X L0 1pa— Pl
im1 - i=1

where the functions k;(t), L;(t), 1 =1,2,...,7r, j =1,2,...,8 are defined
and continuous for te [0, al, and k;(1), 1;(t)e [0, co).
AssuMmpTiONs H,. Suppose that

1° in the interval [0, a] there exists a mnon-negative and conlinuous
solution w(t) of the inequality

a L(t) 8

Dk [ u(r)dr+Zl.i(t)za(ﬂ,-(t>)+supinF(s,@,.-.,@)n<u(t),

i=1 0 0<s<

(4)
w(0) = u(0+) = 0;

2° im the class of functions satisfying the condition 0 < u(t) < u(t),
te [0, a], the function u(l) =0, te [0, a] is the only measurable solution of
the equation

a;{?)

(3) w(t) = Y'k(t) [ u(@dr+ YL )u(gi0).

AssumprTioNs H,. Suppose that

1° in the interval [0, a] there exists a non-negative, conlinuous and
non-decreasing solution h*(t) of the inequality

¢ s
k(@) [u(r)dr+ D' L(t)u(Bit)+ sup |F(s, @, ..., O) < u(?),
0 i=1

o<e<t

u(0) = u(0+) = 0,

k;(t), and B; are given constants, 0 < f; <1,4 =1,2,..., 8;

g

I
—

where k(1) =

t
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2° in the class of functions satisfying the condition 0 < u(f) < B*(t),

te [0, a] the function u(t) =0, te [0, a), is the only measurable solution of
the equation

¢ 8
u(t) = k() [u()dr+ D LHu(fit).
0 i=1

Let us define the sequence {u,(t)}, te [0, a] by the relations

Ue(t) = %(t), te[0,al],
(6) asl)

Uny (8 Zk (t) f un(r)dr+ D L) ua (Bi(1)), te[0,a],n =0,1,...
i=1
LeEMMA 1. If Assumption H, is satisfied, then

0 < Upy (t) S u,(8) < u(t), te[0,a], n=0,1,...,
un(t) =0, te[0,a],

where the sign = denotes uniform convergence.
Proof. From relations (6) and (4) we get

aytt)
uy(t) = Zk (t)f o (T dr—i—Zl (8o (B; (1)

a;(?)

Zk(t)f @(7) dr—l—Zl(t)u(ﬁ,(t)—i— sup |F(s, @, ..., 0)|

o<s<t
< (t) = uo(t), tel0,al.
Further, if we suppose that

un(t) < un—l“)) te [07 a]?
then

a;(t)
Una(t) = Zk(tf n(rdr+21(t ta (B (1)

a;(¢)

Zk(t j u,,_,(z)dr+2z(t)u,,_l(ﬁ,(t) ) = u,(t), te[0,al.

Since the sequence of continuous functions u,(t), te [0, a], is non-
increasing and bounded from below, it is convergent to a certain measur-
able function %(t), te [0, a] such that 0 < %(t) < @(t), te [0, a]. By Lebes-
gue’s theorem we see that the function %(t), te [0, a] satisfies equation (5).

Now from Assumption H, we have u(f) =0, te [0, a].

The uniform convergence of the sequence {u,(?)}, te [0, a] follows
from Dini’s theorem. Thus the proof of Lemma 1 is complete.
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Let us define the sequence ii,(t), te [0, a], by the relations
@ (t) = k™ (1), te[0,al,
(7) ‘ i 8
iy (8) = k(@) [ (x)dr + D LN (Bit), te[0,a], n)=0,1,...,
] 0 i=1
and let a sequence {h,(t)}, t<[0, a], be an arbitrary sequence satisfying
the conditions
< ho(t) < B*(1), te[0,a],

a;(t)

0< by (1) < Zk(t f by (7) d-r—i—Zl(t (B: (),

le[0,al, »n =0,1,...
We then have

LeMMmA 2. If Assumption H, is satisfied, and
1°0< ;1) <ty 0K B(0) < Bjt, 0<<B;<1, te[0,a], v =1,2,...
J=212..s,

2° the functions k(t) L;(t), 1 =1,2,...,8, are non-decreasing in the

.
interval [0, a], (k(t 2 (), then
i=1
U
U

s 7y

(1) the fumclions
(1) 0 <y, (1) <
te [0, a],
(ili) 0 < A, (t) < i,(t), te[0,a), » =0,1,..., h,(f) =0, te [0, a].
Proof. From condition 1° of Assumption H, it follows that the

function ,(?), te [0, @], is non-decreasing. Further, we obtain (i) b
induction.

(ii) follows from Lemma 1 with %,(t) instead of u,(t) and Assumption
H, instead of Hj.

Further, we see that

0 < ho(t) SBY(E) = Be(t), e [0, al,

n(1); te[0,a], n =0,1,..., are non-decreasing,
(1) < BY (@), te[0,a], m _O, 1,..., 4,() =0,

and
a;(¢)

0 < hy(t) < Zku fho(r>dr+21.f(t)ho(ﬁi(t>)

i=1

a;(t)
Zk(t)f o (T) dt-{—Zl(t o(8:(®))

r a(t)

k() ] ao<r)dr+2h(t>ao(ﬂit><al(t), te [0, a].

i=1
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Now, if we suppose that

hn(t)gﬂn(t), le [0,@], n=1,
then we get
a;(t)

0 < by (1) < kb(t f by (7) dr + Zz@mhn(ﬂim)

az(t)

Zz(tf dr+2w W (B:(D) <y (t), 1€ [0, al.

=1

‘.‘

@

The first part of (iii) follows by induction.
Since #,(f) = 0, te[0,a]; h,(t) = 0, te [0, a].
Thus the proof of Lemma 2 is completed.

2. The existence of a solution of equation (2). Now we can formulate
the theorem on the convergence of the sequence {y,(t)} to a solution of
equation (2). '

THEOREM 1. If Assumptions H, and H, are satisfied, then there ewists
in the interval [0, a] a continuous solution %(t) of equation (2) such that
y(0) = O. The sequence {y,(t)} converges wuniformly on [0,a] to #%(t) as
n — oo; moreover, the estimations

(8) ly, (1) —g (DIl < u, (), te[0,a], n =0,1,...,
and

(9) @) < u(t), te[0,a]

hold true. '

The solution i(t), te [0, a], of (2) is unique in the class of functions
satisfying relation (9).

Proof. We shall prove that the sequence {y,(?)}, te [0, a], fulfils the
condition
(10) [y, (O < u(t), te[0,a], n =0,1, ...

Evidently

1Yo (DI =0 < u(t), tel0,a].

Let us suppose that inequality (10) is true for » = 0. By the defi-

nition of y,(t), te [0, a], and condition 3° of Assumption H,, we have
a;(t) ay(t)

Wara O] = [F(t, [ gz, .oy [ ya(@dr, gu(BuD)); -5 ¥a(B:0))) —

—F(t,0,. .,@)+F(t,@,...,@)H
a;(t)

Zk(t f ya () udr+2w ) [va (B 0)] + suR |F (5, 6, ..., O]

0cs<t

< u(t),
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for te [0, a]. Now, we obtain (10) by induction. Further, we prove that
(11) ”yn+m(t) —ym(t)“ < ”m(t)’ le [01 a’]a Ny Mm = 07 19 .

By (10) we have

19.(8) — %o (DI} = YOIl < u(t) = uo(t), te[0,a], n=0,1,...
Further, if we suppose that (11) is true for n, m > 0, then

¥ nsmys () — Y1 (2)]]
ay(l) a l)

= “F (tr f Ym(D)dr, .oy f YmiT)dT, ym(ﬁl(t))v ceey ym(ﬁs(t)))—
ay(t) a.(t)

_F(ta f Ynem(T)dT, o0y f yn+m(7)d7’ "Jn-;-m(ﬁl(t))s srey yn+m(ﬂs(t)))“

0
a;(t)

KO [ 1 ()= YN+ D0 |9y B:C8) = Yo (Bet0)

. ay(t)

< D' k(®) f U (7) dr+2z U (B; (1) = ysr (1), te [0, al.

=1

<

M,

.
I
—

Now, we obtain (11) by induction.

Because of Lemma 1 u,(t) = 0 for te [0, a]; therefore from (11) we
have ¥, (t) = 7(t), te [0, a]. The continuity of #(t) follows from the uniform
convergence of the sequence {y,(f)} and the continuity of all functions
Yull)-

If n tends to oo, then (11) gives estimation (8). Estimation (9) is
implied by (10). #(0) = @ follows from ¥,(0) =6, » =0,1,...

It is obvious that #(t), te [0, a] is the solution of (2).

To prove that the solution #(t), te [0, @], is unique let us suppose
that there exists another solution ¢ (t), te [0, a], such that #(f) = F(t)
for te [0, a], and ||7(2)] < u(?) for te [0, a].

We get

17(t) — ¥, (DIl < u,(t), tel[0,a], » =0,1,...,

by induction and hence it follows that 7 (t) = (t), te [0, @]. This contra-
diction proves the uniqueness of %(t), te [0, @], in the class of functions
satisfying relation (9). Thus the proof of Theorem 1 is completed.

Now we can formulate an analogous theorem for equations of the
delay type.

THEOREM 2. If Assumptions H, and H, and 1°-2° of Lemma 2 are

fulfdled then the assertion of Theorem 1 is true with h*(t) instead of u(t),
and the estimations

||37(t)_yn(t)||<ﬁn(t)y le [O’a‘]s 2 :Oyly-"!
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and

G < k'), te[0,al,
hold true.

Proof. We prove that Assumption H, is fulfilled. We can take h*(t)
instead of % (). Let u(t) be a measurable solution of (5) in the class 0 << ()
< B*(t), te [0, a]. Further, we get

o<<ut)<4,t), te[0,a],n=0,1,...,

by induction, and since i, (t) = 0 for te [0, a], we have u(t) =0, te [0, a].
Hence Assumption H, is fulfilled.

Since all assumptions of Theorem 1 are fulfilled and u,(t) < ,(t),
te [0, a], Theorem 2 is proved.

3. Uniqueness theorem. Now we give the conditions under which
equation (2) has at most one solution; these conditions do not guarantee
the existence of the solution. We have .

THEOREM 3. If Assumption H, is satisfied and the function b(t) =0,
te [0, a], is the only mon-negative, finite and measurable solution of the
imequality

a;(?) s

(12) bM< Dk [ b D LWb(A(1), te[0,al,

then equation (2) has at most one solution in the interval [0, a].

Proof. Let us suppose that there exist two solutions #(¢) and 5 (1)
of equation (2) in the interval [0, a], such that 4(¢) sé@j(t), te[0, al.
Now from condition 3° of Assumption H, we have

ay(f) a(f)

lg@ -9l = |F(t, [ F@de, ..., [ §@)dr, §(B0), - T(B:)) —

0
ayft) ap(?)

—F(t, [ 4()dr, ..., [ §(2)dr, §(6.(0), .., 9(8, )

< Y@ [ 5@ —3@ldr+ 31 g (8.0) -3 (8:0),

for te [0, a]. Put
b(t) = lF@)—y @), te[0,al.
By (12) we conclude that b(t) =0, te [0, a] i.e. §(t) =4 (t) for te [0, a].
This contradiction proves Theorem 3.
LeMMA 3. If for any measurable function f(t}) = 0 (f: [0, a] — [0, ),
instead of ||F(t, O, ..., 0)|| Assumption H, is satisfied (with measurability
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instead of continuity of %(t)), then in the interval [0, a] the function b(t) =0
18 the only nmon-negative, finite and measurable solution of inequality (12).

Proof. We see that the function b(t) = 0 for te [0, a] is a solution
of (12).

We suppose that in the interval [0, a] there exists another non-
negative, finite and measurable solution 5* () of (12). Let b,(¢) for te [0, a]
be a non-negative, finite and measurable solution of the inequality

a;(?)

Z‘k(tfu(rdr+21(tu(ﬂ(t))+supb*(s w(t), te[0,a],

\s\

and
a'p,(l)

nmn-Zmemum+2NMbmm tef0,al, n = 0,1,.

We have b*(t) < by(t), te [0, a], and we get
bn+1(t)<bn(t)) te[0,a], n =0,1,...,
(13) b*(t)gbn(t)y te[0,a], » =0,1,...,

by induction. Since the sequence {b,(t)}, te [0, a], is non-increasing and
bounded from below, it is convergent to a non-negative measurable
function b(t), te [0, ], which satisfies the equation

7 a;(¢) s

Y

w(t) = Y@ [ u(@dr+ D LOu(gi), <[, al.
t=1 0 i=1

Now from Assumption H, we have b(t) = 0 for te [0, a]. Further, ifn — oo,
then (13) gives b*(t) =0 for te [0, a].

Remark 1. If Assumption H, is satisfied, then the function b(f) =0
for te [0, a], is the only measurable solution of (12) in the class of functions
0 < b(t) < %(?), te [0, al.

Indeéed, we can prove by induction that
0<b(t)<<u,(t), te[0,a], n =0,1,...,

and if » - oo, then we have, in view of Lemma 1, b(f) = 0 for te [0, a].

Remark 2. Equation (2) has at most one solution in the class of
continuous functions satisfying the condition

iy @l < Lt, te[0,a], L=0,

if the function b(¢) = 0 is the only non-negative and measurable solution
of (12) fulfilling the condition b(t) < 2Lt, te [0, a], L > 0. In consequence,
we can suppose that the assumptions of Lemma 3 are fulfilled only for
f(t) < 2Lt, te [0, a], L3> 0.
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Remark 3. If Assumption H; and 1°-2° of Lemma 2 are satisfied,
and the function u#(f) =0, te[0,a], is the only non-negative, non-
decreasing and finite solution of the inequality

¢ 8
(14) w(t) <k() fu(@)dr+ Y LMugit), te[0,al,

where k(t) = D'k;(t), then equation (2) has at most one solution.

Remark 4. We can formulate a lemma analogous to Lemma 3 for
an equation of the delay type.

4. Continuous dependence of solutions on the right-hand side of
equation (2). We ask: what is the influence of the form of an equation
on the solution of that equation.

Let us consider the equation

71(8) 7(t)

15)  w) =W(t, [ w@ydr,..., [ w(x)de, w(8,(0), ..., w(8,(2)),

w(0) = O

where the vector function W and the funections y,(t), é;(1), ¢ =1, 2,...,7,

j=1,2,...,s have the same properties as F and a,(), 8;(t), as given
in Assumptlon H,.
Now we have

THEOREM 4. If Assumption H, is satisfied, and
1° y*(t) and w*(t) for te [0, a] are solutions of equations (2) and (15),
2° the sequence {z,(t)}, te [0, a], defined by the relations

2() = lly* @l +lw*@il, ~te[0,a],
ajt)

Zasa(t) = Zk(tfzn(r)dr+_Zli(nzn(ﬁi(t))w*(t), te [0, al,

n=0,1,...,
ay(t) ap(t)

v*(t)ﬁﬂp(t, [ wr@dr,..., [ wH(@)de, w(8,(), -.., w*{B, (1)) —

—wr ()], tel0,a]
has the limit Z(t) for te [0, a], S
then
(16) ly* (@) —w*(@)| < z2(t), te{0,a].
Proof. Let '
o(t) = [ly*(@X)—w*(), te[0,a].
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Thus for te [0, a] we have

ay(t) ap(l)
o) = |Ft, [ y*()dr, ..., [ v @ar, v (.0, e ¥ (Bu0)) —

ay(¢) at)

—F(t, [ w(@dr, ..., [ w(@)dr, w* (B,(1), ..., w*(B(0)) +
.:1(5) ﬂ(:-(i)

+F(, [ w*(;)dr,..., [ wr (@) e, w* (B,(1), .., w* (Bo(1)) — w0 (@)

ai(t) s
Zk(t f ly* () —w* (o)l dr + X L(0) fly* (B (1) —w* (B; )] +v* (1)

i=1
l“)

= Zk (t [ o(mar+ Zli(t)v(ﬁi(t)) + 0% (1).

Since
v(t) < lly* @+ llw* @) = 20(8), te[0,a],
this and the last inequality give
v(t) < =z,01), te[0,a], n=0,1,...,
by induction.

Inequality (16) is implied by the last one as n — oo.

Remark 5. If the functions z,(t), te[0,a], » = 0,1,..., are finite
and measurable and there exists a Lebesgue-integrable function I':
[0, a] = [0, o) such that

2, )< T(t), te[O,a], n=0,1,...,
then the limit function z(t), te [0, a] (see 2° of Theorem 4) is a finite and
measurable solution of the equation
a;(t)

(1) Zk,(tf r)dr+Zli(t)z(ﬂi(t))+zv*(t), te [0, al.

Remark 6. From the proof of Theorem 4 it follows that this theorem
is true if in the interval [0, a] there exists a non-negative and continuous
function m,(¢) satisfying the inequality

a;(t)
Zk(t f Mo (T dr+21(t M (B (1)) +max [v*(1), 2,(£)] < mq (1),
» te [0, a].

Now, in the class of measurable functions satisfying the condition
0 < u(?) < my(t), te [0, a], there exists a function m(t), te [0, a], being
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a solution of the equation
a(t)

i‘ki( f“(f d“er(t (B: (D) +v*(t) = u(t), te[0,a].

Put
a;(t)

My (1) = Zk(t)f m, () dr+ Zzu o (8: 1)) +o*(1),

for te{0,a], » = 0,1, ...
We see that

Zn(t)<mn(t), m')i,-i-l(t)gmn(t)’ te[O,a], {4 =0517"°1

and hence v(t) < m,(1), te[0,a], n = 0,1,... (v(t) is defined in the proof
of Theorem 4). From the last inequality we get m,(t) — m(t), te [0, a],
and v(?) < z(t) < m(?), te [0, a].

Remark 7. If the z(#) depends continuously on the »*(¢), then from
Theorem 4 we get a theorem on the continuous dependence of the solutions
of (2) on the right-hand side and on the initial conditions. This take place,
for example, if the condition of Remark 6 and inequality (12) hold.

From Theorem 4 for the equation of the delay type follows

THEOREM 5. If the assumptions of Theorem 4 (except 2°) and 1°-2°
of Lemma 2 are satisfied, and the sequence {z,(t)},

% (1) = sup {ly* ()l + )}, te[0,al,

o<t

Zapa(t) = k() fz (r)dr+21(t)z (B?) + sup v*(s),

o<<s<t

for te[0,a], n = 0,1, ..., has the limit z*(t), te [0, a], then
a7) ly* () —w*(@)|| < 2*(1), 1te[0,a],

and the functions z,(t), te [0, a], are non-decreasing.

Proof. It 18 easy to prove that functions z,(f) are non-decreasing
for te[0,a], » = 0,1, ... Further, we get

z,(1) < Z,(1), te[0,a],n =0,1,...,

by induction, where the sequence {z,(t)}, te[0, a], is defined in 2° of
Theorem 4. Hence v(t) < 2,(t), te[0,a], » = 0,1,... (v(l) is defined in
the proof of Theorem 4), and if » -> oo, then we have (17).

5. Discussion of equation (2) for the case k;() = 0. In this section
we consider equation (2) for the case I;(t) =0, te[0,2], ¢ =1,2,...,7,
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a(t)
1.e. when the rlght -hand side of equation (2) is independent of j’ y(t)dr,
0

1 =1,2,
For te [0 al, i, =1,2,...,8, under n = 0,1, ..., let

2@ =t, A& = BB, (1),
(18) . .
W) =1[s, Lo =1, (LB, (1),

where f;(t), L;(t), te[0,a], © =1,2,...,8, are with Assumption H,.
It is obvious that B "™(f)c [0, a] for te[0,a], 4, =1,2,...,8
% =01,...
Now we formulate lemmas by which Assumption H, is fulfilled.
LeEMMA 4 (cf. [1]). For any function v(u) > 0, ue [0, a], the condition

(19) 2 2‘ 21“ """ o (B MY < o, 10, al,

n=0 {p=1 "'n

!

8 necessary and sufficient for the equation

(20) u(t) = D' L(u(B®)+o), te[0,al,
=1

to have a non-negative solution u*(t), te [0, a].
If condition (19) is fulfilled, then the function

@1 @) = Z 2 Zz"' @6 W), e [0, al,

=0 10—1

28 a solution of equation (20), and

(22) lim ... MY ma(fe ) =0,  te[o,al.

There is no other solution of equation (20) in the class of functions
< u(t) < u(t), te [0,a].
Remark 8. If s =1, A(t) = 8,(8), 1(t) £1,(t), te[0,a], then the
sequences {f,(t)}, {l,.(t)} defined by (18) are of the form

Bo(t) =1, ﬂn+1(t) =ﬂ(ﬁn(t))) te[0,a], n =0,1, ...,

L) =1, T =[]ia®), tel0,a, n=0,1,..
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Now (21) and (22) are of the form

(21") a(t) = ML(0Ov(B.(1), tel0,al,
n=0
and
(22" Lim 7, (H)z{B,(1) = 0; te[0,al.
LeMmA 5. If |

17 o< ’Pl(t) ®2(t), te [0, a],
22 3 3. NI, w) < o, te [0, al,

n=0 'i0=l in=1
then the functions

[v « I

2 2 ..... in(t ’i"(t)) fO’)‘ le [O, a,], 7 = 1, 2,

n=0 1 ul

are mon-negative solutions of the equations

(23) o) = D L@ () + (1),  te[0,a], j =1,2,

respeclively, and

3

(24) lim ... Zz’,'g"'"”'"(tm.( o) =0,  te[0,a], i =1,2.

R0 p=1  d,=1

Moreover, the functions v;(t), te [0, al, ¢ = 1, 2, are the unique solutions
of (23) in the class of functions satisfying 0 < v(t) < B,(¢), te [0, a].

Proof. From Lemma 4 it follows that for ¢+ = 1 the function v, (¢),
te [0, a] is the unique solution of (23) in the class 0 < v (1) < 7,(t), te [0, a],
and, for ¢ = 2 the function v,(?), t¢ [0, a} is the unique solution of (23)
in the class 0 < v(t) < 7,(¢), te [0, a], and (24) is true. Further, we prove
that for ¢+ = 1 the function ¥,(f), te [0, a], is the unique solution of (23)
in the class 7,(2) < v(t) < B,(t), te [0, a]. We assume that for ¢ = 1 there
exists another solution z(t), te [0, @] of (23) in this class, such that z(f)
% U,(t), te [0, a]. Since any solutions 7;(t), te[0,al, 7 =1,2, of (23)
satisfy the conditions

(25) n(t)=S’Z.‘..Zlif"""’"(tm(i? """ (1) +

n=0ig=1

2 L O (), om=10,1,.,

‘m-f—l—:l
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then for te [0, a] we have

0 < 2(t)— (1) = Z 2, L9 ™ )z (B ™ (1) —

1m+l 1

\ | ﬂm+1 0 - "'m+l
- \ Z lm+1 ( m+1 )

1 tm1=1
z zm’;;"'"“ VB (B (1),
0=1! imy1=l

Now, if m — oo then we have z(f) =7,(t), te [0, a]. The resulting
contradiction proves the uniqueness of the solution w,(t), te [0, a] of
equation (23) in the class of functions 0 < v(f) < v,(1), te [0, a].

These considerations and Theorem 1 imply

THEOREM 6. If Assumption H, is satisfied, and

1° k,;(_t) =0 te[O al, i=1,2,...,r,

2° 2 2 2 ﬂn(t { i? ,,,, in(t))< o, te[0,a],

n= 010—'
where
v(t) = sup ||F(s, 0,...,0)], te [0, a],

o<Cest
then there exists a wunique solution ¥(t), #(0) = O, of equation (2) in the
interval [0, a] with the following properties:
) @I < w(t), te[0,eal],
17() —y. (Ol < u,(t), te[0,a], n =0,1,...,

w(h) =B = 3 2 Zl"’ oo (grw),  tel0, al,
U1 (1) = S’ Z 212""’%@)0( o)), te[0,a], n=0,1,...

im=1

Theorem 4 implies the following

THEOREM 7. If Assumption H, is satisfied, and
1° k() =0, tef[0,a],2=12,...,7,

2°  the functions y*(t) and w*(t), te [0, al, are solutions of equations
(2) and (15),

3° 2 2 z “n(ye(BY MY < +o0,  te [0, al,

where o
c(t) = max {[ly* (@)l + [ko* (@), v*(1)}, te[O0,a],
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and v*(t) is defined by condition 2° of Theorem 4, then

—wr ()| < 22 21"’ " (tyor (B0

lly*(
n=0 20=1

6. Discussion of the equation of the delay type for the case (¢
. Let for te [0, a],

""" ‘"(t)), - te [0, a].

l;(t), te [0, a], being non-negative constants
(26) ki(t) = ki, lj(t) = lj? kw l)
1 =1,2,...,7, ] =1,2,...,8

In this section we consider equation (2) when the functions a,(t)

B;(t) satisfy the conditions
0<a)<t, O0<[U<H, 0<p<l, tel0,al,

(27)
1 =1,2,...,7r, j=1,2,...,8

'E})

Now the sequences {f," "’i"(t)}, {l:;"""'i"(t)}, te [0,a], ¢, =1, 2,...
n =0,1,..., defined by (18) satisfy the relations

, n—1
rotmse] [ o, we ’”U)—“”’z, te [0, al,
r=0

(28)

where
if =0,

” Cr = ifn>1
r=0
We have

LEMMA 6. If te [0, 0o) and ae [0, 1], then

(29) fHe-1) <a(l—e )46t (¢ =expt).

Proof. Put
fla,t) =V —a(1—
Now for ae¢[0,1], te [0, o0) we have

af(a, 1) —1/ ta

e—et  for ae[0,1], te [0, o).

= (a—

and therefore
fla,t) < f(a, 0) = 0.

Lemma 7. If
« 00 s s 1 n—1
Ly é’ Z( Y g(t ” Bi) < o s continuous for

1° HZE
n=0 ig=1 1n=1 r=0

le [0, a],
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s

2l@<1

=1
<p<l,1=12,...,5,
4° the function g(t) is ccmtmuous, non-negative and non- dacreasmg n
the interval [0, a], and g(0) = 0, then

(a) there exists a wunique solution h*(t), B*(0) = A*(0+) = 0 of the

equation
-1

tn%
(30) u(t=—22 2(”1)] w(r)dr -
nom_. n=1 7=
P Z(ﬁz)(tﬁﬁi,), te10, ], B3 0;

this solution is continuous, non-negative and non-decreasing in the interval
£o, al, ,

(b) in the class of measurable functions satisfying the condition 0 < u(t)
< h* (1), te [0, al, the function h*(t) is the unique, continuous, non-negative
and non-decreasing solution of the equation

s ¢
(31)  w(t) = Y lu)+k [ u@dr+gt), te[0,a], k>0,

(c) in the class of measurable functions satisfying the condition 0 < u(t)
< B* (1), te [0, a], the function u(t) =0, te [0, a], is the unique solution of
the inequality

s 4
(32) u(t) < Zliu(ﬂit)+kfu(r)dr, te[0,a], k> 0.
i=1 0
Proof. Let A be the operator defined by the right-hand side of
equation (30), and

llu|l« = max e H|u(t)] for ueC[0,a],
C0Li<a ’

s
where L > k(1L— 1,8}, and C[0, a] denotes the class of continuous
i=1

functions in [0, a].

We get
1 8 s n—1 ' 8
-y n
" .}1 e El “ ol li,.ﬁi,.) = (El liﬁi) y n=0, 1_7 “eey
= = r= 1=

by induction.

4 — Annales Polonici Mathematiel XXVI
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Now from Lemma 6, for «,ze¢ C[0, a], we have

|[Au — Az]|x
n—1
. T By
k SRR
= —max |¢ L I. [u(7)—2(7)]e~ L &
s L r
<i<a Am0 ig=1 = - !
n—1
t IT B;
& SRR Y =7
< — lu—2] ZZ 2(’ I l; ) maxe f el dr
§ n=90 3’0= —l r=0 <i<a u
1 n--1
k il 2 - Lt[ﬂﬁi,.—l]
=—L”u_ZH*ZZ“ Z(lll)max{e r=0 —e
8 n=0 =1 .L —1 r=0 <i<a
% b d n—1
<—||%—z|l*2 M 2(’ I I )max (l Iﬁ,-)(l—e‘”)]
sL n=0 10&{ =l r=0 o<i<a T

k n
=Ia—e-“)nu—zn*;’(gliﬂi) < (L—6L%) [u—2s.

Since 1 —e¢2*< 1, then by the well-known Banach theorem we
infer that equation (30) has a unique solution #*(¢) in the interval [0, a].
This solution is the limit of the uniformly convergent sequence {z,(?)}
of the continuous functions of the form

»zo(t) =0, te [0, a],
Zap1(t) = Az, (1), te[0,a], »n =0,1,...,

and therefore it is continuous, non-negative and non-decreasing because
2,(t) are such. This completes the proof of part (a).

We prove that the function h*(?), te [0, a], satisfies equation (31).
Indeed, we have

RO S 10— Y16 kfh*(p ap—g(1)

t=1

‘ﬁz 17 hi,

v 23S S S [ s

n=0 10 'tn_l r=90

2303 S SN[ Tsl [ ] )-

n= 010—
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n—

sz 2(”’) f %h*(r)mp_
[ 33 S Tu)ele [Toc)on-st0

Because h*(t), te [0, a], is the unique solutlon of (30) we have

n—1
t H Bir

wo-ro-t 35 3([) [ v

n=1 10—1

___th (1) dr—l—kfh* ) dv —

i9g=1 0

PP Z(Hl Jal! Hﬂ»)“ZM—

?«0— ?«0—1
b H ﬁ@‘i‘

s na-1 r=0

E[S S ST [ s

n=0 ig=1 tp=1 r=0
s

Further, by changing the sum index, we get
n—1
» IT ﬂz,.

R(t)=kf[h* __ZZ Z(nz)f 1 () dr —

n=0 1.0—- 'l«n—l =0

n—1

23N ([ ulelo [ ] o] <o
n=0 zo—l zn—l r=0 r=0

thus A*(t), te [0, a], is a solution of equation (31).

We prove that any measurable solution «(t), te [0, ], of equation (31)
satisfying the condition 0 < w(t) < A*(f), te [0, a], is a solution of equation
(30).

Let u,(t), te [0, a], be a measurable solution of equation (31) satisfying
the condition 0 << uy(f) < h*(t), te [0, a]. Put

t
?1(t) =k [ uo(r)dv+g(1).
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Now for te [0, a] we have

(33) ’U(t) — 2 2 Z lto ...,zn(t (Pl(ﬁ‘&o ""in(t))

n=0 ip=1
’Hﬂu-
k (= <] 8 8 n—1 r=0
=72 2 2Ju) [ wmart
n=0 ig=1  ip=1 r=0 0
1 oo s s n—1 n-—1
—&—?2 ( l,-r)g(tn ﬁz’,) = Awu,
n=0 {p=1 ip=1 7=0
< =% maxjuy(0 PIPEPY (ﬂll,ﬂ,,) +H®)
oo 8
= hamax ju (1) 2(_ LBy)" + H (1) < oo,

and from Lemma 4 it follows that the equation
8 ¢
(34)  w(t) = D Lu(Bt)+u(1), tel0,al, with i(t) =k [uy(v)dr+g(1)
=1 0

has a unique solution in the class 0 < u(f) < Auy, Auy, < h*(¢), and this
solution is the function v () = Awu,.
Further, we put

¢
va(t) =k [ 1 (7)dr +g(t).

It is obvious that equation (34) with ¢,(?) instead of ¢,(f) has also
a unique solution in the ‘class 0 < u(t) < Ah* = A"

Now from Lemma 5 it follows that the function v(f) = Awu, is the
unique solution of (34) in the class 0 < () < h*(f), te [0, a].

Since u4(?) is also solution of (34) in the class 0 < u(t) < h* (1), te [0, al,
we have v(t) = u,(t), te [0, a]. Hence u,(t), te [0, a], is as olution of (30)
and therefore it is continuous.

Since each measurable solution of (31) in the class 0 < u(t) < h*(2),
te [0, a], is a solution of (30), the function 2*(t), te [0, a], is the unique
solution of (30), and 2*(¢), t ¢ [0, a], satisfies equation (31), then the function
1*(t), te [0, a], is the unique solution of (31). This completes the proof
of part (b). :

Now we prove that the function u(t) =0, te [0, a], is the unique
solution of the equation

8 {
(35) w(t) = Y lu(B)+k [w()dr, te[0,al,

satisfying the condition 0 < u(t) < h*(?), te [0, a].
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Let uo(t) be a measurable solution of (35) fulfilling this condition.
Putting in Lemma 5

4 1
P1(t) =k [uo()dr, ga(t) =k [ uo(v)dr+g(t), te[0,al,

0

we see that the equation

u(t) = D LuBd) +e.(0), te[0,a]

has a unique solution in the class of functions 0 < u(t) < h*(2), te [0, a].

The uniqueness of the solution of equation (35) in the class of
functions 0 < u(t) < h*(t), te [0, a], can be obtained by a similar argument
to that used in proving (b). Hence we get u,(tf) = 0, te [0, a].

Now (c¢) is implied by Remark 1.

Thus the proof of Lemma 7 is completed.

These considerations and Theorem 2 imply

THEOREM 8. If Assumption H, is satlisfied, and
1°  conditions (26) and (27) are satisfied

o dt o S =
2 HH=2X X .- \l(nlﬁ,Jg(t H B,) < o0, te[0,a],
n=0 3= "n— r=0
where g(t) = sup ||F(s, O, ..., )], and H(t) is continuous for te [0, a],

ocs<t
3° 0<5’liﬂi< 1,
4° 0<1E:<1,i=1,2,...,s,
5° k= j‘ki,

hen there emzsts a unique and continuous solution y(t), (0) = O, of equation
2) in th e interval [0, a] with the following properties:

7@ < h*(t), te[0,al,
17(8) ~ Y < By (8), te[0,a], n =0,1,...,

where ho(t) = h*(t), te [0, a), h*(t) is defined in Lemma 7,
S

i
hua @) = ¥ [ Bo(z)dr+ X Lk (Bit), te[0,a], m=0,1,...
0 i=1

Further, Theorem 3, Lemma 3 and Remark 2 imply

THEOREM 9. If the assumptions of Theorem 8 (except 2°) are satisfied,
then equation (2) has at most one solution y(), te [0, a], in the class |ly(t)|| < L,
te[0,a], L= 0.
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Proof. Since for any measurable function 0 < f(¢) < 2Lt, te [0, a],
L> 0, we have

i(zm) <o

it follows from Lemma 7 that Assumptlon Hjis fulfilled with [F(t, 0,...,0)|
replaced by f(t). Now the assertion of Theorem 9 implies, by Remark 2,
Lemma 3 with H, instead of H; and Theorem 3.

Theorem 5 implies the following

THEOREM 10. If the assumptions of Theorem 8 (except 2°), are salisfied
and if

1° the functions y*(t) and w*(t), te [0, a], are solutions of equations (2)
and (15),
o S 8 n—1
20 H@)Z 2 Z{"-Z- (I lzr)w( B,)< oo, te[0,al,

1'_.
where

p(?) = max{sup ([ly*($)ll+ lw*(s)l], sup v*(s)}, 1[0, al,

o<<a<ct o<s<t
and v*(t) is defined by condilion 2° of Theorem 4, and H (l) is continuous
in [0, a],
then

(a) there exists a continuous, non-negative and non-decreasing solution
Z(t), te [0, a] of the equatzon

2(f) = kfz(r)dwzz,-z(ﬂit)w(t), te [0, al,

(b) the seqﬁence {z,(t)}, te [0, a],
éo(t) =z(t), te[0,a],

: 4 8
Zapa(t) = k [Z () dr+ D L7, (Bt) 4+ sup v*(s), 1e[0,a], n =0,1,...,
0 1=1

o<s<t
has the limit function 2*(t) in the interval [0, a), and the function z*(t) is
continuous, non-negative and non-decreasing, z*(1) < z(t), te [0, a],
(c) the estimation
ly* (@) —w* (@)l < 2*(8), 1[0, a]
holds true. ,
Remark 9. Condition 2° of Theorem 8 is satisfied if

(36) 1F(, O ..., 0)| < Lyt, te[0,a], L, > 0.
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If we assume that the function F satisfies a Lipschifz condition
with respect to f, then (36) is fulfilled.

Remark 10. If
1
max liﬂi <
1<i<s s
then condition 3° of Theorem 8 holds.

Remark 11. Equation (1) was considered in paper [4]. In this paper
it is assumed that the function F satisfies a Lipschitz condition with
respect to all variables. The functions e;(f) and B;(t) for te [0, a], are of
the form ’ _

a(t) =1, a @) =t—4,1), 4;t)=0, =1,2,..,s,
Bty =t—A;(t), 4;H)=0, j=1,2,...,s.

The sufficient condition for the existence of a solution of (1) in some
interval [0, ¢), e << @ given in [4] is of the form

. 1
(37) max I;(1—uf) < =,
1<i<s . s .
where
. A:(2)— A (x
= inf lim 2O D o061, 0 =1,2, .0,
0<z<é ;57 R—T

We prove that under the assumptions of Theorem 1 [4] the assump-
tions of Theorem 8 are satisfied. From Remark 9 it follows that condi-
tion 2° is satisfied if (36) holds. Since

A;(t)=0, te[0,a], i=1,2,...,8,

we have ¢;(t) <1, te[0,a], i = 1,2, ..., 8+ 1. Defining
1 for t =0,

A(t) =1 A1)

for 0<t<a,
and putting
y; = Inf A;(1), t=1,2,...,8,
<i<a
we see that
_ as )
0<B(t) =t—A,(t) <t(L—y))=pit, 1e[0,a],1=1,2,...,5.
Now our condition has the form

s
(38) DLa—y)<1 or maxl(l—y)<1]s.
=1

1<i<s
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Since y; > ui, i =1,2,...,8, it follows that condition (37) implies
(38). The following example proves that condition (38) is weaker than (87).
Example. We take in Remark 11

A 4;(t) = sint, te[0,3=], ¢ =1,2,...,s.
By Remark 11 we have

pis = inf cosz =%, i=1,2,...,s,
0<z<n/3
, 3Vs
ye = Inf 4 (1) = » 1=1,2,...,s,
o<t<n/3 27
on—3V3 .
ﬁi=(1—7’i)=—2 y v =1,2,...,8.
kg

Now conditions (37) and (38) are of the form

(37" tmax 1, < 1/s,
1<i<s

and

2 —3V3 2t —3V3 1
(38") i——Z‘li< 1. or jmmaxl,i<_.

27 e 27 1<i<8 s
Since
2r—3V3 1 A
27 E’

Theorem 8 gives a better result than that given by Theorem 1 [4].

Remark 12. Note that our result can be applied to the equations
with '
0 for t =0,
4;(t) = . j=1,2,...,8,

.1
smT' for 0<t<a,

but the result of paper [4] does not hold because in this case
pp = —oo
for any £¢ (0, a].
Remark 13. Assumption H, is fulfilled if

ZT’E£+ZS,'E< 1,
i=1 i=1

where k; = maxk;(t), o; = maxq,(?), {; = maxl(t), te[0,al,¢ =1,2,...,7,
j=1,2,...,8 and from Theorem 1 we get the result contained in
Theorem 4 of paper [3].
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