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Structure of certain closed flows

by RonaLp A. KnigHT (Kirksville, Missouri, U.S.A.)

Abstract. The classification and characterization of closed planar flows is our objective.
Our major result separates such flows into three mutually exclusive and exhaustive classes,
namely, flows with critical sets which have empty components, only nonempty compact
components, and at least one noncompact component. For each class we specify the bilateral
orbital stability properties of the compact orbits and we apply the classification schemes devised
by R. McCann for planar flows without critical points to the regular orbits.

1. Introduction. Continuous flows with closed orbits form a central class
of dynamical systems. Our objective here is to classify closed planar flows in
terms of their critical points and to characterize them in terms of the
bilateral stability properties of the compact orbits and divergence of the
regular trajectories. The major result, Theorem 1, separates closed planar
flows into three mutually exclusive and exhaustive classes, namely, flows with
critical sets which have empty components, only nonempty compact com-
ponents, and at least one noncompact component. For each case we specify
the bilateral stability properties of the compact orbits ahd we apply the
classification schemes of [10] to the components of the regular set. The
topological structure of the critical set is analyzed in [1] without making use
of the stability properties of the compact orbits.

The trajectory (orbit) through x, orbit closure of x, limit set of x,
- prolongation of x, prolongational limit set of x, and region of attraction of x
will be denoted by C(x), K(x), L(x), D(x), J(x), and A(x), respectively. The
positive and negative versions of these concepts carry the appropriate plus
and minus superscripts. The reader is referred to [2] [4], and [5] for basic
properties of dynamical system theory.

2. Closed planar flows. A flow is called closed (compact) whenever each
of its orbits is closed (compact). In this section we analyze the structure of
such planar flows completely classifying them in Theorem 1. A series of
lemmas many of which are straight forward observations are used to prove
Theorem 1. The section concludes with characterizations of closed flows.

Given a flow (R? =) we shall denote the extended flow by (R%*, =n*).
Items relative to R%* are identified by the superscript . We shall denote the
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sets of regular, periodic, and critical points of a flow by 7, P, and §,
respectively. The component of $* containing co is denoted by $* and S, is
S* —{w}. For convenience we denote the neighborhood | {intC(y): yeP
and xeintC(y)} of x by N,.

For the convenience of the reader we summarize results obtained by
McCann [10] for planar flows having no critical points. Every trajectory has
a maximal open, connected, parallelizable neighborhood. The boundary
trajectories of these neighborhoods are called separatrices and consist of the
nondispersive wandering points. Even though the cardinalities of the sep-
aratrix sets for two flows are the same the flows may be different. The set M
of separatrices is endowed with the induced topology from the quotient space
R2*/C.

The following two relations are defined:

(1) two trajectories in M are T-conmected if and only if there is a
transversal curve intersecting each and

(2) two trajectories are J-related if and only if the first is in the
prolongational limit set of the second.

Furthermore, M of M in R**/C is endowed with the above structures.
Let (R? m;) be such flows for i =1, 2 and denote the items above for
each flow with the appropriate subscript i. The primary results are:

(a) If a homeomorphism f: M~ M, preserves relations (1) and (2), then
for any maximal subsystem (U, =) of (R?, =,) there exists a unique maximal
dynamical subsystem (V,7m;) of (R%m,) such that f(M,nU/C,)
=M,nV/C, and f(oU/Cy) = 0V/C,.

(b) R**/C, is homeomorphic to R?*/C, if and only if there exists a
homeomorphism g: M; ~M, which preserves (1) and (2).

We now state our principal result.

THEOREM 1. Let (R? m) be a closed planar flow. Then exactly one of the
subsequent three conditions is necessary.
(1) S is empty and each of the following hold.
(@) T is locally parallelizable. ’
(b) T is classified by the McCann classification scheme.
(c) A*(o0) = R?*,

(2) Each component of § is compact (S, = Q) and the following hold.

(a) S and each of its components are bilaterally stable.

(b) P consists of countably many open annular regions each surrounding at
least one component of S.

() Each component of S is interior to an open annular region of periodic
orbits.
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(d) {N,: xeS} is a countable collection of unbounded open pairwise
disjoint sets homeomorphic to R?> and covering S. Moreover, PuUS
= {N,: xeS}.-

(e) T is locally parallelizable relative to n|[R*— 0PN T,

(f) Tis closed and each component is classified by the McCann scheme as
a subflow of a planar flow without critical points.

(g) Each component of T° is homeomorphic to R?.
(h) A*(00) = Tu{}.
(i) T < @P.
(3) At least one component of S is noncompact (S, # @) and the

following hold.
(a) Each compact component of S is bilaterally stable.

(b) P consists of countably many open annular regions each surrounding at
least one component of S.

(c) Each compact component of S is interior to an open annular region of
periodic orbits.

(d) {N,: xeS} is a countable collection of open pairwise disjoint sets
homeomorphic to R*> and covering S—S,. Moreover, PuUS—-S,
={J{N,: xeS}.

(e) T is locally parallelizable relative to n|[R*—0P N T.

(f) Each component of Tis classified by the McCann scheme as a subflow
of a planar flow without critical points.

(8) Each component of T° is homeomorphic to R?,

(h) A*(o0) = Tu {o0}.

(i) 0T-T<dS, and TN T < aP.

In each of the following lemmas (R?, =) is a closed planar flow.

LemMa 1. L(x) =@ if and only if x is regular.

Proof. If L(x) # @ for some point x, then L(x) = C(x) implying that
xeL(x). Hence, xePuS (see [11]). Thus, if x is regular, I(x) = @. The
converse is obvious.

LemMMa 2. Each periodic orbit is bilaterally stable.

Proof. According to the Cycle Stability Theorem (3.3, p. 196, [2]) each
periodic orbit is bilaterally stable since no point is attracted to a periodic
orbit.

LemMa 3. J(TuS) < TuS, D(TuS)=TuS, and D(P)=P.

Proof. Suppose that y is in J(x)n P for some point x of TUS. Since
C(y) is bilaterally stable D(y) = C(y) (7.6, p. 77, [4]), and hence, J(y) = C(y).
Thus, xeJ (y) = C(y) implying that x is periodic which is absurd. The lemma
follows.
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LEMMA 4. The set P is open; T is closed if and only if T and S are
separated; and T is open if and only if {T<S.

Proof. Since S is closed and every orbit in P is bilaterally stable, each
periodic orbit has a compact invariant neighborhood disjoint from S. In
view of Lemma 1 such neighborhoods must consist of periodic points,
Hence, P is open. The other properties evidently follow.

LeMMA 5. PUS is open whenever S is compact.

Proof. The set TuS is closed, and hence, locally compact. According
to Ura’s alternatives (9.1, p. 94, [4]) S is either asymptotically stable or
negatively asymptotically stable in TU S. Since A* (S) = A~ (S) = S we have
S open in TuS. Thus, T and S are components of TuS and the result
follows.

LEMMA 6. Each compact component of S is bilaterally stable and is
interior to a region of periodic orbits each of which surrounds the component.

Proof. The set G = RZ—TuS, is the union of 2-cells so that each.
compact component of S is in such a 2-cell [1]. Let S; be a compact
component of S. Each periodic orbit is bilaterally stable, and hence, D(x)
= C(x) for each x in P. We have D(S,) = G since S, = G and G is open.
Thus, D(S—S,)=S-S,. For a point s in S, the set D(s) " S, is compact
and contains a compact component of D(s). Thus, D(s) = D(s)S,, and
hence, D(S,) =S, (6.12.2, p. 68, [4]). The component S, is bilaterally stable
(7.6, p. 77, [4)).

Although each compact component of § is in the open set G, we must
show that each such component is surrounded by an annular region of
periodic orbits. Let V=) {intC(x): xeP} and S, =S n(R?>—V). We shall
show that each compact component of S is in ¥ by demonstrating that
So=9S,. Let S; be a maximal compact connected subset of S,. If no such
maximal set exists, then S, is unbounded and we are done. Either S; = @ or
S, is a component ‘of S,. In either case §; is bilaterally stable and §, has a
compact connected simply connected invariant neighborhood W. If §, =@
we select W= (0. No unbounded set N, meets W since oo ¢D*(S,). Thus,
W consists of a compact subset S union the bounded sets N,. By virtue of
the bilateral stability of each periodic orbit, if a periodic orbit were in the
boundary of a set N, the orbit must surround x, and hence, be interior to
N,. Thus, dN, < TuS for each set N, and ON,<S whenever N, is
bounded. Countably many sets N, (indexed by positive integers) meet W.
Define W, = W—U{N,:i=1,...,k} for each index k. The set M
= {W;: k any index} is a continuum since each W, is a continuum. No
point of M is periodic so that M must be S,. Since W is simply connected
W=S8 U(U{N: N.aW#Q}) = {W°UN,: N,nW# @). The compact
set W is open yielding S; = @. The proof is complete.
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Remark. At this point we can make several observations on the
structure of closed flows. If S is compact, then S and each of its components
are bilaterally stable. Whenever T is empty, each component of S$* is
bilaterally stable in R**. Each isolated point of S is a Poincaré center. Each
boundary point of T is contained in T or the boundary of S,. If the set N,
is bounded for some x in S, then the boundary of N, is a subset of the union
of the boundaries of S, and T There are countably many distinct sets N,
each homeomorphic to R?. Also, S* is either bilaterally stable or an unstable
attractor relative to M U S% provided M is a component of P or of T,
respectively. Either SU P is {eo} or oo is an accumulation point of SUP in .
R?*_ Finally, the point co is an attractor in R?* if and only if S is empty.

LemMma 7. Each component of T is homeomorphic to a subflow of a flow
on R? without compact orbits. Moreover, each component of T° is homeo-
morphic to R>.

Proof. Let K be a component of T with nonempty interior. We shall ,
show that K is homeomorphic to R2. It suffices to show that K° is simply
connected and connected. Suppose C is a simple closed curve in K° which
has an interior point x not in K° The orbit C(x) is compact since it does
not meet C. If xeP, then int C(x) cint C. Thus, if x is either periodic or
critical, S nint C # @. A component S, of Snint C is a compact component
of S. The set N, containing S, is bounded by C so that N, < §. But this
means S, meets intC which is clearly impossible. Hence, K° is simply
connected.

Before showing that K° is connected we demonstrate that T K
= Trn 2K°. Since éK® = éK we have Tn dK® = Tn dK. Next, let xe Tn oK
and let H be a transversal arc centered at x. (See [2] for a treatment of
transversal theory.) Since S is closed, xe@P. Thus, there exists a net (x;) of
periodic points on one side of C(x) converging to x. The transversal H
intersects C(x) exactly once since otherwise no periodic orbit could intersect
H (4.7, p. 175, [2]). A periodic orbit meets H in at most one point (4.4, p.
173, [2]). Any point x; on the subarc xx; connecting x to a point x; is on a
periodic orbit C(x;) separating C(x) from C(x;) because each orbit crossing
xx; does so in the same direction. The interior of each orbit C(x;) is a subset
of PuS so that Jint C(x;) = PuS with C(x) = (U int C(x;)). Next, let xox
be the subarc of H exterior to (Jint C(x;). If there is a net (y;) of periodic
points in x, x converging to x, then again C(x) < (|Jint C(y,)) leaving C(x)
separated from K —C(x) which is impossible. Thus, there is a subarc x; x of
Xo X with endpoint x such that x; x « T Now G = (x;x—{x;, x})R is an
open connected subset of T with C(x) contained in its boundary. Either every
orbit in G separates K —C(x) from C(x) which is impossible or else G = K.
Hence, G < K° and C(x) = ¢K° We have shown that TrndK = Tr dK°.

Finally, we show that K° is connected. If K = K° then the proof is
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complete. Let TndK # @ and suppose that K° is the union of two sep-
arated sets A and B. We use M to denote the set of regular trajectories in
oK. The sets A and B are invariant so that each orbit of M is in 04 or 4B.
The set K*(x) for xe M is a simple closed curve on Rz*. It separates K from
a set N,. Thus, 4 and B are subsets of the same component of R?*— K*(x)
and the orbit C(x) must be in 4 or éB but not both. Let M; = M n0A and
M, = M 0B. Then K = (AU M,)U(B U M,). The connectedness of K im-
plies that either AUM; N(BUM,) # @ or (AUuM,;)nBUM, # @. But
AUM,N"N(BUM,)=An(BUM,;)=(ANnB)u(AnM,) =, and similarly,
(AuM,)NnBUM, =@ which is absurd. Hence, K® is connected and we
conclude that K° is homeomorphic to R2.

Any regular boundary trajectory C(x) of K is in the boundary of an
unbounded set N,. Thus, C(x) is a boundary component of a periodic region
and n|K can be extended from C(x) into an open strip M in the periodic
region in such a way that the flow is parallel on M U C(x). Obtaining such
an extension at each regular boundary orbit produces an extended flow 7’ on
a set K’ homeomorphic to R2. The flow (K, n|K) is a restriction of the flow
(K’, =) which has no periodic or critical points.

The second statement of the lemma is evident completing the proof.

In light of Lemma 7 we can classify each component of T with non-
empty interior as a subflow of a planar flow with empty critical set in such a
way that the component contains the set of separatrices. Components of T
with empty interior are a single trajectory.

Proof of Theorem 1. The remainder of the proof is an easy conse-
quence of the lemmas: :

We conclude this section with characterizations of closed flows. Seibert
and Tulley have shown [11] that a point of a planar flow is Poisson stable if
and only if it is either periodic or critical. In view of Lemma 1 we have the
following characterization.

THEOREM 2. A planar flow is closed if and only if each regular point is
bilaterally divergent.

The following theorem is not valid in general (example, p. 227, [7]).
However, the fact that the minimality condition is necessary for a flow on a
Hausdorff phase space to be closed is evident from the proof of Theorem 3.

THEOREM 3. A planar flow is closed if and only if each point is contained
in a minimal set.

Proof. If (R? n) is closed, then C(x) = K(x) for each x in R2, and
hence, each point x is in the minimal set K(x).

Conversely, if L(x) # @ for some point x, then K (x) is minimal and for
any yeL(x) we have K(x) = K(y) = L(x) (12.2.2, p. 133, [4]) so that x is
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Poisson stable and xe P US. For such a point x, C(x) = K (x). Finally, L(x)
= @ for some point x implies C(x) = K (x).

TueorREM 4. A planar flow is closed if and only if A(S)=S and each
periodic orbit is bilaterally stable.

Proof. Necessity follows from Lemma 2 and L(x)nS =@ for each x
in TUP. Conversely, xe PuS implies C(x) = K(x). If xeT, then by the
hypothesis L(x)"(PuUS)=Q and L(x)nT=@ (1.11, p. 184, [2]), and
hence, C(x) = K (x).

THEOREM 5. A planar flow is closed if and only if each periodic orbit is
bilaterally stable, each compact component of 38 (S) is bilaterally stable, and
A(S,) =S<.

Proof. The reasoning used in the proof of Theorem 4 for sufficiency is
applicable here as well. Necessity of the conditions follows from Theorem 1.

The following corollary was obtained by Knight [8] for certain 2-.
manifolds.

CoroLLARY 5.1. A planar flow is compact if and only if each component of
OS* (S*) and each periodic orbit are bilaterally stable in R**,

The equivalence relation C on a flow (X, n) is defined by xCy provided
xeC(y). The space X/C with the quotient topology is called the orbit space
of . The orbit space need not be Hausdorff. In fact X/C is Hausdorff if and
only if (X, m) is a closed flow in which D(x) = C(x) for each x in X [9]. In
terms of Knight’s results [6] R?/C is Hausdorff if and only if the flow is
of characteristic 0. The theorem which follows identifies the structure of
X/C, where X is Hausdorff and (X, m) is closed. It follows easily from
Lemma 1 of [3].

THEOREM 6. A flow on a Hausdorff space X is closed if and only if X/C is
a T; space.
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