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Abstract. Let f: B=R" be a K-quasi-conformal mapping of the unit ball B.

The logarithmic capacity of a measure u> 0 is given as Oy(E) = [mfI (u)1~
where I,(u) J u (z)du(z) is the energy inlegral,

W@ = [log—— duw)
RN

is the logarithmio potential and the infimum is taken over all measures x> 0 with
total mass 1 and the support §,<E. Let D*= f(B), let 3D* be the boundary of D
and E’ the set of points of the unit sphere § corresponding to points of dD* acces-
gible from D* by rectifiable arcs. We try to give an answer to the question whether
E, = S—F’ is of logarithmic capacity zero or not.

Introduction. D. Storvick proposed that I should prove the following
conjecture of F. W. Gehring:

- If f: B=D* is a K-quasi-conformal mapping (K —go) of the unit
ball B onto the domain D*, where B and .D* are contained in the Eucli--
dean n-space R", and if E'*is the set of points of the boundary d.D* of D*
accessible by rectifiable arcs, E’ is the corresponding set on § = dB and
E, = 8—F’, then the logarithmic capacity of E, is zero..

This is true for n = 2 (A. J. Jenkins [10], J. A. Lohwater [12], [13]
and A. Mori [14]).

We begin with some historical considerations. M. O. Reade [15]
announced at the 532-nd meeting of the Amer. Math. Soc. (held at Yale
University in New Haven, Connecticut, in 1957) that, under the additional
hypotheses that n = 3, mD* < oo and f is differentiable, almost all the
radii (in the sense of the measure on the sphere) have rectifiable images.
He obtained even more, namely that if F, < § is a set such that, for each
£¢E,, almost all the radii of the ball B(£, }) (centred at § and with radius
4) lying in B have rectifiable images, then the Newtonian capacity of E,
is zero. COlearly E, < E,. D. Storvick [16] proved that the two-dimen-
sional measure (on 8) of K, is zero if fis K —ge, fe(" and D* < R?®is simply
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cennected, with a connected complement CD* and mD* < . He gives
also (in the same paper) an argument due to F. Gehring for the same
result, but only under the conditions » = 3 and mD* < &c.

At the Conference on Analysis held in Jyvaskyld (Finland) (15-19.
VIII. 1973) and at the Oolloquium on “Constructive function theory”
held in Cluj (Romania) (6-12. IX. 1973), I established that the (n—1)-
dimensional Hausdorff measure H" '(E,) is equal to 0 for f: B<=D*qe
without any restrictive condition; then I found that E, is closed and of
conformal capacity zero; I deduced hence, by means of a result of H. Wallin
[20], that even the a-capacity (a > 0) of E, is zero. (A similar result was
obtained by V. A. Zori¢ [22] for the points of 8, where f does not admit
an angular value.) At the conference on “Transformazioni quasi-conformi
e questioni connesse” held in Rome (12-15. ITI. 1974), I established that,
under the additional restrictive condition f1T'"**dr < oo, E, is of logar-

B

ithmie capacity zero, but, during the discussions, Jaqueline Lelong-Ferrand
observed that in this case F, = @, as follows directly from a result which
she had just obtained [11] (not yet printed). After a more thorough analy-
sis, I observed that this conclusion follows directly also from my own
proof.

In the present paper I establish that E,is of @-capacity zero, where
& = (logl/r)’ (B >n—1), and that, under the restrictive condition

[17I[log1/(1 —r)]°dr < oo (a >n—2), E, is of logarithmic capacity zero.
B

As a consequence, we obtain the same evaluation also for other excep-
tional sets.

Now we shall introduce a few concepts:

Let I" be an arc family and F(I") a family of admissible functions g
satisfying the following conditions:

(i) e(®)>0 in R",

(ii) o(@) is Borel measurable in R",

(iii) [eods > 1 for every yel.

14
Then the modulus of I' is given as

M(I) = int [ "dr,
eeF(T) R"
where dr is the volume element (corresponding to the n-dimensional
Lebesgue measure).
According to J. Viisild’s geometric definition [19] a K — g¢ is char-
acterized by
M(TI')

(1) T<M(T’“)<KM(T),

where I' is an arbitrary arc family contained in D and I'* = f(I').
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A function »: D—R" is said to be ACL (absolutely continuous on
lines) in a domain D if, for each interval I = {#; d < o* < (i =1, ..., n)},
I cc D(ie., I = D), uis AC (absolutely continuous in the ordinamy sense)
on a.e. (almost every) line segment parallel to the coordinate axes.

The conformal capacity of a bouned set £ = R" is

(2) cap,F = capF = inf fqul"dr,

unn

where the infimum is taken over all functions % which are continuous
and ACL in R", have a compact support §, contained in a fixed ball
and are equal to 1 on .

We recall that the support of a function u is the closure of the set
E{o; u(®) # 0} and is denoted by &S,.

Let 4> 0 be a measure in R". The support 8, of u is a closed set
F < R"such that, for each @< F and every neighbourhood V, of @, (V. )>0.

The ®P-potential of a measure u is defined as

ub(@) = [ D(lo—yl)du(y),
RM
where the kernel @(r) is supposed to be strictly decreasing, continuous
and satisfying lim @(r) = 4+ co. By means of the energy integral
r—0

I(p) = [uj@)du(e)

R®
one obtains the @-capacity of a set E, as

Co(E) = [infIo(p)]™",
B

where the infimum is taken over all measures x> 0 of total mass 1 and the
support 8, < K. If &(r) =1/r*, or ®(r) =logl/r, then the correspond-
ing capacities are the a-capacity C,(E) and the logarithmic capacity
Co(E), respectively. For a =1 we have the Newtonian capacity. The
diameter d(F) is supposed to be less than r,, where @(r,) = 0 [in the case
of the logarithmic capacity d(#)< 1]. For an arbitrary Borel set E,
Co(E) = 0 iff (if and only if) C,(EN B,) = 0 for every ball B, = B(s, r)
centred at @ and with the radius re(0, 7).

. We shall use the well-known fact (see, for instance, B. Fuglede [6],
remark 2 of theorem 2.4, p. 160) that if the kernel &(r) is as defined above
and the compact set F has d(F) < r,, then there exists a unique measure
To > 0 with total mass 1 and 8,, < F such that the infimum of the energy

Co(F)™ = infle(n) =int [ [ D(lo—yi)du(@)du(y)

“ gn gn
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is attained for 4 = r,, where u ranges over the class of all 4 > 0, with
total mass 1 and 8, < F. The measure 7, is called the capacitary distri-
bution with total mass 1 and kernel @ of F.

1. Evaluation of X,.

PROPOSITION 1. E, is closed.

ProrosrTioN 2. CapE, = 0.

(For the proof of these two propositions see our paper in [4].)

PROPOSITION 3. u2(#) < MOqo(F)! (M constant) everywhere in R™ (T.
Ugaheri [18]).

Now we recall another characterization of the K —go.

A homeomorphism f: D = D" is said to be K —g¢ (1 < K < oo) according
to Gehring’s metric definition if the linear local dilatation d, (@) is bounded
in D and 8,(@) < K a.e. in D, where

L(@, r) = max|f(@+ do)—f(o)|, U(o,r) = min]|f(o+ d0)—f(o)l,

|Az|=r |dz|m=r
— L(o, 1)

0r(m) = lim .

L(®) @

PROPOSITION 4. A homeomorphism f: D=D*, K —gc according to

Vdisdld’s geometrio definition characterized by (1), is¢ a K —gqc also according
to Gehring’s metrio defimition.

For the proof see our paper [2], theorems 1 and 3, or our book [3],

theorem 2, p. 127.

PROPOBITION 5. If a homeomorphism f is K —gqe according to Gehring’s

metrio definition and differentiable at a point @,, then the mamimal dilata-
ion 8

m |f(@") —f(@,)]

zozy 10—y

A (@) = < K-V 1 (@)

For the proof see our book [3] (corollary of theorem 6, p. 136).
- PRroPOSITION 6. If f: D=D* i8 K —qc according to Viisili's geometrio
definition, then f is differemtiable with the Jacobian J (@) # 0 a.e. in D.
The proof follows from Lemma 6.3 and Theorem 6.10 of Viisiala’s
paper [19] and from the equivalence of all Viisild’s definitions of K —ge.
And now we shall introduce, according to V. Zorié [21], the concept
of boundary elements (as a generalization of the prime ends).
A sequence of domains {U,}, U, =< D (m =1,2,...) is said to be
regular if

() Um-i—l < U, (m =1,2,...),
(d) (N T,) < oD,
Mum]
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(e) o, =.0U,NnD (the relative boundary of U, in D) is a connected
set, ‘ )

(d) there is at most an acecessible boundary point of D which is an
accessible boundary point for each domain of the sequence {U,,}.

Two sequences of domains {U,}, {U,} are called equivalent if each

term of either of them contains all the terms of the other one beginning
with a sufficiently great index.

A boundary element of a domain D is the pair (F, {U,}) consisting
of a regular sequence {U,} and a continuum F = (") U,,. The boundary

Mel

elements (F, {U,}), (¥, {U,,}) are considered as identical if the two reg-
ular sequences {U,,} and {U,,} defining them are equivalent. In this way,
any of the equivalent sequences determine uniquely a boundary element,

PrOPOSITION 7. For every K —qc, f: B=2D*, it i3 possible to establish
a one-to-one correspondence between the boundary elements (F*, {U,}) of D*
and the points of 8, so that to each boundary element (F*, {U,}) there corre-
sponds on 8§ a point determined by the sequence {U,} =f~"({Uy}) (Zorié [21]).

THEOREM 1. Let f: B=2D* be a K —qc, mD*<<oo and E,< 8 the set,
of points corresponding to boundary elements of D* inaccessible by recti-
fiable arcs; then

Co(Ey) =0,
iof
¢ d
(3) [o@men <o (o =08, B<ro),
U]

where D (r,) = 0.

Let £eFE, and assume, for simplieity, that & = (1,0,...,0). It is
easy to see that, for any segment I, = B with an endpoint at £ and corre-
sponding to a versor e,

s
(4) w:JW—J“

where y*=f(l,). Since f is K —qc, Propositions 5, 6 together with (4) imply,
for almost every versor e,

ds < fA,(w)ds,
L

@ - ee
(5) o= [Af@)ds< K" [YiT(@)de <K [ VI (@)l de,
I 0 0

where ¢ = |@—&| and g, is the length of 7,.
We shall prove that C,(E,) =0, with & satisfying (3) by reductio
ad absurdum. Thus, suppose that C,(F,) > 0, let r, be such that &(r,) = 0,
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let 4 < B be a convex domain with d(4d)< R and d(8nd) > iR. Of
course, § majy be covered by a finite number of sets SN 4. Let E4 = E,n 4.
Olearly, there is at least a 4 such that Co(E;) > 0.

Next, let B, = B [4£(1—r,),3(1—7,)] be the ball tangent to 8 at ¢
and of radius 4(1 —r,), where r, is chosen so that B, < A. Let g, be the
length of the segment of direction e joining ¢ and the other point of 8,

= 0B,;, where the unit vector e dependson #,,...,9%,_,. If (g, 91, ..., ¥,_,)
are the polar coordinates of the point @ — &, then integrating (5) with
respect to #,...,9,_, (0<H <3m, 0<PH<m,...,0<8,_;<2x) and

taking into account Fubini’s theorem, we obtain for every &< E,

Ce VJ
®) w = [0 [ YiT@lde = f o
: Sl 0
where 8, is the corresponding hemisphere; do is the spherical element

and dv = ¢" 'dods. We put
= f | luldr
a

Since 3]' |J|dr = mD* < oo, from Proposition 3 we deduce
(7 I= [|J|ugdr < MOy(E,)™ [11dr < .
4 4

On the other hand,

[t o= [wnoior g < ([ vioa]” ([ guttng)

(fIJ |¢d1) ( f P—1ln—1) )(n_l)/n(,nw”)(n-l)ln
=N(f|J]¢dr) ,
B

R d
where N = (nw,)®=" [ p-un-n 28 - according to (3). Hence, and
0 e

by (6), we obtain
7
_ j'l/l (@) gN(flJ@dr)mngIJI@dréNflJlgde-
B B, 4

But ¢ = g,; = |@— £|, so that, integrating with respect to the capacitary
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distribution v,(¢) over E, and taking into account Fubini’s theorem,
we get

o = [dro(8) [ (@) D(E—adr = [T (@)I] [B(1E—al)dre(é)]dr
a4 p. | a4 E‘

Ey 0

= flJ(m)lu:,"’(w)dr =1

But this contradicts (7), and thus the hypothesis Co(E,) >0 was false,
allowing us to conclude that only the points of § belonging to a set
of @-capacity zero can correspond to boundary elements of D*
inaccessible by rectifiable arcs.

OoROLLARY. In the conditions of the preceding theorem, Cq4(E,) = 0
1\
with O(r) = (log—r—) (B>n—1).

Remarks. 1. The preceding theorem may be obtained as a conse-
quence of Proposition 2 and of the following theorem of H. Wallin (commu-
nicated to me in a letter) and deduced from some results of V. P. Havin
and V. G. Mazja [9]:

If E is of conformal capacity zero, then Ca(E) = 0 if (3) holds.

2. Ey #0. Indeed, let D* be the union of a sequence of cylinders
all having the height 1 and as bases (n —1)-dimensional balls with area
equal to 1/m2. Suppose all the axes are on a ray, covering it. Then D*
is @ convex domain with mD* < oo; hence D” is quasi-conformally equiv-
alent to a ball, i.e., D* = f(B) (see F. Gehring and J. Viisilid [8]) and
the point at infinity is a boundary point not accessible by rectifiable
arcs. The corresponding boundary element contains only oo, so that its
imag® on § is @, = f~}(o0)eF,, and then E, # @, as desired. By a slight
modification of the preceding example, it is possible to obtain a starlike
domain D* with a countable set of such sequences of cylinders. But a star-
like domain D* is quasi-conformally equivalent to & ball (see F. Gehring
and J. Vaiisala [8]) and the corresponding exceptional set E, is countable.
In this case mD* = oo, but it is possible to modify D* in order to have
mD* < oo. It is enough to take the bases of the cylinders of each sequence
in such a manner that the corresponding series converges to a value equal
to a certain term of a convergent series.

THEOREM 2. In the hypotheses of the preceding theorem, if

(8) J!lJl (loglir)adr< oo (a>n—-2) (r = o)),

then E, is of logarithmic capacity zero.
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Arguing as in the preceding theorem, we get (6). Next, taking &(r)
= logl/r, if Cy(E,) > 0, then on account of (8), we obtain

9 I= flJlu?(logl

) dr < oo.
B T

1\ L 1
_T) dr < MCo(E,) Bf IJl(logl_

On the other hand,

VI | 2 |71log — (1og — i 1 ‘(1:+1)/n
[ | 17108 < (oe— )] oy

n—1.

1 1\e /n dr n—)in
<J:f |J1log — (108 _) d“] [ f 1 \@EFim—1) ]
B, e e By (log —) o"
e

R

1 1 a 1/n d (n—1)in
g[ f |J llog?(log?) d-r] (nw,,)("—l)l"[ f 1 (§+1)I(n—1) ]
,, i

0
' 1 a 1/n
= N[ f |J|log—(log-1—) d-r] ,
2 e 0

where

e

(1) (n—-1)/n
n—-l1j}n

Hence, and by (6), we deduce

a 1/n
fl/lJ(m dr < N[f]Jllogi(log-l—) d'r]
p 0 e
3
<N f |J|10gl(10g_1_)"dr<1v f W (log 1
B e e B 1-
3 3

1

< [ 111og
B 1—

so that, integrating over E, witk respect to the capacitary distribution
with kernel logl/p, and taking into account Fubini’s theorem and (9),

a 1
r) log—;dr

a 1
log —
r) og . dz,
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we derive

1 @ 1
= |d J 1 1 d

1\ 1
___J'IJ(m)‘(log 0 ) [Efolog — dro(s)]dr,

= flJ(w)l(log ! ) u (w)dr, = I < oo,
3 1—|o|

allowing us to conclude (arguing as above) that K, is of logarithmic
capacity zero.
By a similar argument we obtain

THEEOREM 3. In the hypotheses of Theorem 1, if

flJl(Iog 1 )adr<oo (r = |a]),

1—r
B

then E, i8 of D-capacity zero, where ®(r) = (logl/r)’ and a+p >n—1.

Let E, be the exceptional set mentioned in the introduction and con-
sidered by M. Reade [15], characterized by the condition that for each
¢ ¢ E, almost all the radii of the ball B(&, 4) lying in B have rectifiable
images. Then, arguing as in the preceding theorems, we get the following

OOROLLARY. Theorems 1, 2, 3 hold for E,.

2. Evaluation of E,. Let us denote by E, the set of points £e8 with
the property that there is no endcut of B from ¢ (i.e., an are y, < B
through §) along which f would have a finite limit.

TexmoREM 4. Theorems 1,2, 3 hold also for E,.

Clearly, E, < E, since every point £ such that there is no endcut
of B from ¢ along which f would have a finite limit is (at the same time)
inaccessible from B by rectifiable arcs. Hence, the desired result follows
from the preceding three theorems.

Remark. The inclusion E, < E, is strict, since it is possible to have
a point £¢8 and an endcut y, of £ from B such that imf(s) < oo exist
along y, but f(y;) is an unrectifiable arc. Thus, for instance, for n = 2
we may consider as domain D* = f(B) the intersection of the unit ball
and the domain contained between two logarithmic spirals logr = ad
and logr = a'# (¢’ # a). Then D* is conformally equivalent to B and the
origin is not accessible by rectifiable arcs. However, if £¢8 is the point
corresponding to the origin, then limf(®) exists along any endcut of B
from & and is finite.
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3. Evaluation of .. By means of the preceding theorems, it is possible
to improve a result of V. A. Zorié [22].

Let us recall first that a sequence {#,,} of points of B is said o con=
verge in a cone to a point £<8S if ®,, converge to £ and there exists a constant
4,1 < a< oo, such that '

'mm_ el < a'd(mms S)

for all m. £ is a point at which the mapping f has an angular boundary
value £ ¢R™ if £* is the only boundary value of all the sequences {w},}

corresponding to the sequences {®,} converging in a cone to &;i.e. lim f(2)
z—§

< oo exists if #— ¢ ip an arbitrary way in a cone. Let us denote by E
the set of points of 8 at which f does not have an angular boundary value.

THEOREM OF ZoRIC. If f: B—~R™ is a go, then

(a) the logarithmic capacity CoE, = 0 for n = 2,

(b) the a-capacity C,E, = 0 for n > 2 and arbitrary a > 0 (Zorié [22]).

V. A. Zorid raises the problem whether even for n > 2 we have C, E¢
= 0, as in the case n = 2, solved by A. Beurling [1]. A partial answer
is given by

TEEOREM 5. Theorems 1,2, 3 hold also for E,.

This is & direct consequence of the preceding theorem, since E, = F,,
as follows from the

THEOREM OF GEHRING. If f: B=D" is gc and f converges to £* as =
converges to Ec8 along some endeut y, of B from £, then f converges to £
as o converges to & in a cone (F. Gehring [7], corollary of theorem 6).

5. Other properties of E,, E,, E,. Corresponding to an arbitrary
set Z < R", there is exactly one real number a, 0 < a < 7, such that

(a) C, B =0 for every £ >0 and

(b) C,_,E >0 for every ¢ >0.

[When a =0, only part (a) applies, and when a = n, only part
(b) applies.] The number a = dim,¥ is called the capacitary dimension
of E.

THEOREM 6. dim, B, = dim E, = dim E, = 0.

This is a direct consequence of

ProrosiTION 8. C,(HE,)) =0 for every a > 0.

For the proof, see our paper in [4].

Now let F = R" be a closed set; then the Hausdorff dimension of
F, dimg F, is the infimum of all numbers a > 0 such that the a-dimensional
Hausdorff measure of ¥ is zero.
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ProroSITION 9. If F < R" i3 a closed set, then
dimgF = dim F.

(For the proof, see for instance O. Frostman [6], p. 90.)
TEEOREM 10. dimHEo =dimHE,, = di.mHEc = 0.
Clearly, if for 0 < a< 1 the a-dimensional Hausdorff measure of

& set is zero, then such a set cannot contain any continuum, i.e., is totally
disconnected, so that from the preceding theorem we obtain

CoRrROLLARY. E,, E,, E, are totally disconnected.

6. An extension of a theorem of M. Tsuji.
TSUJI’S THEOREM. If u(w) i8 harmonic in B < R® and

< oo, r = ||,

f Igraduﬂz_if_
3 V1l—r

then there emists a set E < 8 which 18 of Newtonian capacity zero and such
that if £eS does not belong to E, then

limu(2) = u(f) < o  ewisis uniformly
o-oE

when o tends to £ inside a Stolz domain whose vertex is at & and, for any
rectilinear segment 1, which connecis & with a point of E,

flgradu]ds < o0.
te

(For the proof, see M. Tsuji [17], theorem 3.)

We recall that a Stolz domain is a domain which is bounded by a cone
whose vertex is at £ and whose generator forms an angle 9, (< =/2) with
the radius Oé&.

Now, let L”(E) be the class of all Lebesgue-measurable functions f
in R" such that J |f|Pdv < oo. By the same argument as in Theorem 1,

we obtain a result which is more general (in some respects) than Tsuji’s
theorem:

THEOREM 8. Let ueL*[B(R)] (0 < R< oo, £¢>0). There ewisis
a set B < S(R) of logarithmic capacity zero such that if E¢S(R) does not
belong to E, then for almost all linear segments 1, joining & and an arbitrary
point of B(R)

[ lu(@)ds < oo
I
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Indeed, suppose that C,(E) >0 and put
I= {luruldr,
a4

where 4 is as in Theorem 1. Then, by hypothesis, and taking into account
also Proposition 3, we have

(10) I= [urtuldr< M,< oo,
4
On the other hand, for £¢E,
o0 = 'f |u(@)|ds =of9¢l'”'(91 D1y ony Oai)lde,
¢
where g, denotes the length of the segment gf direction ¢ joining & with

El—r) 1—r
2 ' 2

the corresponding point of the sphere S[ ], where r =171,

1-— 1—
is chosen so that the ball IB[E( 5 r)’ 2"] < 4. Hence, arguing
as in Theorem 1, we get
4 d 1
. 00 = f do f ulde = f U e < N f P+ log ——— dr,
§ 0 B[e(i—r - © 4 €z
2 2

and integrating over B4 = Fn A with respect to 7,(£), we get

' 1
00 = fdro(E)f|u|"(‘+’l)log-—d'rz = f]ul’”“[flog 1
4 Oz z4 Q¢x

where ¢ = ne, and dv, is written instead of dr in order to establish pre-
cisely the variable of integration. But this contradicts (10), establishing
that O,(F) = 0, as desired.

d'ro(E)] dv, =1,

References

[1] A. Beurling, Ensembles exceptionels, Acta Math. 72 (1940), p. 1-13.

[2] P. Caraman, On the equivalence of the definitions of the n-dimensional quasi-
conformal homeomorphisms (QCfH), Rev. Roumaine Math. Pures Appl. 12 (1967),
p. 889-943.

[8] — n-dimensional quasi-conformal mappings (QOf), Edit. Acad. Roméne, Buocu-
regti 1968; Abacus Press, Tunbridge Wells (Kent) England and Edit. Acad.
Roméne, Bucuregti 1974.

[4] — Quasi-conformalily and bowndary correspondence, Lucrarile Colocviului de
Teoria constructiva a functiilor. Cluj, 6~12. IX. 1973 (in print).



Boundary ocorrespondence by quasi-conformal mappings 33

[6] O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques appli-
cations a la théorie des ensembles, Medd. L.unds Univ. Mat. Sem. 3 (1835), p. 1-118.
[6] B. Fuglede, On the theory of potential in locally compact spaces, Acta Math.
103 (1960), p. 139-215.
{7] F. W. Gehring, The Carathéodory convergence theorem for quasi-conformal map-
pings in space, Ann. Acad. Sci. Fenn. Ser. A I, 336/11 (1963), p. 1-21.
[8] — and J. Viisdld, The coefficient of quasi-conformalily of domains in space,
Acta Math. 114 (1965), p. 1-70.
(8] B. II. Xaemu m B. I'. Maswa, Heauneinas meopus nomenyuaaa, ¥Ycnexm
Mar. Hayk 27, Ho. 6 (168) (1972), p. 67-138.
[10] A. J. Jenkins, On quasi-conformal mappings, J. Rat. Mech. Anal. § (1956),
p. 343-352.
[11] J. Lelong-Ferrand, Consiruction de module de continuité dans le cas limite
de Sobolev et ses applications & la géoméirie différentielle, Archiv for Math. (in print).
[12] J. A. Lohwater, Beurling theorem for quasi-conformal mappings, Bull. Amer.
Math. Soc. 61 (1965), p. 223.
[13] — The boundary behaviour of a quasi-conformal mapping, J. Rat. Mech. Anal.
5 (1956), p. 335-342.
[14] A. Mori, On quasi-conformality and pseudo-analyticity, Trans. Amer. Math.
Soe. 84 (1957), p. 56-717.
[16] M. O. Reade, On quasi-conformal mappings in three spaces (Preliminary report),
Bull. Amer. Math. Soc. 63 (19857), p. 193, Abstr. 371.
[16] D. Storvick, The boundary correspondence of a quasi-conformal mapping in
gpace, Math. Research Center US Army. The Univ. of Wisconsin MRC Techni-
cal Summary Report 426 (1963), p. 1-8.
[17]1 M. Tsuji, On the exceptional sel of a certain harmonic function in o unil sphere,
J. Math. Soe¢. Japan. 5 (1953), p. 307-320.
[18] T. Ugaheri, On the general potential and capacily, Japan. J. Math. 20 (1950),
p. 3743. ‘
[19] J. Vaisdld, On quasi-conformal mappings in space, Ann. Acad. Sci. Fenn. Ser.
A. I, 298 (1961), p. 1-36.
[20] H. Wallin, A connection between a-capacity and LP-classes of differentiable func-
ttons, Ark. Math. 5 (1963), p. 331-341.
[21] B. A. 3opuu, I'panusrsie céoiicmea o0Hoeo Kaacca omobpadcenuti 8 npocmparcmee,
HOoka. Akanp. Hayk CCCP 153 (1963), p. 23-26.
[22] — 06 yeaobuiz anavenusz xeasgukongopmuwz omobpadcenuii wapa, ibidem 177
(1967), p. 771-773.

3 — Annales Polon. Mathematiei 33.1-2



