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1. Introduction. The main purpose of this paper is to prove the
following

THEOREM: 1. Let X be a compact subset of the complen plane C such
that diaY = 2r for each component Y of X, where diaY = sup{la—b|:
a,be XY} and r > 0 does not depend on the component Y. Let I be a locally
convex Hausdorff topological wvector space over C. Let g be a continuous
seminorm defined on F. Let @ be a family of polynomials of one complew
variable with values in B such that sup qof(z) is finite for every zeX, where

few
gof(2) = q(f(2).
Then for every'w > 1 there ewist 6> 0 and M > 0 such that

of(2) < Mwl®, 2¢X9), fed,

where degf denotes the degree of f and X = {z¢ C: dist (2, X) < 8}. Moreover,
M depends on w and q, while & depends only on o but not on q.

In fact Theorem 1 is true for more general compact sets X (see [2]).

If F = C and X is connected, this theorem (called often a .Polynomial
Lemma) iy due to Leja [3]. The Polynomial Lemma of Leja appeared
to be a useful and effective tool in some important questions of analysis.
The stricking point is that its proof is quite elementary.

TFirst of all the Polynomial Lemma has been repeatedly used in the
method of extremal points and extremal functions developed by Leja
and by his students. This method found applications in the theory of
conformal mappings, in the theory of interpolation and approximation,
in the theory of Dirichlet problem and in the theory of domains of con-
vergence of series of homogeneous polynomials of several complex variables
(for references see [7], [9]). ]

Secondly, the Polynomial Lemma has been used to give a new proof
of the Hartogs theorem on geparate analyticity ([5], [6], [7]), as well
as of some of its essential generalizations [10].

Alexiewicz and Orlicz [1] applied the Polynomial Lemma (and some
other theorems of Leja related to it) in developing a theory of analytic
functions in real Banach spaces.
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Recently Theorem 1 has been nsed in [2] as one of basic tools in
developing a theory of analytic functions defined in an open subset of
a topological vector space F with values in a locally convex space F.

The proof given in [2] was based on a result obtained in [11] by
means of a theory of Riesz potentials. The proof we have presented here
works for a smaller class of compact sets X than that of [2], but it does
not require any knowledge of the potential theory. Moreover, in [2] only
the present version of the Polynomial Lemma was used. The present
proof is a modification of the original proof due to Leja [3].

Given a compact set ¥ = C, we define

expG(z) zeD
() Lz, ¥) = ’ ’
1, 2e O\ D,

where D, is the unbounded component of C\ Y and @ is the Green function
of D, with pole at oo (we put G(#) = + oo, if the transfinite diameter
a(Y) = 0).

In this paper we also prove the following

TeBOREM 2. Let X have the same meaning as in Theorem 1. Let {X} be

a sequence of compact subsets of C such that X, = Xk+1 (keN) and X = | X,

Je=1
Then
L(z,X) = lim L(z, X)), =#e¢C,

k—o00
the convergence being uniform on every compact subset of C.

This theorem has been proved in [11] by means of Riesz potentials
theory for a wider class of compact sets X. The present proof is a by-
product of the proof .of Theorem 1. Let us mention that Theorem 1 may
be easily derived from Theorem 2 (see [2]).

2. Proof of Theorem 1. We shall need the following lemma due to
Leja [3]:
LEMMA 1. Let A be a closed subset of the compact interval [0, r] such

that the Lebesgue measure m(A) > 0. Then for every neN there ewist n+1
points ty,...,1,eA such that

(1) O <t<...<t,<r,
22
/nﬂ

@) b—1, > m(d), >k, j,k=0,..,n.

12
— m(4), A4, = A\[0,s,). The set

A, is not empty. Otherwise 4 < [i,,s,), whence it follows that m(A4)

Proof. Put ¢, =infd, s, = t,+

1
< 8§g—1ty = 7 m(d) < m(A). We get a contradiction, thus 4, # 9.
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22 __ 12

%2

P'l.lt tl = iD.'EAl, 81 = t1+ m(A)’ A2 = A\[O, 81). It iS

obvious that #,—1, > 8—1, = pry m(A). We claim that 4, # @. Other-

22
wise _A.EC [to, 8q]u [tl, 31). Thus m(A)<80—t0+sl_t1 =—-’n—2-m(A) <

< m(4). Again we get a contradiction. So 4, # @.
32 — 22
Put ?, =inf A, 8, = t,+- 2 m(A4), 4y = AN[0,s,)> We have
22 — 12
,n.'!
procedure we shall construct the required system of points Byy by ooy Bed.

Let X have the same meaning as in Theorem 1, Given a point a<X
and a closed subset B = X, define

@) Pa(B) = {te[0,]: B Oa, 1) # B},

where C(a,t) = {zeC: |z2—a| = t}.
Put

o=t = 81t = m(4d). It is obvious that continuing this

o? 4 o?
b

1
I{a) =expflog dz, az=0,
0

1
One may easily check that logl(a) = log(1+a2)+2aa,rctg;.

Therefore
{4) logI(a) < (r+a)a, a=0.
LeMMA 2. If g is any complex polynomial and 8> 0, then
. d+r—m(4)\]%8°
b e <[/ SO <,

where gz = sup{|g(2)|: 2eB} and A = p,(B).

Proof. Let 1,,...,1, be the points of 4 satisfying (1) and:(2). Let
T, = {2, ..., 2,} denote a gystem of n--1 points #;¢B such that |z —a|
=t (j=0,...,n). Put

n
e—r .
IMNe, T,) = k. i=0,...,n.

k=o(izs) 7 Pk

We shall estimate |LY)| for z in the disc |z—a| < 8. It is obvious
that

l2—2z,| < |z—a|+|z,—al <0+t (B=0,...,10),|z—a| <J.
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It follows from (2) that
n? — K
nz

=t 2 m(4),

whence
2

h<r—m(d) 45 m(d).
Therefore
2
(B) |z—2 <m(A)(a2+%), where o* = [d+7r—m(4)]/m(4).

It ig clear that

|5 — ¥
(6) oy — 2l 2 |t~ 4] = ——5— m(4).

By (B) and (6)

. ”’ 1= k’ T, B\ /¥
e tai< [] (e ) <2 e/
’ k=0(k+7) IH ‘ n? nt

when |¢—a| <6 and j =0,.
Observe that

1
a’+ 2/'n, a
E'l e < [ 108
4]
Therefore

(7) LD (2, T,)| < 2[L(a)]"y le—a| < 855 =0,...,m,

2 2

2 dw =logl(a), n>1.

where a i3 given by (5).
Given any complex polynomial g of degree < v, it follows from the
Lagrange interpolation formula that

n

0@ = D eI, T,), 2eC3l=1,2,...5n =1ln.

j=0
Hence, by virtue of (7),
9@ < lgis (v +1)2{I (@)}, |e—al< 6,121,

By taking the root of order ! from both sides of the inequality and
letting I tend to infinity we get ().
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As a direct consequence of (--) we obtain the following
CorROLLARY 1. If X has the same meaning as tn Theorem 1, then

(+4) oen<ionsf2()/ L)™' sexe,

where g i8 any complex. polynomial.
Tnequality (-+-+) implies that

)
Lz, X) < I(]/T), zeX©,

because L(z, X) = sup|g(2)|*2*87, where sup is spread over all polynomials
g such that |jgllx < 1 (see [9]).

LemyA 3. Let X and {X)} have the same meaning as in Theorem 2.
Then for each &> O there exists a sequence of real numbers {m;(8)} such
that 0 < m(0)<r (keN), limmy(d) =r and '

Te—r00

deg
(8) 90l < ugnk[l(]/—‘s—)uak)] | X0, ke,

7!

where g is any complen polynomial, |lgl, = sup{|g(2)|: <X} and oy, = [(6+
+ 17—y (8)) e 8)].

Proof. Given 6 > 0, let a,(j =1,...,8) be points of X such that

8
X <= U Dy, where D, = {2¢C: [z—ay] < 8}. Put
Jml
Ajk=1’a,(xk)’ J=1,..,8 k=1,2,..,
‘where Do, (X,) i8 defined according to (3). One may easily prove that A,

is closed and [0,7] = U 4, (j =1,...,8). In particular, lim m(4y,)
k=1 k—o0

=7 (j=1,...,8).

Put

mp(6) = min m(dy,), k=1,2,...
1<7<8
It is obvious that lim m,(d) =r. By (+)
ke—~0a
8

(9) l9(2)] < llgle[L(a)]%%  2eR2 = ) Dy, keN.

j=l

In particular, the last inequality holds for ze¢X. Therefore by
‘Corollary 1, we get (8).
We are now ready to prove Theorem 1. IPut

{10) X ={2eX:qof(2)< Xk, feDP}, FkeN.
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Tt is obvious that X, is closed, Xy = Xy, X = U X,. Let

Jeeal

Sk ={mko:mrc17---5wkn}r neN,
be a system of n+ 1 Fekete points of Xy, i.e.
[ 1o—ml= [] We—wl, 96X (G=0,...,0).

OSp<YS I<p<ran
One may easily check that
(11) L0 (2, 8l K1y 2eXyy § = 0,0y,

where L") denotes the fundamental polynoniial of Lagrange corresporiding
to the system of nodes §,,.
By the polynomial formula of Lagrange

1&) = D (@) 192, 81), 2€C, fe®, degf = n.

7=0

Hence, by (10), (11) and Lemma 3
qof(z)sk(n—l—l)[I(I/—s—)I(ak)] , 2eXY9, fe®, degf =mn,keN.

n a_
Given > 1, let # be so large that Van+1 < Vw, let 6> 0 be so

_ ) 8 a__
small that I (l/—m_) < Vo and finally let % be so large that I(a,) < Vo.
Then
(12) qof(2) < kw7,  2eXY), fed, degf> n.

In order to end the proof let 8, = {¥,, ..., ¥,} be a system of n-+1
different points of X. Then

flz) = ;Z?f(%)L‘”(z, 8,), 2¢C, fe®, degf < m.
Hence by the pointwise boundedness of the family {gof},.,, we get
(13) of(r) < My, < +o00, 2eX9, fe®, deg f< n.
From (12) and (13) we get
gof(z) < Mw®®!, 2¢X0) fed,
where M = k+.M,. The proof of Theorem 1 is concluded.
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3. Proof of Theorem 2. It is known [9] that the function L defined
by (§), p. 1560, may also be obtained by

(14) Lz, ¥) = 51;13 [sup{lg(e)|/": ge®,}], 2eC,

where @, = {¢: gis a complex polynomial of degree < # such that ||g|ly < 1}-
By virtue of (9) we got

19 (2)] < ()87 2R, gel) ®,, keN.

fne=1
Hence by (14)
Lz, X)) < I(q), 2ef, keN.
We claim that
(15) 1< Lz, Xy)[L(z, X) < I(a), 2¢C, keN.

Indeed, the left-hand side inequality follows fromy the fact that
X, X. If k& is sufficiently large, then m,(4) > 0 and logL(z, X;) is
harmonic in C\ X. Moreover, the function u,(2) = log[L(z, X;)/L(z, X)]
is harmonic in (C\X) U { oo}, if we put u;(o0) = log[d(X)/d(X,)], where d
denotes the transfinite diameter of the corresponding set. By (16)
lim sup u;(2) < loglI(a;) for {eX. Therefore by the maximum principle

e—{ '

0< up(e)<logl(a,), zeC, LkeN.
Given ¢ > 0, let 6 > 0 be so small shat logZ (]/ﬁ) < g/2. Next let k,,
r

be so large that log I(e) < logI (l/ _‘5_) 482, for %> k. Then
r

0 uy(z)<e, 2eC, k> k.

It follows that lim w,(2) =0, 2e C U {oo}, the convergence being

k—
uniform in € U {oo}.
Now, Theorem 2 follows from the inequalities

0 < L(z, X,) —L(z, X) < L(¢, X) [¢*® —1],  2¢C, keN.

COROLLARY 2. If X and {X,} satisfy the assumptions of Theorem 2,
then limd(X,) = d(X).

Relerences

[1] A. Alexiewicz and W. Orlicz, Analytic operations in real Banach spaoes,

Studia Math, 14 (1953), p. 57—178.
[2] J. Bochnak and J. Siciak, Analylic funciions in topologioal vector spaoes,

ibidem 39 (1971), p. 79—114.



156

18]
{41
{6]
6]

(K4l
18]

fo]
{10]
11]

J. Siciak

F. Leja, Sur les suiles des polynbmes bornés presque partout sur la frontiére
d'un domaine, Math. Ann. 108 (1933), p, 517—524.

— Sur les séries des polynémes homogénes bornés sur un segment rectligne, Rend.
Circ. Mat. Palermo &8 (1934), p. 1—7.

— Sur une propridté des fonctions bornées sur une courbe, C.R. Acad. Seci. Parig
196 (1938), p. 321.

— Une nouvelle démonstration d'un théoréme sur les sérics de fonciions analyti-
ques, Actas de la Acad., de Lima 13 (1850), p. 3—17.

— [Teoria funkoji- analitycenych, Warszawa 1957.

C. Loster, Une propridtd des suites de polynémes homogémes bornés sur wune
oourbe, Ann. Soc. Polon. Math. 25 (19562), p. 210—217.

J. Siciak, Some applications of the method of emiremal poinmis, Colloq. Math,
11 (1964), p. 209—250.

— Separately analytic funolions and envelopes of holomorphy of some lower
dimensional subsete of O™ Ann. Polon. Math. 21 (1969), p. 146—171.

— Two oriteria for the regularity of the equilibrium IRiese poleniials, Prace Mat.
14 (1970), p. 91—99.

INSTITUTE OF MATHEMATICS, JAGELLONIAN UNIVERSITY, Oracow

Regu par la Rédastion lo 22, 4. 1970



