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Newton-like algorithms for kth root calculation

by Marek Kuczma (Katowice) and HALINA SwiaTak (Krakéw)

Abstract. The algorithm
() @y+1 =pNa, *+(1—p)a,, neN,

for pumerical calculation of N'/ (N is here a positive number, k > 2 an integer) is considered. The
convergence of (») is investigated, and the speed of convergence is estimated, depending on the
value of the parameter pe(0, 1). For p = 1/k, algorithm (v) becomes thc well-known Newton
method of solving the equation x*—N = 0.

As a matter of fact, («) yields the iterative sequence of the function f: R* =R,

S()=pNx'"*+(1—p)x, xeR",

and the behaviour of (v) is derived [rom the properties of f. Numerical aspects of the resuits
obtained are also discussed.

In this paper we study the algorithm
N
(1) Gn+1 =P—y+4a, neN,

for numerical calculation of X/N on computers. Here k > 2 is a fixed integer,
N is a fixed positive number (not necessarily an integer), p and ¢ are fixed
positive numbers adding up to 1:

(2) p+q=1,

and the initial term @, of the sequence {a,} is taken arbitrarily from
R* =(0, o0). We are going to investigate the convergence and the rate of
convergence of sequences {a,} defined by (1) depending on the values of k and
p. Some numerical implications are discussed at the end of the paper.
Relation (1) generalizes Newton’s algorithm for square roots calculation

(cf. [4], (1]

N
Qps1 =§(~—+an>, neN,

a,
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or, with arbitrary integer k > 2,
1/ N

3) Apy1 =E(a—ﬁ1—1+(k—-1)a,,), neN,
which results from Newton—Raphson’s method (or shortly Newton’s method; cf.
(1], [2])

F(a,)

F'(a,)
for numerical solution of the equation F(x) =0 on taking F(x) = x*—N or
F(x) = x*— N, respectively.

(4) ay+1 = Q, neN,

Relation (1) can equivalently be written as
(%) an+y = f(a,), neN,
or (f™ denotes the nth iterate of the function f)
6) Gnr1=f"ay), neNy=Nu{0},
where the function f: R* —»R* is given by
(N f(x)=pNx'"*+gqx, xeR*
In the sequel we shall make use of the following definitions.

DEFINITION 1. Let I be a real interval and let & be a point in the closure
of I sg [I1 denotes the class of continuous functions f: I— R such that

J(x)=¢
x—¢

Relation (8) says that the graph of the function y = f(x) lies between the
straight lines y=x and y = ¢.

(8) 0<

<1, xelI, x#E&.

DerINITION 2. Let {a,} and {f,} be two sequences of positive numbers. We
write

an ~ ﬁn’ r—00 ?
iff the limit lim,. . «,/f, exists, is finite and positive.

The following simple lemma (cf. [5], Theorem 0.4) is of fundamental
importance.

LEMMA 1. Let I and & be as in Definition 1 and let f be a function defined on
1. Iff € SE[I], then for every x eI we have lim,,_, , f"(x) = &. If, moreover, x # &,
then the sequence {f"(x)} is strictly monotonic.

In what follows f always denotes the function (7). We introduce also a few
symbols whose meaning will not be explained again in the sequel.
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t = N'* is the only fixed point of fin R*:

9 firy=r.
Thus f(x) # x in (0, r)u(r, c0) and since evidently
(10) lin;f(x)=oo, lim x ' f(x) =q<1,

we actually have
(11) fx)>x in(0,r), f(x)<x in (r, ).

s=f'(r) = 1—pk is the multiplier of the fixed point x =r of f.
z = [(k—1)pN/q]*"* is the only point in R* at which the derivative of f:

(12) f'(x)=(1—-k)pNx"*+q, xeR*,

vanishes. The derivative (12) is strictly increasing in R* and when x varies from
0 to + o0, the function f'(x) grows from —oo to ¢ > 0 so that we have

(13) ffx)<0 in(0,2, [f(x)>0 in (z, o).

Consequently f is convex and attains its minimum at z.
u=f(z) is the minimal value of fin R™:

(14) fx)=>u, xeR*
In particular, as a consequence of (5) and (14)
(15) a=u, nz2,

for any sequence {a,} of positive numbers fulfilling (1).
M = R* denotes the set

(16) M = Qo {xeR": f™(x) =r}.

M is the set of all iterative predecessors of r and thus in view of (9), M is the
orbit of r under f(cf. {5]-[7]). We always have re M and when pk =1 this is
the only point of M. On the other hand, if pk > 1, then M is countably infinite.

The following lemma is an immediate consequence of the properties of
orbits (cf. [7]), but it can also easily be established directly.

LeMMA 2. Let {a,} be a sequence of positive numbers fulfilling (1). Then
either

(17 a,eM, neN,
or
(18) a,éM, neN.

Next we prove:
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LemMA 3. If k < 4 and pk < 2, then
(19) f2(x)#x, xeRY, x#r.
Proof. According to (7), f(x) = (pPN+¢x*)/x*~!, whence
pN+a(f(x)f _ pNx**"1 +q(pN +gx")"
(f(x))k—l xk-l(pN+qu)k-l
Thus the equation f2(x) = x may be written as

fi(x) =

(20) pNx*= 1+ g(pN +gx"* = x*(pN +gx")* 7,
or with y = x¥,

(21) PNY*"'+q(pN +qy) = y(pN +qy) ™%,
that is,

(22) yw™ 1 —qw*—pNy*~1 = 0,

where we have put for short

(23) w = pN +qy.

The thing to show is that (20) has no positive solution except x = r, or what
amounts to the same, that (21) has no positive solution except y = N. We will
deal with (21) in the form (22) with (23); we aim at showing that this system of
equations has no solution such that y > 0 except y = w = N. We have by (2)
and (23)

y—qw = (1—q*)y—pgN = p(1+q)y—pgN = p[y+q(y— N},
so that (22) can be written as
(24) yw Tl g(y—N)w 1 =Ny~ 1 = 0,

Since by (2) and (23), w—y = —p(y— N}, adding and subtracting in (24) the
term Nw*~! and making use of the identity

k—2
wk—l_yk-l =(w—)) Z wtyk—z—i
i=0
we obtain
k

-2
Y—N)[W 1+ gqw 1 —pN ¥ wiyt~27] = 0.
i=0

So we have to check whether the system of equations (23) and
k=2

(25) (qg+ DW= —pN Y wiy*"271 =0
=0

has a solution such that y >0 apart from y =w = N.
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1. k =2. Then (25) becomes (q+ 1)w—pN =0, whence w = pN/(q+1)
and by (23), y= —pN/(g+1) < 0.

2. k=3. Then (25) becomes (g+ 1)w*—pN(w+y) =0, i.e., by (23),
(26) q(g+ )w*—(g+1)pNw+p2N2 = 0.
The discriminant of (26) is

4 =(g+1)*p*N*—4q(g+ 1)p*N* = (g+1)p*N*(1-3q).

If kp = 3p < 2, then by (2) we have 3g > 1 so that 4 < 0 and (26) has no real
solution. If kp = 3p =2, then 3g=1, 4 =0, and (26) has the double root

w=N. Then by (23) also y = N.
3. k= 4. Then (25) becomes

(27) (@+ )W —pN(? +yw+w?) = 0.
By (23) we have (g+1)w—pN = g(w+y) and thus (27) turns into
(w+y)gw*—pNy) = 0.
For y > 0 we have w+y > 0 and thus we are led to investigate the equation
(28) @*>w*—pNw+p2N? = 0.
Its discriminant is
4 = p>*N*—44*p>N? = p> N*(1+29)(1 —29).

If kp=4p<?2, then 2g>1, 4<0, and (28) has no real solution. If
kp =4p = 2, then 2q = 1 and (28) has the double root w = N. By (23) also
y=N.

We see that in all considered cases the system of equations (23) and (25)
has no solution such that y > 0 except y = w = N, which completes the proof
of the lemma.

Remark 1. We conjecture that (19) is true for all positive integers k > 2
whenever pk < 2, but we have been unable to prove this in full generality.
Anyhow, the cases most important and most often encountered in practice are
just k=2 and k =3 (square and cubic roots).

Now we pass to the investigation of the behaviour of sequences {a,} < R*
fulfilling (1). According to Lemma 2, such sequences have to satisfy either (17)
or (18). In the former case, the situation is trivial.

THEOREM 1. Let {a,} be a sequence of positive numbers fulfilling (1) and (17).
Then {a,} is stationary: there exists an integer m = 0 such that

(29) a,=r, n>m.
In particular,
(30) lima, =r.

n—+w

7 — Annales Polonici Mathematici LII.3
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Proof. By(17) we have a, € M, which means according to (16) and (6) that
there exists an integer m > 0 such that

(31) Am+1 = r.

Relation (29) follows from (31) by induction in view of (5) and (9). Relation (30)
is a trivial consequence of (29).

In case (18) the behaviour of {a,} depends further on the multiplier s of
r and thus, in fact, on pk.

THEOREM 2. Let {a,} be a sequence of positive numbers fulfilling (1) and (18).
If 0 < pk < 1, then for n > 2 the sequence {a,} is strictly monotonic and (30)
holds true. Moreover,

(32) la,—r| ~s", n—o0.

Proof. Since f'(r) = 1—pk > 0, we have z < r by (13), which in turn
implies in view of (11), (14), (9) and the strict monotonicity of f on (z, o) (cf.
(13)) that

z< f@)=u<f(ry=r.
Hence, again by the strict monotonicity of f on (z, ),
(33) f(x)<r in{u,r), f(x)>r in (r, ).

Relations (11) and (33) show that (8) is fulfilled in [u, o0), that is,
feS[[u, )], whereas (15) and (18) imply that a, € [u, ), a, # r. Disregar-
ding the first term a, of the sequence {a,}, we may consider {a,} as the iterative
sequence {f"(a,)}. The strict monotonicity of {a,} for n > 2 and relation (30)
result now from Lemma 1 and the asymptotic condition (32) is a consequence
of a theorem of Thron [8] (cf. also [6]; Thron’s theorem should be applied to
the function f(x) = r—f(r—x) having the fixed point at zero).

THEOREM 3. Let {a,} be a sequence of positive numbers fulfilling (1) and (18).
If pk = 1, then for n > 2 the sequence {a,} is strictly decreasing and (30) holds
true. Moreover,

(34) a,—r~c", n-oow,

where ce(0, 1) is a constant depending on a,.
Proof. Now we have

(35) z=u=r,

whence it follows in virtue of (11), (9) and (13) that r < f(x) < x in (r, o). Thus
FeS2[(r, )] and further we argue as in the proof of Theorem 2. Note that for
n > 2 the sequence {q,}, being strictly monotonic, has to be, in fact, strictly
decreasing because of (15), (30), and (35). Condition (34) again is a consequence
of the results in [8] (cf. also [6]).
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Remark 2. When pk =1, then algorithm (1) reduces to (3). Thus
Theorem 3 can also be deduced from known properties of Newton’s method (4)
applied to F(x) = x*~N; cf. [1], [2].

THEOREM 4. Let {a,} be a sequence of positive numbers fulfilling (1) and (18).
If 1 < pk < 2 and f fulfils (19) (cf. Lemma 3 and Remark 1), then for large n the
sequence {a,} oscillates around r and (30) holds true. Moreover,

(36) |an—r| ~ lsln’ n— oo,

when 1 < pk <2, and

37 la,—rl ~ 1/s/n, n-co,
when pk = 2.

Proof. Now we have u <r < z. When x runs from z to infinity, f(x)
strictly increases from u = f(z) to infinity. Consequently there exists a unique
point v > z such that f(v) =r. According to (16) we have

(38) veM.

In view of (15) we have a, > u. Suppose that a, > v. By (5) and (11),
a, =f(a,) <a,. If a; >v we can repeat this argument arriving thus after
a finite number of steps at an a, such that (cf. (18) and (38))

(39) a,€lu,v).

In fact, if we had a, > v for all n > 2 (by (18) and (38), a, # v for ne N), then the
sequence {a,},», would be strictly decreasing and thus-it would converge to
a limit g > v > r. Because of the continuity of f we would have (cf. [5]-[7])
f(g) = g, which is incompatible with (11). Thus there exists an me N such that
(39) is fulfilled.

We have by (10)

lim f2(x) = 00, limx"'f3(x)=4%*<1,

x—+0 X— o
which together with (19) implies that
(40) fPx)>x in (0,7, [f*x)<x in (r, 00).

According to (13) the function f'is strictly decreasing in [u, z) from the value (cf.
(40)) f () =f2%(z) < z to the value f(z) = u, and is strictly increasing in (z, v)
from f(z) = u to f (v) =r. Consequently

(41) f(x)e(r,v) for xe[u,r), [f(x)elu,r) for xe(r,v).
Hence
(42) fXx)<r in(u,7r), SHx)>r in (r,0).
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Relations (40) and (42) show that f2eSP[[u, v)], whence it {ollows in view of
(39) and of Lemma 1 that for n > m/2 the sequences {a,,} and {as,.} are
strictly monotonic and converge to r. Hence (30) results.

The oscillatory behaviour of {a,} for n > m is a consequence of (39), (5)
and (41).

When 1 < pk <2, then —1 <5< 0 and (f%'(r) = s?€(0, 1). We deduce
from the results in [8] (cf. also [6]) that then

|agm—rl ~ 8",  |agpe1—H ~5*", n-ooo.

According to Definition 2 this means that there exist positive numbers ¢, and
g, such that

(43) lim s—z"|a2.n""| =41, lim 5-2"|azn+1 -1 =yg,.
n—=w | i o]

Hence we obtain by (5) and (30)

Aap+1—T

f(aln)—r
QAypn—T -r

azn

= lim =g

n—~oo

92 _ fim
gy n-w

so that g, = |s|g,. Thus we have by virtue of (43)

Hm s|™2"|az, —r| = g, = lim |57 P]ay,.y -],
n—w n—+w
which yields (36).

When pk = 2 relation (37) can be derived in a similar manner,

As a byproduct we have the following

COROLLARY. Under the assumptions of Theorem 4 the sequences {a,,} and
{az,+1} are strictly monotonic for large n.

Remark 3. Relation (30) in Theorems 2, 3 and 4 may also be deduced
from the contents of paper [3].

THEOREM 5. Let {a,} be a sequence of positive numbers fulfilling (1) and (18).
If pk > 2, then the sequence {a,} diverges. More exactly, it has neither finite nor
infinite limit.

Proofl We have |s| > 1, consequently the fixed point x = r of fis repulsive
(cf. 5], [7]) and (30) cannot be true. The sequence {a,} cannot converge to
another point ye R" either for otherwise we would have f(y) = g contrary to
(11). By (15) the sequence {a,} cannot converge to zero. Suppose (hat
lim,_ ,a, = c0. Then there exists an nye N such that

(44) a,>v, n>n,,

where v has the same meaning as in the proof of Theorem 4. But as we have
scen, (44) leads to a contradiction,
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Remark 4. Asymptotic refations (32), (34), (36) and (37) have a rather
theoretical importance. They show, in particular, that the convergence (30) is
fastest when p = 1/k. This is just the case where (1) coincides with Newton’s
algorithm (3). On the other hand, as may be seen from (37), when p = 2/k the
convergence can be very slow.

Remark 5. The strict monotonicity of the sequence {a,} for n>2
asserted in Theorems 2 and 3 implies that for n > 2 every term of {a,} yields
a better approximation of r than the previous one. However, this does not
allow one to estimate the error of approximation |a,—r| at every step. Neither
does the asymptotic relation (32) or (34), respectively. From this point of view
we are in a much more favourable situation in cases covered by Theorem 4,
where the convergence is ultimately oscillatory. Then it is still true that, for
large n, each a, yields a better approximation of r than does ¢,-; (cf. the
Corollary Lo Theorem 4), but due to the oscillatory character of the sequence
{a,} we have the error estimate

(45) la,— ¥ < |apsy—a,|, n>m,

where me N is such that (39) is fullilled. We will return to the problem of m in
a while.

Thus if (19) is fulfilled the most convenient choice of p might be a value
slightly larger than 1/k (at any rate p <2/k). Then the convergence (30) is
geometric (cf. (36); the closer p is to 1/k, the smaller is |s| and consequently the
faster is the convergence (30)), and according to Theorem 4 the sequence {«,} is
ultimately oscillatory so that we have the error estimate (45).

When we start the algorithm (1) with an a, chosen at random from R* we
do not know which of the cases (17), (18) occurs. We proceed as if (18) were the
case (which is by far much more probable). If we arrive at an me N such that

(46) Aoy =4d

then we realize that in fact we have (17), the common value in (46) is r, and the
stationary sequence {a,} (cf. Theorem 1) satisfies (29) (resulting from (31)) and
hence also (45).

As we have seen in the proof of Theorem 4 (the srgument remains
essenlially the samc when (17) is [ulfilled), if 1/k < p < 2/k, then the sequence
{a,} is strictly decreasing for n = 2, ..., m, where m is such that (39) is true. (I
we have (17), then (39) and (46) are equivalenl.) This suggests the [ollowing
procedure: at every step of the algorithm (1) we calculate also the difference
Ups1—d,. If for an index m 22 we have

(47) U — Uy 2 0,

then (45) is valid.
Theoretically, if (19) is [ulfilled and 1/k < p < 2/k, then with a, chosen at
random [rom R' the index m in (47) may be very large. The index m tends to

m?
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infinity when a, approaches zero or infinity. But in practice we usually roughly
know the approximate value of » and may choose a, reasonably close Lo r.
Then also m > 2 fulfilling (47) will not be too large.
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