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'Remarks on the concept of mean value

by K. UrRBANIK (Wroclaw)

Abstract. The mean value of probability measures can be introduced in terms
of the centering in mean. Replacing the last notion by the centering in probability
we get what we call the substitute of the mean value. Our aim is to discuss the relation-
ship between these two concepts. Moreover, we define a more general concept — the
convex. mean value.

In this paper we are concerned with the possibility of an extension
of the concept of mean value for probability distributions. The necessity
of such a generalization arises in the prediction theory when one deals
with probability distributions without finite moments. In the first two
sections we give a short survey of some fundamental facts about the sub-
stitute of the mean value introduced in [2]. In the third section we define
a more general concept that of — convex mean value — and we discuss
the relation between mean value, the substitute of the mean value and
convex mean value.

1. Preliminary notions. Let P be the set of all probability measures
on the real line, i.e. the set of all normalized Borel measures. Let £ be
the subset of B consisting of all probability measures P with finite mean

value I(P) = [¢P(dx). Further, up and ¢gp will denote the median and

the characteristic function of P, respectively.

The concept of mean value for probability measures from £ can be
also introduced in the following way, which, of course, is not the simplest
one. Consider a sequence X,, X,,... of independent random variables
with the same probability distribution P from £. Throughout this paper
we identify random variables which are equal with probability 1. Let £»
be the linear space generated by the random variables X;, X,,... and
closed under the convergence in mean. It is clear that the space Zp is
uniquely determined up to an obvious isomorphism by the probability
measure P. We say that the probability measure P is centered in mean
if and only if 0 is the only constant random variable belonging to the
space Zp. Given a real number ¢, we denote by P, the shifted probability
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measure, i.e. P,(E) = P(E+c¢), where E4-¢ = {x+¢: ze E}. It is very
easy to verify that ¢ is the mean value of P if and only if P, is centered
in mean. This property can be regarded as a definition of the mean value.
In an analogous way we can define a substitute of the mean value (see [2]).

2. A substitute of mean value. Consider an arbitrary probability
measure P from B. Let X,, X,,... be a sequence of independent random
variables with the same probability distribution P. Let .#p be the linear
space generated by the random variables X,, X,,... and closed under
the convergence in probability. It is clear that the space .#p is uniquely
determined up to an obvious isomorphism by the probability measure P.
We say that P is centered in probability if and only if 0 is the only constant
random variable belonging to #p.

The following statement was proved in [2]: for each probability meas-
ure P from P one of the following three cases holds:

(1) there exists exactly one value ¢ for which P, is ceniered in proba-
bility,

(1) for all ¢ the probability measures P, are centered in probability,

(iii) for all ¢ the probability measures P, are not centered in probability.

Let us denote by © the set of all probability measures for which
case (i) holds. Further, by s(P) we shall denote the value of ¢ for which P,
is centered in probability. The number s(P) is called the substitute of the
mean value. '

Lemma 2.1. If Pe L, then for every real number ¢ + 1(P) the probability
measure P, is mot centered in probability.

Proof. Since

T
lim (,;Pc+ | ch(deerc)) = UP)—¢
-7

)

and

T—>o0

. Foa
lim T f mPc(d$+‘uPc) =O,

we have, by Theorem 2.1 in [2], the assertion of the lemma.

THEOREM 2.1. If P has a finite second moment, then Pe NS and
I{P) = s(P).

Proof. It was proved in [2] (Theorem 2.2) that a probability measure
with a finite second moment centered in mean is also centered in proba-
‘bility. Hence it follows that Pyp is centered in probability. By Lemma 2.1
for every ¢ # I(P) the probability measure P, is not centered in proba-
bility.- Consequently, P has the substitute of the mean value and s(P)
= [(P), which completes the proof.
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THEOREM 2.2. 2\G # 0.
Proof. Put

! — f du
- J u?logiu
and

du
ulog?u ’

a
OB =1 B+y |

En[e,o0)

where J, denotes the probability measure concentrated at the point b.

It is evident that Qe £ and 1(Q) = 0. On the other hand, it was proved

in [2] (p. 68) that @ is not centered in probability. Moreover, by Lemma 2.1,

for every ¢ # 0 the probability measure @, is not centered in probability.

Hence it follows that @ does not belong to ©. The theorem is thus proved.
THEOREM 2.3. S\ ¢ # @.

Proof. Put

o0

b1 —f du
_e ullogu

R(E) =_li f du +£ f du

u? 2 !
2 E~[e, ) w logu 2 (—E)n[e, ) v logu

and

where —E = {—x: ve E}. The measure R being symmetric, is centered
in probability. Given ¢ 7 0, we have the relation

T
pr,+ [ aRo(dw+pg) = —o
-T
and

2 ~ dz
T f T2 4 g2 Rc(dm"i‘.”Rc) =bT! (1"2-|—m’)logw :

Since for T > ¢°

logeT

dx < logT
(T2 +2?)loge = T2
and

(-]

dz T
f (T2 + x?)log < 2T logT’
o g glog
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202 K. Urbanik

we infer that
(-3 $’
ljm T -_!; Ta_l_w’ Rc(dw-l_FRc)
>0 T = 0.

tr,+ _g' xR (dz+ pg,)

Thus, by Theorem 2.1 in [2], for all ¢ 5 0 the measures R, are not
centered in probability. In other words, Be¢S and s(R) = 0. Finally,
we have the evident relation R¢ £ which completes the proof.

3. Convex mean value. Let Pe and let X,, X, ,.. be a sequence
of independent random variables with the same probability distribution P.
Let 5#p be the convex hull generated by X,, X,,... and closed under
the convergence in probability. It is evident that s, is uniquely deter-
mined up to an obvious isomorphism by the probability measure P.
-Let €p be the subset of 5#p consisting of all constant random variables.
Evidently, the set ¥p is closed and convex and, consequently, ean be
regarded as a subinterval of the real line. We shall prove that every closed
subinterval of the real line can be obtained in this way. We start with
some lemmas.

LeEMMA 3.1. Suppose that there exisits a subsequence n, < ny, < ... of
integers for which

hm'n,,f 2+ ——— FPldz+pup) =0

g
lim fwP(dw+yp) =0—lp.

k—oo _ e

Then ce€p.

Proof. Setting Y, = . ZX,, where X,, X,,... generate the set 5#p

k _1=1
we have Y e #p (kK = 1,2, ...). Moreover, by Feller Theorem (Theorem 2
in [1]), the sequence Y,, Yz, ... tends to ¢ in probability. Thus ce ¥p.

CoroLLARY. If

Py 3
im T | -
In 7 [ g P ta) =
7
then the set €p contains all limit points of {up+ [ xP(dx+ pp)} when T—oo.
-7
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LEMMA 3.2. Setting

T
ap = }%(/“P"' _4: wP(dm+ﬂP))

and
T
bp = lim (up+ [ oP(dw+ pp))
T—o00 iy

we have the inclusion €p < [ap, bpl.

Proof. For probability measures P concentrated at a single point,
say ¢, we have ¥p = {¢} and ap = bp = ¢, which implies the assertion
of the Lemma.

Now suppose that P -is no’E: concentrated at a single point. Given
. “ :

¢e €p, we can find a sequence {3 a;, X;} of convex combinations of gen-
. 4

erators in #, tending to ¢ in probability. Since the generators X,, X,, ...
are not constant, we infer that

lim max a; =0.

In other words, the random variables {a;,X;} (j =1,2,..., ky;
n =1,2,...) form a uniformly infinitesimal triangular array. Conse-
quently, by Theorem 1 in [1],

kﬂ
limZa,-,, (yp-}— f ayP(da;+,uP)) =¢
imej=1 Ia:lsaj;l
whence the inequalities ap < ¢ < bp follow. The Lemma is thus proved.

THEOREM 3.1. Hach closed subinterval of the real line is equal to the
set €p for a certain probability measure P.

Proof. It is very easy to verify that each interval (empty or non-
empty, bounded or unbounded) coinsides with the set of all limit points

n
of the sequence {q > w;/j} for suitably chosen u,, u,,... with «; = +1.
j=1

Here g denotes the number }(3 1/ke®)™'. Put my =0, ;, = ue”
k=1
(k=1,2,...), po =%, pr = g/ké® (k =1,2,...) and
P(E)= D p.

Tyl
Of course, up = 0. Since, by a simple calculation,

e a

0 k
(3-1) T ,; I+ S a(D)’
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where a is a constant and the integer n(T) is defined by the condition
n(T)! <logT < (n(T)+1)!, we have the relation

lm T f P(dz) = 0.
fm T [ g P
Moreover,
n(T)

f 2P (dz) = qZ Y

which, by corollary to Lemma 3.1 and by Lemma 3.2, shows that the
set €p coincides with the interval in question. The theorem is thus proved.

Our aim is to define a numerical constant associated with probability
measures which could be regarded as a simultaneous generalization of
both notions — the mean value and the substitute of the mean value.
Let € be the set of all probability measures P for which ¥, is a one-point

set. The only element of €, will be denoted by ¢(P) and will be called
the convex mean value of P.

THEOREM 3.2. & = € and I(P) = ¢(P) for Pe L.
Proof Given Pe¢ £, we have, by the ergodic theorem, the conver-

gence —ZX,»Z(P) in probability. Here X,, X,,... denote the gener-

ators of pr Consequently, {(P)e €p. On the other hand ap = bp = I(P),
which, by Lemma 3.2, gives the formula €, = {I(P)}. The theorem is
thus proved. _

THEOREM 3.3. © c @ and s(P) = ¢(P) for PeS.

Proof. Let PeS. Given b # s(P), we have the relation 1le .#p.
Consequently, by Remark 2.1 in [2], there exist a sequence n; < ny, < ...

of integers and a sequence a,, a,, ... of real numbers such that
ng

(3.2) @ D) (X;—b)—~1
i=1

in probability. Here X,, X,, ... denote the generators of .#p. Of course,
without loss of generality we may assume that the sequence {a,n,} has
a finite or infinite limit, say g. If ¢ is infinite, then (3.2) yields the relation

_Z(Xd_'gp))—' "

Z (X; —b) +b—s(P)— b—s(P)
in probability. Further, the equation g = 0 and (3.2) imply the relation

By

ny ng
o D) (X;—3(P)) = @ D) (X;—b) + am (b —s(P)) > 1
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in probability. Consequently, inlboth cases the space #p o(P) would con-
tain a non-zero constant random variable which contradicts the defi-
nition of the quantity s(P). Thus 0 < |g| < oo and, consequently, by

g
1.
(3.2) — D (X;—b) >g”"
Ny 4
i=1
in probability. Hence we get the relation

g
1
—2(X,-—s(P))—>g“+b—s(P).
M =
Since 0 is the only constant random variable in .#p ., , we have the
formula g7'4b—s(P) = 0. Consequently,
n
1
L7
i=1
in probability which shows that s(P)e €p. On the other hand, #p_,,
contains exactly one constant random variable and, consequently, €p o)
is at most a one-point set. Hence it follows that €p is also at most a one-
-point set. This yields the equality €p = {s(P)}. The theorem is thus
proved. '

THEOREM 3.4. C\ (QUG) # O.
Proof. We define an auxiliary sequence v,, v, ... Tecursively. Put

v, = 1. Further, if v,, v, ..., v, are already defined, then we put v,,, = 1
n
(7] ..
whenever 2}—’ < (n+1)"* and »,,, = —1 in the remaining case.
j=1

Sety, = 0,4, = v,6® (K =1,2,...),p0 = },p; = q/ke® (k=1,2,...),
where ¢ =%( 3 1/ke®)~! and
=1

P(E) = ) px-

YpeE
Evidently, up = 0 and P¢ 2. Moreover, by (3.1), we get the inequality

(3.3) T f ”_p(de) < —2
' o T2+ 2 = n(T)’
where a is a constant and the integer n(T) is defined by the condition
n(T)! <logT < (n(T)+1)!
It is very easy to prove, for instance by induection with respeet to n,
the inequalities
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Since
T nm

[ aPiam) =g D',

=T = J
we have the inequality

3 g
_ q

(3.4) . l oP(d) = = Ig o

Hence, in particular, it follows that

T
lim [ «P(ds) =0,
T p

which by (3.3) and Lemmas 3.1 and 3.2 yields the equality €p = {0}.
Thus Pe € and ¢(P) = 0. Moreover, for every b, Cp, = {b}. Consequently,
for every b # 0 the measure P, is not centered in probability. Further,
by (3.3) and (3.4),
T__L iz L(da)
lim 7 =0
T-»00 { &P (dx)

which, by Theorem 2.1 in [2] proves that P itself is not centered in prob-
ability. Thus P¢ S, which completes the proof.
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