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On some properties of LB-splines

by ZyGMUNT Wronicz (Krakow)
Franciszek Leja in memoriam

Abstract. We give a relation between basic splines in the spaces of Tchebyshev splines and
polynomial splines. By means of a new definition ol normalized basic splines in the space of
Tchebyshev splines we obtain a few further propreties of basic splines analogous to polynomial
splines and we apply the results obtained to L-splines.

1. Introduction. The purpose of this paper is to generalize some
properties of polynomial B-splines to basic splines in the space of
Tchebyshevian spline functions, to obtain a relation between those basic
splines and then to apply it to generalized splines.

Further, we need the following notations, definitions and properties of
extended complete Tchebyshev systems (EC7T-systems, see [5]).

DerinitioN 1. We say that {u}]_o, ;€ C"[a, b] is an ECT-system on
[a, b] if, for any points a <ty <!, <...<t, <b, k=0,...,n

Loyeoosl i
D( 0 k )= det (Dd’ ui(tj))?,FO >0,
uo,---9uk

where d;=max|l: t;=¢t;_y=...=t;_y}, j=0,...,k, and D is the differ-
entiation operator.
An ECTsystem {u;}3, uo =1 admits the representation

ug(t) =

1,
uy (1) = f wy(ty)dry,

3!

(1) uy(8) = f wy(ty) | wa(ty)dr,ydry,

Th—1

U, (1) = [wy(ty) [ walta)... | wu(t)dr,...dry,

where w;e C" " [a, b] and w;(t) > 0 for te[a, b], i=0,...,n
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The adjoint system {v;}3 is defined as follows:

vo(t) =1,
vy (t) = | wa(ty)dry,
(2) Uy (t) = jwn(‘tl) I Wn—1 (IZ)dTZ dtl)

i3 Th—1

vn(t) = j wn(Tl) [ Wn—l(TZ)“- j Wy (‘l',,)d‘t,,...d‘rl.

Define

1d d{oe
D= a® oro=g(w)
Lj(p-_—DoDj-nD](pa Lj(p=DT--.D}*D3(p, j=0,...,n.
Systems (1) and (2) span the null spaces of the differential operators L,
and L%, respectively.
Let A=f{a=t_,=..=tog<ty=...=8 <ly41= . =lysqy <...
<ty=..=Iyspa=b}={a=s0 <5, <... < sMM= b}; a; is the multiplicity

of the point s;, j=0,...,M, ag =y =n+1, ) a;=N+2n+1
j=0
DeriniTION 2. A function s is called a Tchebyshev spline function w.r.t.
the operator L, and the partition 4 if

(@) L,s =0 in the intervals (s;_4,s;), j=1,..., M,
(b) ;> 0: s=C" “(s;—¢j, 5;+¢), j=1,...,M—1.
We denote the set of these functions by S’ [a, b].
LemMA 1 (see [5]). The function

Th—1

f '
fwa(ty) [ wami(z2)... | wizy)dr,...dvy  for x<t<b,
(Pn(t’ X) =3\=x x x
0 Jor t < x,
satisfies the following condition:
D(‘O:'-'atm in+ l)}' 0
Voy--+» Upny @Pn

for any system {t;}5%! such that a <ty <...<t,,; <b.
For n=90

1 for x<t<b,
0 fort<x.

‘Pn(t, X) = {
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Further, for a< x <ty <... <ty <D

D tos--sbps t,,.+1)= 0
vO""’vn’ (pn

and for to < x <t,.,
Togyereslp t
D( 0  tn+ l) > 0.
Vos+v-s Upy Py
The function @, is a Green function associated with the operator L% and
b
the function w(t) = | @,(t, x)dx is a solution of the equation Lyw = 1.
a

DerINITION 3. We define the divided difference of a function f at the
points o < ... < l,4q, to <!,y WIt the operator I} by

D(to,...,t,,, tf,,H)

Vpoyevos U

(3) [t0)°",tn+l;f]¢ = = ‘
D(lo,..., tn, tll+1)

Vgs-vesUpy W

Remark. For the system {r}3, wo=1 w;=i, i=1,...,n and
[tos- s tas15f ) =(n+1)[to,..., ths1;f], where the last expresion is the
usual divided difference (see [3]). Properties of generalized divided differences
may be found in [4] and [7].

DEerINITION 4. The ith L, B-spline (B-spline w.r.t. the system {u;}3) w.r.t.
the partition 4 is defined by

4 M; ,(x) = (tis- s tivnsss @alt, X))y, i=—-n,...,N—1L

We can see that

d
(5) d ‘pn(t: x) = —w (X)¢"_1(t, x)a
X

where
(Pn— 1 (ta JC)

Tn-2

! T
_{jw”(tl)jw,,_l(tz)... [ Wa(ty1)dTyy...dr; forx<t<b,

0 for t < x.
Hence M, ,eS%[a, b].
Let M;,_, be the basic spline w.r.t. the operator L,_,=DyD,...D, (all
points of multiplicity n+1 are exchanged for points of multiplicity n). Put
ti+n
M 1(x) =M, (x) j wi (D) Mj - (T)dr.

g
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DEeFINITION 5. The jth normalized L,B-spline w.r.t. the partition A4 is
defined by

(6)  Nja(x)
(

X:j(x)’j Wl(t)Mj+l,n—l(T)dT for t;j=...=tjsn<tjtne1,

=1 jwl(r)[Mj.n—l(T)_Mj+l.n—I(T)]dr for t; <tj1, and tj.; <tj1n+1,

jWl(f)Mj,n—l(T)dT"X:j.,_,,(x) for 1; <tjiy=...=tj1psy,
where x,(x) =1 for x>t and 0 for x <¢, and for j = —n we put N_, ,(a)
=1.

Again by (5) we obtain N, ,eS%{a, b].

Basic splines w.r.t. the Tchebyshev systems were defined by Karlin in [4]
and in the special case of trigonometric splines by Schoenberg in [9].
Normalized basic splines were defined in another way by Marsden in [6].
With the help of Definition 5 we shall obtain a few further properties of
basic splines analogous to polynomial splines.

2. Properties of basic splines. For polynomial B-splines we have (see

(11, 2D

In+1
. —_ 1 (n+1) Y
[th"°’tu+lsf] _(n+1)' J' f (t)MO,n(t)dt’
10

h+1
where M, , is the B-spline w.r.t. the system {¢'}5. Since J M, ,()dt =1

o

(see [1], [2]), we have

1
lim [to,....th+1:f1=——= " V(to).
mrioo YT (D) 0

By (3) and (4) we obtain
fn+1
| Moa(ndt=1.
0
As for polynomial splines, we apply the generalized Taylor formula for
Tchebyshev systems (see [1], [2], [5]) and obtain

fnt 1

[to""'trﬁl;f]* = j L":,f(l)Mo_,,(t)dI.
‘o
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Hence
() im [to,...,tn+ 15 1 = L0 S (to).
th+1 M0
Applying (7) and the properties of determinants, we obtain

THEOREM 1. Let A’ ={a<t_,<t_, 4y <...<tysn < b} be a partition
of the interval [a, b] with distinct points and let fe C"*'[a, b]. Then there
exists

hm [l’o,..-,t;.'.l:f]*=[’0,...,r"+l:f]*.
;-
l'-'=0.‘....:l+l

Hence it follows that it suffices to prove the properties of splines for
partitions with distinct points.
Further we need the following

LEmMMA 2. Every spline goeS"',j [a, b] satisfying the conditions
Digp(t)=0, i=0,...,n—1, k=j,j+n+1,

can be represented in the form

@ (x) = aM;,(x),
where « is a constant depending only on the function ¢ and A;={t; < ...
<titn+1)-
Proof. The partition 4; has only distinct points. Since w; >0, the
function ¢ satisfies the following conditions:
Lot)=0, k=jj+n+l,i=-1,0,...,n-2,
where Lo = Do and L_, ¢ = ¢. Put -
(ﬁu—i(ra x)
X

{IW,,(‘L’I) fWai(@) oo [ wigy(ta-))dr,_;...dt;y  for t < x,
= t T

Th—-i-1

0 for x <t,
i=-1,0,...,n=2.
We can write the function ¢ in the following form (see [5]):

itn
o(x) =Y b@. (1, x).
I=j
Therefore
j+n
Li@(tisner) = Z by @p-i-1 (1, tj+n+l)’ i=-1,0,...,n-2.
1=j

This system has the matrix A, = [$;(t;, tjsp+1), i=n,...,1, I=j,...,j+n].
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Let B, be the matrix obtained from A, by concelling the last column
of A,. We shall prove that detB,>0. For n=1 B, = (), tj+;)

i+
= | w;()dt >0, because w, >0. Assume that detB,_, >0 for every

'c

j . ~n—1 o~ . . .
system of functions {W;}§~!, W; > 0. Subtracting the ith column from its
predecessor and factoring out the integrals from the function w,, we obtain

ti+1 Titn—-1 Yji+n+1
Bn = f Wn(xl)"' I wn(xn—l) 5 wn(xn)Bn—l(xl,""xn)dxl -'°dxna
tj 'j+n-2 ti+n—1

where B,_,(x;,...,x,) = det[@,-:;(x), tj4ns1)s i=1,..,n, I=1,...,n].
Repeating this reasoning for the determinant B,_, and expanding the
determinant w.r.t. the last row, we obtain

i+l fi+n-1 i+n+1 *2
dCtBn = ." Wn(xl)"' I w,,(x,,_ 1) I wn(xn) f wn—l(yl)'“
] fji+n-2" titn-1 x
_f W1 (Vn-1) Bac1 (V150 Yum 1) dXy o odX,dyy . ody, g,
*n-1

where B, (¥1,-.s Va-1) = A€t [Fni(V1y tjrns1), i=2,..,m 1=1,...,n—1].
Since x; < x;,4, i =1,...,n we have B,_,; > 0 by the inductive hypothesis,
whence det B, > 0 and the theorem is proved.

CoRroLLARY. There exists a constant r; such that

(8) N;a(x) =r; M, ,(x).

Remark. For the system {x'}§, r; = (tjsn+1—1t)/(n+1).

THEOREM 2. There exists a constant C depending only on the system {u;}
such that

C—l M],n(x) g Mj,u(x) S CMj.u(x)a
where Mj.,, is the j-th B-spline for the system {x'}§.
Proof. Assume that 4 has only distinct points.

MJ_,,(X) = D(th""tm tu+l )/D (to"”stm tn+l) = L,,(X)/Mn(X)
{

Uoyeees Up,y (pn(ta x) UgseoesUpy W
and analogously M (X)) = L, (x)/M,(x).
L,(x) = det[a;]7}20, where ap; =1, j=0,...,n+1,
‘j 131 L
a; = _f Wa(Ty) I Wa-1(T2) ... I Waoisy (T)dr; .. dTy,
[ q a
i=1,...,n j=0,...,n+1,

Th-1

] Ty
Ans1,y = QOulty, X) = [ Wa(T1) [ Wour(12) ... | wilt)ex(t)dr,.. . d1,,

j=0,...,n+1, where g,(t) =1 for t > x and 0 for r < x.
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Subtracting the jth column from its successor, then expanding the

determinant w.r.t. the first row and applying the properties of determinants,
we obtain

3 n+1
L,(x) = I Wa(xy)... I Wa(x,+1)det[b;)dx, ...dx,,,
to In

where by; =1, j=1,....,n+1,
71 Ti—1

*j
b; = j Wn-x(fl)j Wy_2(12)... f W,—i(t))dr,;...dt,,

fori=1,...,n—1,j=1,...,n+1,
xj 21 Tn—2 .
bpsy,y = I Wa—1(T4) I Wa-2(723) ... _[ Wi (Ta—1) 0x(Ta-1)d1,-y ... d1y,

j=1,...,n+1.
Repeating this reasoning, we obtain

n tn+ 1 *1,2
(9) Ln(x) = _f wn(xl,l)"' I wn(xl,n+ l) I wn-l(xZ,l)'-'
to tn 1,1
Xi,n+1 x2,2
I wu—l(xZ.n) I wn—2(x3.l)"'
*1.n *2,1
*n—1,2 Xp—-1,3.
j Wi (Xp,1) _f Wi (Xn 2) [0x(xp,2)—
Xp—1,1 Xn—1,2

—0x(Xp1)]dxy,; ... dXy pr1d%5, ... dx,  dX, ;.
Since x;, < X; 441, the difference o,(x, ;) —0x(x,,1) admits only two values, 0
and 1. Remember that, for the system {x'}5, wo =1, w;=1i,i=1,...,n. Since
the functions w; are continuous and positive in the interval [a, b], there exist
positive constants ¢; and d; such that

(10) O<ic;<w;<id; fori=1,...,n.

Writing L,(x) in the form (9), we obtain
1y L,

nt1%1,2 Xn—1,3

3|
=23 [ | [es(xa2)—@x(xa))dxy g ... dx, ;.

h *1.1 *n—1,2

Since M,(x) = "}1 L,(x) and M,(x) = "}1 L,(x)dx, we have by (9)-(11)
to to

2 n+
(12) (f,—‘) (2—’)3(;—) W00 < M)
1 2 n
T8 )
1) \C2 Cn g

25 — Annales Polonici Mathematici XLVI
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Since the above constants depend only on the functions w;, by Theorem 1 we
obtain the theorem under consideration.

THEOREM 3. Basic splines have the following properties:
(M.1) suppM;, =[tj, tjsns1]s M;a(x) >0 for t; <x <tjyp+q,

(N.I) SuPPNj.n = [tj; tj+n+l]a Nj.n(x) >0 for <X <Uljyp+1s

M.2) J+I'+ M, (x)dx =1,
N-1
(N.2) .z; Nja.(x)= L.

Proof. The first three properties follow from the definition of basic
splines, Lemma 1, (8) and the properties of polynomial splines. Let
x€ [ty ty+1].- Then

N-1
z Nj.n(x) Z, NJ ,,(X)

ji==n

[
Il

Il
D ey, W D e, W D e, M

w, (1) Z [Mj,n— 1 (1) = M}+ 1,n-1(7)]dr

Jj=k—n

Wy (T) [Mk—n,n— 1 (T)—Mk+ 1,n—1 (I)] dt

wy (1) Mk~n.n— 1 (t)dr =1,

for t; <t;,, and t;,; <t;1,+;. To the remaining cases of (N.2) we apply
Theorem 1.

Now, we estimate the ccnstants r;, r; = N; ,(X)/M; ,(x), x€(t, tjsns1)
Hence for xe(t;, t;,,) by (12) we obtain

f w (1) Mj.n— 1 (1)dr

i Ny,
= Teae <{n+D)A, MJ,- .((jc))

M;,(x) | wi(@M,;, ()de

]

=(tjsn+1—t;) Ba

and analogously e /a,,(tﬁ,,ﬂ t;), where a, and B, depend only on the
system {u;} and N;, is the jth normalized B-splme for the system {x'}. Thus
we have proved

THEOREM 4. There exist constants a, and B, depending only on the system
{u;}o such that

an(tj+n+l_tj) r_) »Bn( j+n+l )
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From (6) we obtain
li+n+1
Lemma 3. Put B;=( [ wi(@)M;,_((x)dz)"". Then

'

BiM,;,_, for iy =tjiaes,
D N;,=<BiM . —Bjs 1M1 Jort;<tj.,and tjs, <ljinsi,
—Bis 1 Mjiq01 for t;=1t;.,.
Hence follows
N-1
TueoreM 5. Let feS%[a,b] and f = ), a;N;,. Then
j=-n

Dif=—a_pg pirM_piy 01t

N-2
+ Z (aj_aj—l)ﬁij.n—l +an 1 Bv-1My_10-1-

j=—n+2
Gj<lj+n

Hence, as for polynomial splines, we obtain

CoroLLARY. The system {N; " ' is a basis in the space S[a, b].

Put N;,,=r;"?N;,, 1 <p<o. As for polynomial splines, we can
prove (see [2], [8], [10])

THEOREM 6. There exists a constant D, > 0 depending only on the system
{u;} such that

N-1
D,|lall, < ” Y 4 Nj.n-p"p < llall,,

j=-n

where a =(a_,,...,ay_;)el,, 1 <p< .
From Theorems 5 and 6 we obtain
CoroLLARY. There exist constants C, and C, depending only on p and q

(1 <p, g< ) and the system {u;} such that for any seS%[a, b]
IDsll, < Cy |Isll, [min(t; ,— 217"
and

lIsll, < C2llsll; max [(tj4ns 1 —1)M2107].
J
3. L-splines. Let

(13) L=D"“+'i a;(x) Df

i=0

be a linear differential operator defined on the interval [a, b] with the null
space N,.
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DEerFINITION 6. A function s is called an L-spline w.r.t. the partition A if
(a) Ls =0 on the intervals (s;-,,s), j=1,..., M,
(b) Je; > 0: seC" (sj—¢;, 5;+¢), j=1,...,M=1,

where «; is the multiplicity of the point s;.

We can reduce the investigation of L-splines to the investigation of
Tchebyshev splines by means of the following theorem:

THEOREM 7 (see [5]). For every operator L of the form (13) there exists
d > 0 such that, for every subinterval I — [a, b] with the length |I| < J, the
space Ny has a basis {ul}}y which is an ECT-system in the subinterval I.

Assume that max(t;,,+;—t;) < /4 and ay(x) =0. Then the definition
and properties of basic splines reduce to those of Tchebyshev splines. If there
exists a function u(x) > 0 for xe[a, b] in the space N;, then we can change
the basis {u;}5 of the space N, for the system which includes 1. In the
general case we divide the interval [a, b] into a finite number of subintervals
I; with the length /4 <|I| < /2 and we repeat the above construction of
L, B-splines, in each of the subintervals J, =1, U I;,,.
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