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On a weak coregular division of a differential space

by R. Maicurzak (L6d2)

Abstract. Let (M, %) be a differential space, R an equivalence relation on M. We denote by
pr the natural mapping pg: (M, 4)— (M, ¥)/R. The definition of coregularity and weak
coregularity in the category of differential spaces was formulated by Waliszewski [6]. In the
present paper we give a necessary and sufficient condition for the weak coregularity of the
mapping py. We prove a theorem on a weak coregular division of a generalized Lie group by a
Lie subgroup.

Introduction. In the theory of differential manifolds the notion of a
coregular mapping is well known. Equivalent conditions [or coregularity are
given by Serre [4]. These conditions have their analogues in the category of
differential spaces. However, they are not any more equivalent in that
category. In paper [7] we can find a necessary and sufficient condition for
the coregularity of the natural mapping pg: (M, ¥) — (M, ¥)/R, where R is
an equivalence relation on M.

The main theorem of the present paper gives a necessary and sufficient
condition for the weak coregularity of the mapping pr. As a consequence, a
theorem on a weak coregular division of a generalized Lie group by a Lie
subgroup is obtained.

1. Preliminaries. We use the same terminology and notation as in [6]
and [7]. Let M be any set and ¥ an arbitrary set of real functions defined on
M. Any pair (M, %) such that ¢), = € = sc¥ is called a differential space.

Let (M, ¥) be a differential space. If (M, ) is a group, then for any
P, P1» P> the elements p,-p,, p~! also belong to M. If, moreover, the
mappings

(M,%)X(M, %)—b(M, (g)’ (pl, pZ)le.pZ’
M, 6) > (M, 6, p—p,

are smooth, then the ordered system (M, 4,-) is called a generalized Lie
group.
Let (M, ¥) and (N, 2) be differential spaces. A smooth mapping

() f:(M,€) - (N, 2
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will be called coregular at a point pe M if and only if there exist a
neighbourhood U of p open in the topology 74,.a set ¥V open in 14 such that
f[U] < V, a differential space (No, 2,) and a diffecomorphism

@: (U, Cy) = (V, Dy) x (No, Do)

such that pr,o¢ = f|U.

A mapping which is coregular at every point pe M is said to be
coregular or is called a submersion.

A smooth mapping (1) will be called weak coregular at a point pe M if
and only if there exist neighbourhoods U and V or points p and f (p) open in
the topologies 14, and 74, respectively, and a mapping

o: (V, Zy) = (U, %y)

such that ¢[V] = U,foe = idy and o(f(p)) = p. A mapping which is
weak coregular at every point of M is said to be weak coregular.

Every coregular mapping is weak coregular. In general, the converse
statement is not true (see [6]). The composition of two coregular (weak
coregular) mappings is also coregular (weak coregular).

Let (M, %), (M',%’), (N, %), (N', &) be differential spaces, and f:
M-> M, g: N> N. By fxg (cf. [5], p. 108) we denote the mapping
defined on the Cartesian product M x N by the formula

(f x9)p. q) = (f(P), g(q) for pe M, geN,
having its values in the Cartesian product M'x N’. The mapping
fxg: (MxN,¥x9) > (M'xN', € x2D)
is smooth if and only if the mappings
f: (M, 6) >(M',¢) and g: (N, 2) — (N, D)

are smooth.

2 A weak coregular division of a differential space by an equivalence
relation. '

LemMa 1. If a mapping (1) is weak coregular and R is the set of all pairs
(x, y) e M x M such that f(x) = f(y), then the mapping
(2 priIR: (R, (% x€)p) = (M, 6)
is weak coregular. ‘

Proof. Let (1) be a weak coregular mapping at a point y,. It follows
that there exist neighbourhoods U and V of points y, and f (y,) open in the
topologies 74 and 1,4, respectively, such that f[U] < V¥, and a smooth
mapping

o: (V, 2y) - (U, v)
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satisfying the conditions

) foa =idy, a(f(yo) = Yo-
Setting U, = f ! [V], we see that U, is an open set in 1. Denote by g, the
mapping
00: Ug = Ugx U
given by the formula
oo(x) = (x, o(f(x)) for x e U,.

From the above definition it follows that g, is smooth, and for any x € U,
we get f(x) eV, so that f(o(f(x)) = f(x), whence (x, o(f(x)))e R and
60[Uo] = R. Then we have

S(MxM)AR.

Let us take any (xq, yo) € R. The set Uyx U is a neighbourhood of
(x0, ¥o) open in the topology 14 .. For any x e U, we have f(x) € V and
o(f(x) e U, and so

@ 0o: (Ug, €yy) = (Uox U, €y, x6y).

Moreover, pr, (64(x)) = pr, (x, a(f (x))) = x for x € U,, making use of (3),
we get

(3) Go(Pf1 (xo, .Vo)) = 0o(Xo) = (xo: U(f(xo))) = (xo, U(f(}’o))) = (xq, Yo)-
The following diagrams commute:

Wy, €y,) ——— ¥V, 9y)

SN

U, %y)

Uy xU, €y, x€y) (Vs Bu,)

Oo id
W, ‘guo)

From (4) and (5) it follows that- pr, is weak coregular at the point (x,, yo),
which implies the weak coregularity of mapping (2).

In the theory of differential manifolds the notion of a Whitney product
is of great importance. Consider smooth mappings

(6) fii (M, €) > (N, 2) fori=1,2
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and the set

M, xp, xszZ = (1, P2): (P1, P2) € My x My, fi(p)) = f2(pd)},

where (f; X f3)(py, P2) = (f1(p1). f2(p2)) for (py, p2) € My xM,. It is proved
that if mappings (6) are transversal (see [4]), then the set M, x, ., M,
determinates a differential submanifolds of the manifold (M, 4,) x(M,, €,).

If one of the mappings (6) is coregular, then these mappings are
transversal. Thus if a mapping (1) is coregular at a point y, and if f(xq)
= f (o), then this mapping is self-transversal at the point (x,, yo). Hence the
set M x,, M determinates a differential submanifold of the manifold
(M, 6) x (M, %). It is easy to verily that the differential space (R, (% x %)g)
from Lemma 1 is the submanifold considered. '

LeEMMA 2. Let (M, €) be a differential space, f: M — N, and let O be a
covering of M open in 14,. If all the mappings

fIU: (U, 6y) - (fIU, (FIUY " %0 n)

are weak coregular, f[U] is open in 1 _,_ and

L
) = v,

where U € 0, then :

() f: (M, %) > (N, (/"' [¢Dn)

is weak coregular.

Proof. For any p € M there exists U € ¢ such that pe U. From the
weak coregularity of f|U it follows that there exist sets U,, V; open in the
topologies 74, and rmm,_,wunﬂm, respectively, and a smooth mapping

o: (Vi, (S1U) ' [€ud)y,) — (Uy, 6u))
such that
) peU,, f(PeV, flU,oo =idy,, o(f(p)=rp.

Making use of Lemma 1.6 from [7], we get
Vi, (U1 [%0d),) = Vi, (S [8Dy,)-
Thus
) a: (Vi, (f*7 ' [$Dy,) = (Uy, Gy)).
From (8) and (9) it follows that mapping (7) is weak coregular.
THEOREM 3.- The mapping
(10) pr: (M, €) = (M, €)/R

is weak coregular if and only if the following conditions are fulfilled:
(a) the mapping pry|R: (R, (¢ x6)g) —» (M, 6) is weak coregular,
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(b) for any point x, € M there exist a neighbourhood U of x,, a subset W
of M and a weak coregular mapping

(11 s: (U, €y) — (W, €y)
such that
(12) W pp(u) = {s(u)} forueU.

Proof. Necessity. Making use of Lemma 1 and taking the natural
mapping pg in place of f, we get condition (a).

Let us take any x, € M. From the weak coregularity of the mapping p,
it follows that there exist a neighbourhood U of x, open in 14, a neigh-
bourhood V of the point pg(xo,) open in 74/R with pg[U] = V, and a
smooth mapping

a: (V, (¢/R)y) — (U, 6v)
satisfying the conditions
priUoe = idy, o(pr(Xo)) = Xo.
Les us set W = o[pg[U]]. Denote by s the mapping
(13) s: (U, 6y) - (W, €w)
given by the formula
s) = o(pg(u)} for ueU.

It 1s easy to see that s(w) = w for we W and

pr(s(w) = pr(o(pr@)) = pr(w).

Let us take any u e U < M. By the weak coregularity of .pg at the
point u there exist a neighbourhood U’ of u open in 1, a neighbourhood
V' of the point pgp(u) with pg[U] = V', and a smooth mapping

o' (V’ ((g/R)V') - (UI’ %’U')
satisfying the conditions
prlU'0d’ = idy., o' (pr(u) = u.
Let Uy =UnU,W, =(c’opp) '[Uo), Wo = Wy n W. The set U, is
open in the topology 14, Wo is open in g, . Setting
(14) oo = o' o pglWy,
we have
oo [Wo] = o [Pn [Wo]] =0 [PR (W n W]] < 0"[PR [W1]] n o' [pr[W1]
=0 [PR [(0'013’)1)_l [Uo]]] N o' [PR [W]]
= Uy nd[pr[W]] €« Uy n U = U,.

2 —Annales Polonici Mathematici XLIIL3
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Mapping (14) is smooth, because it is the composition of the smooth
mappings ¢’ and pg, and so

6o: (W, Cw,) — (UQ, qguo)-
Moreover, .
slUo06¢ = g0pgplUo0d’0pglWy = copelWy = sIW, = idy,,
do(s) = o' (px(c(Pr))) = o' (Pr (W) = u.
Mapping (11) is weak coregular.
Since s(u) e Wy = W and pg(u) = pg(s(u)), we have the inclusion
s} = Wn pr(u).

Let us take any point pe W pg(u); then p e W and p € pg(u), and so
there exists x € U such that p = o(pg(x)) = s(x),

p € pr(p) = pr(s(x) = pr(o(pr (%) = pr(x).
Since p € pr(x) and p e pg(u), we have pgr(u) = pr(x) and p = a(pg(x))
= o{pr(u)) = s(u). Hence follows the inclusion
W pru) < {s(u)}.

Condition (b) is thus satisfied.
The proof of sufficiency of conditions (a) and (b) will be preceded by
three lemmas.

LEMMA 4. Let (M, €), (N, 9), (P, F) be differential spaces. If the mapping
g: (M, %) - (N, 9)
is onto and weak coregular, the mapping
f: (M, %) > (P, F)
is weak coregular and there exists a mapping
(15) k: (N, 2) - (P, F)
such that
kog =f;
then mapping (15) is weak coregular.

Proof. For any point y € N there exists x € M such that g(x) = y.
From the weak coregularity of the mapping f at the point x it follows that
there exist a set U open in 1y, a set W open in 7, such that
xeU,f(x)e W,f[U] = W, and a smooth mapping ¢,: (W, Fy) — (U, €,)
satisfying the following conditions:

flUoay = idw,  ao(f () = x.
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Let us set V' = g{U]. Since the mapping g is weak coregular, it is open, and
thus V is open in 1, and y = g(x) e V, k(y) = k(g(x)) = f(x) e W, k[V]
= k[g[U]] = f[U] = W.

The following diagram commutes:

W, By) —— W, Fy)

¥

v
slv
N\ Uy [
ay

(W, Fw)
Denote by s the mapping
s: (W, Fy) = (V, Zy)
given by the formula ¢ = (g|U)oe,. Since ¢ is smooth and the conditions
ko = ko(glU)oo, = flUoa, = idy,
a(k() = gloo(k(g()) = gloo(f(0)) = g(0) =y

are true, the mapping (15) is weak coregular.
LEMMA 5. Let R be an equivalence relation on M. If the mapping

pry|R: (R, (€ x%)g) — (M, %)

is weak coregular if for any point x, of M there exist a neighbourhood U of x,
open in 1t such that

(16) pi' [palUT] = M

and a weak coregular mapping s satisfying condition (b) of Theorem 3, and if
the natural mapping

(17) Pry: (U, 6) > (U, 6y)/Ry,

where Ry = R n (U xU), is weak coregular, then mapping (10) is weak
coregular.

Proof. For any u, u’ € U, if pg,,(u) = pg,(«), then pg(u) = pp(), and
so there exists exactly one mapping

(18) h: URy - M/R
such that
(19) hopa, = palU-
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It is easy to see that mapping (18) is one-to-one and onto. For any point
z € M/R there exists uo € M such that z = pg(ug). In view of (16) there
exists ueU such that pg(u) = pr(ue) and z = pr(u) = (pr|U)(w)

h(pnb(u)) Let h(x) = h(x) for any x,x" € U/Ry; then there exist
u, w' € U such that x = pg(u), ¥’ = pr(«), and so h(pg, () = h(pg, ).
Hence and from (19) we get (pglU) (1) = (pglU)(w'). Since for u € U we have
(PrIU)(W) = pgy (u), it follows that pg (u) = qu(u) and x = x'.

Let (M/R, 9) be a differential space coinduced in the set M/R from the
space (U, €y)/Ry by mapping (18); then @ = b~ '[py ' [¢,]] and (18) is
smooth. The mapping h is also a diffeomorphism.

The following diagram commutes:

h
(U, €)/Ry=(U/Ry. py, [8yD <=——=== (M/R. b~ pg 8 1])

Pry PRIV

U, &y)
and there exists the inverse mapping h~!: M/R — U/Ry,. We shall show
that h~! is smooth.
Let us consider a function f e pRU‘ [6y]); then Bopg, € €y. Since
h™'oh = idy g, We have

BOPRU = ﬂoh_thOpRU egu.

Hence Boh™"oh € pr,' [$y] and Boh™' € "™ ! |pg,' [4y]]. It follows that
h~! is smooth. ‘

Let us set k = h™'opg. For any point z = (x, y) e (UxM) n R we
have x e U, y € M and pg(x) = pr(y),

k(pra(x, )= k() = h~ ' (pr(») = h™ (pa(x)) = h™ ' (prIU(x))
= h“(h(pkv(x))) = va(x) = PRU(PI'1 (x, .Y))-
Thus the following equality is true:
(20) kopr,(UxM) n R = pg,opr|(UxM) N R.

The weak coregularity of the mappings pry|R, (17) and (20) yields the weak
coregularity of the mapping k o pr,. The mapping pr, is also weak coregular,
because R is a symmetric relation and pr, is weak coregular.

Applying Lemma 4, we get the weak coregularity of the mapping k. The
following diagram commutes:

(UXM)AR————>M

NS S

— U/Ry M/R
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Since the mapping k is weak coregular and h is a diffeomorphism, py is
weak coregular.

According to Lemma 3.5 of [6], we get 2 = px ' [¥] and the mapping
(10) is weak coregular.

LemMMA 6. If for a set U open in 1, there exist a set W < U and a weak
coregular mapping (11) satisfying (12), then the natural mapping (17) is weak
coregular.

Proof. For any u,u' € U, if s(u) = s(), then (by (12)) W pg(u)
= W pr(u); therefore pg(u) = pp(w) and pgy(u) = pr, ().

Let us define a mapping

(21) I: W—- U/Ry
such that
(22) los = pg,.

Using (12) again, we see_ that if w, w' € W, then I(w) = I(W), and so w
= s(w), w = s(w), l(w) = I(s(w)) = I(s(w)).
According to (22), we have
pRu(w) = pRU(w,)’ pRu(w) NW= pRu(w’) nw
and
w = s(w) = s(w) = w'.
For any z € U/Ry there exists u € U such that z = pg(u). If w = s(u), then
I(w) = I(s(u)) = pg,(4) = z. Thus the mapping / is one-to-one.

Let (U/Ry, 2) be a differential space coinduced from (W, €) by map-
ping (21); then 2 = I’"![%y] and the mapping

I: (W, 6w) = (U/Ry, ' ' [€w])

is smooth. Since, for any function @ € 4y, we have aol™ ! € I' ! [€y], the
mapping [~! is smooth.

The weak coregularity of the mapping s and the diffeomorphism ! imply
the weak coregularity of the mapping

Pry = los: (U, %y) - (U/Ry, 2).

According to Lemma 3.5 of [6], we get 2 = py '[4y], and so

Pry: (U, €v) = (U/Ry, px '[$u]) = (U, Gu)/Ry.
Proof of sufficiency of conditions (a) and (b). Suppose that (a) and
(b) hold. In view of Lemma 6 the mapping pg, is weak coregular,
where U, is a neighbourhood of any point x € M.
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Let us write
(23) U, = pr'[palU.]] for xe M.

For any point p e U, we have pg(p) € pr[U;], and so there exists q € U,
such that pg(p) = pr(q); hence pepr,[R n (U;xM)]. Moreover, if
pepr,[R N (U, xM)], then there exists q € U, such that (¢, ppeU xM

and pg(q) = px(p); hence p € pr ' [pr[U:l].
We get the equality

U, = pry[R ~ (U, x M)].

From (a) and the fact that the relation R is symmetric it follows that the
mapping pr, is weak coregular, so it is an open mapping. Hence U, is an
open set in Ty.

Since U; < U,, condition (23) leads to the equality

Uy = pa._[pa, [UL).
Condition (a) gives the weak coregularity of the mapping
prllRUx: (RU (%’U X%JUI)RU ) - (st (gU )

Equality (23) implies U, = pg'[pg[U,]]. Since pglU, = PRy > applying
Lemma 5 we get the weak coregularity of the mapping

pRIUx: (Ux,‘gv,) i (st%ux)/RUx-

Let 0 = {U,: x € M}; the family ¢ is a covering of M open in 7.
From Lemma 2 it follows that mapping (10) is weak coregular. The proof of
Theorem 3 is complete.

3. A weak coregular division of a generalized Lie group by a Lie
subgroup. Let ¥ = (G, €, ‘) be a generalized Lie group. For any set U < G
and ae G we denote by a‘U the set {au;ue U}, and by U-a the set
fua,;u e U}. For any ae G we denote by L, and R, the left and right-
translations, i.e., the mappings '

L,:G—-G, R,:G-G
given by the formulas
L,(gg =ag forgeG, R,g) =g-a forgegG.

From the definition it follows that the mappings L, and R, are smooth.
We shall write ¢ instead of the multiplication; thus

L, = ¢(a,-), R,=e(,a),
L'=e¢@'"), R!'=e(a);
L, and R, are diffeomorphisms.
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Since a- U and U -a are the images of U under L, and R,, it follows that
if U is an open set in 1, then a-U, U-a are alto open sets in 7.

ExaMpLE. Let (G,-) be a group, let ¥ be the smallest differential
structure generated by the set {c;; c € R}, where cg(g) = ¢ for g € G.

It is easy to verify that (G, ¥) is a differential space and 74, = {®, G}.

We shall prove that the mappings

¢: (G, ¥)x(G, ) = (G, %)

and
y: (G, €) - (G, ¥,
given by
@(p.q) = pq for p,qeg,
W(p) = p~' for peg,
are smooth.

From the definition of the product group we have

(G; €)x(G, ¥) = (G x G, (%Oph)cxa)v
where
%opr, = {aopr,;a e b}.
For any c¢; € ¢, p, 9 € G we have
c(@(p, ) = calp q) = ¢ = cg(pri(p, 9))

and cgoy =cz€% and so (G, %, ) is a generalizéd Lie group.
The product of generalized Lie groups is a generalized Lie group,
similarly to the theory of manifolds. More exactly, we have

THEOREM 7. If (G, €4, ¢1), (G,, €4, @4) are generalized Lie groups, then
(G1,%1, 91) (G2, 63, 03) = (G, xG,, (gl X%, @),
with the mapping
. @ (GIXGZ)X(GI XG;)—’GI )(Gz
given by '
@((p1, 91), (P2s 42)) = (01(p1, P2, 92(q1, q2)) for py,p,€Gy, 44,495 € Gy,
is a generalized Lie group.

Proof. It is easy to see that (G, x G,, ¢) is a group. The. identity of this
group is e = (e, e,), where ¢; are the identities of G; for i = 1, 2. The
inverse point to (g,, g5) is (g7 ', 95 '). Let ¥, ¥,, and y be the mappings
V;: G, =» G, y¥: G - G given by the formulae

vi(g) = 9" for g; € G;,
'ﬁ((én, 92)) = ('1’1(91)’ ¥2(g2)) for g, € Gy, g € G,.

We shall prove that the mappings ¢ and ¥ are smooth.
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For any p € ¥, x%, we have either f = aopr,, wherc a € %,, or f
= o' opr,, where o’ € €,. If B = aopr,, then, for any {g,, g,) € G; X G,

B(¥ (91> 92) = a(pr, (¥1 (91, ¥2(92) = «(¥1(g1)
= a('l’l(prl((gl’ gz))));

hence poy = aoy,opr,.
The function aoy, belongs to ¥, because Y, is smooth, and so
aoy,opr; € €, x%,.

Similarly, if § = a’opr,, then oy = a’oy,0pr, € ¥, x%,; thus
'p: (Gl xGZ) (6)1 x(gZ) - (Gl XGZ, (6)1 x(gz).

Now let B = aopr, for @ € %,. For any ((g,, 92), (4}, 95)) € (G, x G,) X
x(G, xG,) we have

B(@ (91, 92). @1, 92) = B(91(91, 91 92(95. 62))

= a(pry (0191, 91), @2(92, 92)))
= a(p, (g1, 9))-

Since ¢, is smooth, a0, € €, x¢,. There exists a mapping y € ¥, such
that «o¢@, = yopr,; hence

a(‘Pl(gb 9’1)) = )’(prl(gl, 911)) = y(g,) = )’(Pr1(91, gz))

= 3(prs (brs (@1 921, 01, ).
Thus

Boo = yopr |G, xG,0pr{(G, xGj) x (G X G,).
Since yopr,|G, xG, € ¥, x6,, the mapping fo¢ belongs to (%, x%,) x
(¢, x%,).
Similarly, if § = o' opr,, where a’ € €,, we get
Boe = dopr,|(G, xG,)opr (G, xGy) x(Gy xG,),
where & € €,; thus Bogp € (¢, x¥,) x (¥, x¥,) and

®: (G X Gy, €y xb3) x (G X Gy, € XE;) > (Gy xG, €, XE).

The proof of Theorem 7 is complete.
Let 4 =(G,%,-) be a generalized Lie group and # = (H, %y,
‘|H x H) a generalized Lie subgroup of 4. Denote by (G, %)/ the differ-

ential space ([T {G], Iy ' [¥]), where I, is the canonical mapping given
by the formula

Hy(g) =g-H for gegG.
THEOREM 8. Suppose that the following condition is satisfied:
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(bo) there exist a neighbourhood U of the identity e of the group % open in
T4, a set W < U and a weak coregular mapping

(24) se: (U, €y) = (W, €w),

such that

(25) uH A W= {s,(u)} foruel.
Then the canonical mapping

(26) Iy: (G, 6) = (G, €Y H

is weak coregular.
. Moreover, if 3¢ is an invariant subgroup of % and the condition

(27) Ty xIgy ' [¢x€] = Iy ' [¢1x Dy ' [4]

is satisfied, then there exists exactly one generalized quotient Lie group %/ #
such that the mapping

HH: 4G - {9/,#

is a weak coregular homomorphism of these Lie groups, i.e., mapping (26) is
weak coregular and the mapping

HH: (G, .) - (G/Ha ')
(where G/H = II,[G], and
-: G/HxG/H - G/H

being defined by Iy(g) M y(g) = Hx(g-g) for g, g €G) is a homomorphism
of the groups. "
Proof. Let R be an equivalence relation given by the formula R

= !(x,¥):(x, y) € GxG, x-y~ ' € H'. We shall show that conditions (a) and
(b) of Theorem 3 are satisfied.

Let us consider the mapping

4

(28) ¢: GxH - R

given by the formula ¢(x, h) = (hx, x) for x € G, he H. For any (x, y) € R
there exists (y, xy~') € G x H such that ¢(y, xy~!) = ((xy™ ")y, y) = (x, ),
so that mapping (28) is onto.

It is easy to verify that the mapping

(29) pri: (GxH, €x%y) - (G, )
is weak coregular.

Indeed, let x € G, he H, and let U,, U, be neighbourhoods of x, h
open in Ty, T4y, respectively. Putting V=U,,U = U, xU, and o(u)
= (u, h) for ue U,, we get o[V] = U, pr,o0 = idy, o(pr;(x, h)) = a(x)
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= (x, h). The mapping o: V - U is smooth, because for any «, e‘éul,
o, e((é,,)vz we have a,0pr; 00 = a,, a,0pr,00 = const. The diagram

(G x H, € x €y) ———— (R, (E X B)R)

pr Py
(G, C)
commutes. From the above we get the weak coregularity of the mapping
pri|R: (R,(6 x%6)g) — (G, 6).

We can restate condition (b) of Theorem 3 as follows:

(b’) for every x € G there exist a neighbourhood U, of x open in 14, a
set Wy, < U, and a weak coregular mapping

(30) o (Uo, Gyg) = (W, Gw,)
such that
(31) u-Hn Wy = {so(w)} for ueU,.

It is clear that (b’) implies (by). We shall prove that also (b,) implies (b’).
For any x, € G, putting

Ug = xo'U = [xpu; uc U}, W, =xq,W,

we see that U, is a neighbourhood of x open in 14, and W, = U,. Denote
by s, the mapping

ot (Uo, ug) — (Wo, (gwo)

given by so(4) = xo-S,(xg 1 u) for u € U,. Making use of (25) for any u € U,
we get

(S0} = {Xo5, (65" )} = Xo (x5 uH N W) = uH ~ W,

and consequently (31) is satisfied.

Let u e U,; there exists u' € U such that u = xo-uw'. By the weak
coregularity of s, at the point «’ there exist a neighbourhood U’ of ¥’ open in
T¢,, @ neighbourhood W’ of s, (u') open in 14, and a smooth mapping

o (W, (6whw) = (U, €y)
such that

Se 0" = idy, o'(s.(w)) = u.
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Putting Wy = xo W', Uy = xoU’, a(w) = xq0' (x5! w) for x € Wy, we define
a smooth mapping
o: (We, (Ewhw) = (Uo, (6u)uy)
satisfying the conditions
So(6(W)) = xo°5.(x5 ' (W) = xo°5.(xo ! X0 0" (x5 ' W))
= Xo'Se(0'(xg'W)) = X0 X' w = w,

for we W', so sq00 = idy. and

0 (so(#)) = xo°0"(Xg ! X5, (xg ' u)) = Xg° 0" (5. (x5 " 1))
= Xo0'(s.(u)) = xou' = u.
Thus conditions (b’) and (bg) are equivalent, as clained.

Now we shall prove the second assertion of Theorem 8. It suffices to
show that the mappings

(32) &: G/HxG/H - G/H,
(33) ¥: G/H - G/H
given by

N14(9), Mu(g)) = N(0(g,9), P(Tu(g) = Mx(¥(9)
are smooth. '
Let a € ITy ' [€]; then aoll, € €. Since the mapping ¥ is smooth, we
have aollyoy € €. According to the equality Wolly = IIyoy we have

ao¥Wollye% and hence ao¥ ellyy'[%]; thus the mapping (33)
is smooth.

The equality
(39 I ' [€]1x Ty ' [€]) = Ty x )" ' [€ x €]
is true.

Indeed, for a € ITy ' [¥] x T} ' [¥] there exsists B e My '[€] such
that « = fopr,; hence polly € 6. For any II4(p), IT4(q) we have

a((nH(P), HH(Q))) = ﬁ(an (HH(P), HH(‘I))) = ﬂ(”H(P))
= ﬂ("ﬂ (Pft (p, CI))),
ie.,
ao([lyxIy) = pollyopr,.
Since polly € €, then follyopr, e €x% and a € (IyxIy) ' [¢ x¥];
hence we get the inclusion
My ' [€6] <M ' [6] = (Myx )~ [6 x €]

From this and from (27) we obtain (34).
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For any function y € II5 ! [€¢] we have yo®o(lTyxIly) = yoIllzo@
and yoll, € ¢. Since the mapping ¢ is smooth, we have yollyo¢ €
€€ x%; hence yod e (IIyxIly) 1[4 x¥]. According to (34), yod e
Iy ' [¢]x I} ' [¢] and the mapping

®: (G/H, My ' [€]) x (G/H, Iy ' [€]) — (G/H, Ty ' [€))

IS smooth.
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