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Theorems analogous to those of Weierstrass
and Mittag-Lelfler for harmonic functions of » variables *

by ALAN 8. CovER (Arizona)

1. Introduction. Let E" be the space of n real variables @, ..., @,
D a domain, and 2 = (#,, ..., %) & point of E®, In this paper we con-
sider real or complex valued harmonic functions, w(w), defined on ‘D
and in particular functions called characteristic harmonic functions
which are defined below. The well known theorems of Weierstrass and
Mittag-Leffler concerning entire and meromorphic functions, f(z), can
be extended to harmonic functions, #(x), of » real variables. The author
wishes to acknowledge the useful suggestions of F. Leja.

The results of this paper can be generalized to solutions, w(z), of
elliptic differential equations

n 32
U
2 =0
with constant coefficients which can be transformed into the Laplacian
Adu by a linear transformation.

2. Characteristic harmonic functions. A real or complex val:
ued harmonic function, w(x), defined in a domain D C F" ig called
a characteristic harmonic function or more briefly, a ¢.h. function in D,
if for every function f(2) of a complex variable # and which iy analytic
in the set u(D) the composed function

(1) F (o) = flu(z)]
is also harmonic in D.

LeMMA 1. A necessary and sufficient condition that ¢ harmonic fune-
tion wu(@), in a domain D be o.h. is that in D w(x) satisfies the equation

® = (2 o,

=1

* Most of the results of this paper are contained in the author’s doctoral
thesis, The Pennsylvania State University, June 1964.
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Proof. The condition is necessary, for suppose that «(z) is e¢.h. in D.
Then since the function in (1) is harmonic,

(3) AF = f' Au+f"6u

and Av = 0, condition (2) follows since f is arbitrary.
Cond.ltlon (2) is suﬁlclent gince if A4 =0 and du= 0 then it fol-

lows from (3) that AF = 0.
Let § be any n—2 dimensional hyperplane of space E". It can al-

ways be represented by two linear equations
(4) a1m;+---+@nmn+ao= 0, ﬁ1w1+'--+ﬂn%+ﬂq= 0

where the coefficients are real and satisfy the conditions

. n n n
(6) 2a§=2ﬂ§=1 and 20151:0.
Fl =1 =l

It is clear that the equations (4) can be replaced by the single
equation with complex coefficients, namely

(6) us(@) = Za,m,+ g, =0 where @y = ax-tifx.

Je=1
We note that the function us(#) is harmonic in E", satisfies equation (2)
and is zero only on the hyperplane 8. We call this function the linear
¢.h. function of 8. If a, =0, 8 contains the origin of the coordinates.

LEMMA 2. If f(2) i3 an entire function which is zero only at a finite
or infinile number of points, 2,, 2,, ... and ug(x) is the linear o.h. function
defined by (6) where a, = 0, then

F(z) = flus()]
8 @& 0.h. function in E" which is zero only on the set E = | ) Sy, where Sy,
A

k=1,2, .., is the hyperplane parallel to S whioh is defined by the equation

n

1
2‘ A3y = 2 .
el

Proof. From (3)
AF = f'Aug+f"bug

and since us(@) is c.h., we have that AF = 0, hence F is harmonic in E™.
Furthermore, 8F = (f')?0us = 0, hence F is c.h. and is zero only if us(x)
= 2%, that is, on the hyperplanes S, k=1, 2, .., which is what we
need to show.



Theorems analogous to those of Woierstrasse and Mittag-Leffer 289

We denote by C" the space of n complex variables #, ..., %, Where
2; = wy+14y;, and denote by z the point in O™ with the coordinates
21y ey 2n. The space E" is a real hyperplane of » dimensions of O".

Let 8 be a hyperplane given by (6), N a neighborhood of 8 in E",
and h(x) a harmonic function in the domain N\S. We have ([1]) that
h(x) can be (i) developed in a power series of real variables @, ..., ¥
in some neighborhood of any point of z°¢ N\S and (ii) analytically
continued to complex variables to the function k(2) = (2, ..., #n) anal-
ytic in a domain D\S, where D is a neighborhood of § in 0" and D
contains the subset of N of B". Let us(z) be the analogous continuation
of us(z). '

DEFINITION. If there exists an integer m 540 such that for every
point # e 8§ the limit

Hm 7 (2)[us(2)]™" = q(2),
2T
(26 D\ S) )

exists, is finite, and non-zero on S, then we say that h(®) has a-char-
acteristic zero of order m, if m > 0, a oharacteristic pole of order —m,
if m <O.

On the other hand, we say that two harmonic functions A,(z) and
hy(2), having poles on a hyperplane §, have the same principal parts
if for every point @ ¢ § the limit :

lm [hy(e)— ha(2)] = a(@)
] -
" (ze D\\S)
exists, is finite, and the extension of the difference h,(w)— h,(z) by this
limit is harmonic on &§. ‘

3. Theorem analogues to those of Weierstrass and Mittag-
Leffler. Let

(8) 81y By o

be a finite or infinite sequence of n— 2 dimensional hyperplanes of E"
not having any points in common and #; a positive integer correspond-
ing to Sk for k=1, 2, ... If the sequence (8) is infinite then the.distance
of 8y to the origin of the coordinates tends to infimlty with .

THEOREM 1. If the hyperplanes (8) are parallel then there ewists a har-
monic function w(w) in E™ having a characteristic zero of order nx on each

8k, k=1,2,... and clsewhere is non-zero.
n

Proof. Let us(z) == D a;a; be a linear c.b. function which is zero
==l

on the hyperplane, §, parallel to each S and containing the origin of
the coordinate system. Then S; is given by an equation of the form
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us(v) = 2, where 2z is a complex number which tends to infinity as k
approaches infinity if the sequence (8) is not finite.

Let f(z) be an entire function having a zero of order =; at # for
k=1,2,.. and only these zeros. From Lemma 2 the function w(z)
= flus(®)] is ¢.h. in E®, has a characteristic zero of order n; on § for
k=1,2,.., and is otherwise non-zero.

COROLLARY. If w(®) and v(x) are two functions which are harmonic
in E" and satisfy the conditions of Theorem 1, then

(9) v(2) = e*Dw(w),

where h(z) is an analytio funclion of the variables @1y vy T in B and
satisfies the differential equation

‘ oh ow

(10) w (@) [Ah+ 8h] + 2 ,2 T

Conversely, if w(x) satisfies the conditions of Theorem 1 and h(w) is
analytio in E"™ and satisfies (10), then the fumction (9) satisfies the con-
ditions of Theorem 1.

Proof. For let w(z) and v(2), respectively, be the analytic conti-
nuations of w(x) and v(») in a domain D D E" of the space C". In a nelgh-
borhood of each §; the functions

w(@)[us ()] ™™, (@) [wse)] ™

are non-zero and analytic hence the quotient v(2)/w(2) is a non-zero
analytic function -of the variables 2, ...,2, in some neighborhood of
each point of E". Consequently, k(z) = logo(2)/w(2) is an analytic func-
tion in @ domain D* contained in D and containing E" and relation (9)
follows. Since Av= 4(¢*w) =0, relation (10) holds.

Conversely, if k() is a,na,lytlc in E" and satisfies (10) then the func-
tion defined in (9) is harmonic in B" since

oh 6w}

(11) Av = eh{Aw+w(Ah+ 8h) 2 Z&m -

and has the same Zeros as w(®).
Remark 1. The function w(®x) is c.h. since dw = f"?dus(w) = 0.
Since

(12) oy = gZh{w+w (w&h‘+ 2'2":% : 512)},
7

= dxy Sy

it follows from (11) that if A(z) satisfies (10) and is harmonic then »(»)
is also e.h. because if 42 = 0 then év = 0.
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THEOREM 2. For every sequence of disjoint hyperplanes (8), parallel
or not, such that if the sequence is not finite their distance from the origin
tends to infinity and for any sequence of positive integers my there ewisis
a function, M (z), which is harmonio in E™ except on the hyperplanes (8)
and on these hyperplancs M (x) has a characteristio pole of order mx on Sk,
E=1,2,..

Proof. Let
(13) us@) = D aPopr—0, k1,3,

J=1

which is the equation of the hyperplane 8y where

n
e o = o, 2 o S, S =o
fo

f—l f-l

and # is a complex number which tends to infinity with k—»o0. We can
assume that 2z =0 for & >». In the ball

n
(15) Be={o| D <1p21af), k>,

J=1

e see from (14) that ux(z)= Z ai’w; satisfies the inequality

< ( ""m,) +( Z By < ( Doty Zﬁ"‘")( Z‘ ) < Ja.

Since for k¥ >v and x ¢ By we have

us:(m) ’Mk(w)—l-zk zl 2’ ( ¥ “’))

Hence, for & >» and any number Ay,

A N oM, o B,

[ws (m " %=

where ¢ are constants and the series converges uniformly in every

closed set contained in By.
Let B} be the closed ball {# | J, #7 < 1/4|2x|*}. There exists a positive
integer Ny such that

Ny
Ay ) P
— — >
(s, (@)™ 2, uia)

D=0

X
(%) for zeBj.

(17)
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Set
Ng
Gu(@) = D OPup(@f it k=v and  Gu(@) =0 it k<v,

p=0

Therefore, the series

(18) Mim) = j {[%sj(l:")]"k— G"(”)}

k=0

converges uniformly in every closed bounded set which is disjoint from
\UBx. For every k the kth term of (18) is a harmonic function in E™\ S,
since it is an analytic function of the c.h. function ws,(«). Hence, M (z)
is a harmonic function in E™\|_J Sk. Moreover, if the Ay’s are different
from zero then M(x) has a characteristic pole of order », on each S
which proves the theorem.

CorOLLARY., If two harmonic functions M (v) and N (x) satisfy the
conditions of Theorem 2 and have the same principal parts on each Sy, then

N(z) = M(w)+ h(@)

where h(x) 18 a harmonic function in all of the space E™.

Indeed, the difference N (z)— M (») is harmonic on Si follows from
the definition of principal parts, hence, the function A(®) is harmonie
in all of the space E™
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