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Asymptotic stability of dynamical systems
with multiplicative perturbations

by Katarzyna Horsacz (Katowice)

Abstract. Sufficient conditions for the asymptotic stability and for periodicity of dynamical
systems with multiplicative perturbations are given. These criteria are applied to the Watkinson-
MacDonald model of annual plants with a seedbank.

1. Introduction. In the last few years dynamical systems with stochastic
perturbations were intensively studied ([5], [8], (9], [14], [15]). In this paper
we consider dynamical systems with multiplicative perturbations. From the
applied point of view this type of perturbations seems to be of great utility.
For example the stochastical model of the brightness of Milky—-Way propo-
sed by Chandrasekhar and Miinch ([3], [4]) leads to the same type of kernel
operators as our multiplicative model described by formula (4). Moreover,
the multiplicative perturbations in a natural way appear in biological systems
when the stimulating factor is described by a deterministic transformation
and the restraining factor is stochastic [11].

The organization of this paper goes as follows. In the next section
we specify the class of stochastically perturbed systems to be considered.
In Section 3, it is proved that the Markov operators governing the evolution
of densities corresponding to our systems are weakly constrictive. In Section
4 it is shown that, under additional assumptions, these operators are
asymptotically stable. Finally Section S contains an application to population
dynamics. Namely using our technique we may theoretically explain (in some
cases) the behaviour of the Watkinson-MacDonald “bottleneck™ model of
annual plants with a seedbank. This model was recently studied by Ellner

[6].

2. Formulation of the problem. Consider a stochastically perturbed
discrete time dynamical system of the form
(1) Xpe1 =S(x,)¢, forn=0,1,2,...,

where S is a Borel measurable transformation of R, = [0, +oc) into itself,
and ¢, are independent random variables with values in R, .
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In our study of the behaviour of (1) we shall admit the following
assumptions:

(i) The random variables ¢, are independent and all have the same
distribution with a density function g.
(i) The density g has a finite first moment, ie.,

+ @
(2) m= | xg(x)dx < + 0.
0
(1if) There are positive constants a, and b such that the restriction S; of
S to the interval [0, a,) is a C?, increasing function and

S(x)=hb for x> a,.

(iv) $(0) =0 and S’(0) > 0.
(v) S(x) €< nx+p, where n, f are nonnegative constants and ym < 1.

Finally, in addition to conditions (i)-(v), we assume that the initial
condition x, is independent of the sequence of perturbation {&,!.

Our goal is to study the asymptotic behaviour of the sequence {x,}.
Since the ¢, are random, we adopt the strategy of studing the sequence of
distributions of x,. If we let the density of the distributions of x, be denoted
by f,. then (cf. [7]) the relation between f,,, and f, is given by the formula

+ @ X 1
(3) w1 (X) = (y (—)—d_v.
fer0= 1509555 )50
Thus, given an arbitrary initial density f,, the evolution of densities corre-
sponding to the system (1) is described by the sequence of iterates {P" f;!,
where

+ 0 X 1
4 P A = (v (——-— —d,‘
(4) f (x) ([ Iy \S(J‘)>S()') )

is a linecar (Markov) operator from L' into itself.

3. Weak constrictiveness. By D we shall denote the set of all nonnegative
elements f/ €' such that ||f|| = 1, where ||-|| stands for the norm in L'. Our
first step in the study of the operator (4) is to find sufficient conditions for its
weak constrictiveness. A Markov operator P is called weakly constrictive if
there is a weakly precompact set .# < L' such that
(5) lim o(P"f, #) =0 for feD,

n—>+ x,
where o(f. .#) denotes the distance between the function f and the set .# in
L' norm.
An answer to this problem is given by the following
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THEOREM 1. Assume that the transformation S: R, — R, and the density
g satisfy conditions (1)—(v). Further assume that there exists a positive constant
A such that

(6) [ g0 )-d <1, where y=S5(0).
(7%)*

Then the Markov operator P defined by equation (4) is weakly constriciive.
Proof of Theorem 1. Define

+ o

M(f)= [ xf(x)dx

(4]

and consider the sequence (M (P"f)} for an fe€D. From equation (4) and
assumption (v) it follows immediately that

+ 3+, ° 1
ME = e w5 s

0 0 S(y) S()

= [ PSS | zg(z)dzdy < ym [ yP"f(3)dy+ Bm
0 0 0

=mmM(P" f)+ fm.

As a consequence

Iim
M(P"[) < iﬂ— +n"m"M(f).

Choose an arbitrary M, > pm/(1 —nm). If M(f) < 4+oc, then there is an
integer ny, = n,(f) such that

(7) M(P"fy< M, for n>n,.
Using this inequality and a classical Chebyshev type argument we obtain
®) [ PP f(x)ydx < My/r for r>0and n>n,.

For an arbitrary function ¢: (0, +oc) —»(0, + ), denote by #¢ the set
of densities f satisfying the following two conditions:

(a) { flxydx<M,/r for r>0

and

(b) .[f(x)dx <e¢ for every ¢ >0 if u(A) < (o).
A

where i denotes the standard Lebesgue measure on R. .
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Evidently #¢ is a weakly precompact set. We are going to find a ¢
such that condition (5) holds for .% = F¢. Fix an 4 > 0 for which (6) holds
true and denote by D, the subset of D consisting of all functions with M (f)
< +oc such that

+ ™

[ 5 /f(x)dx < + .
o X

Choose an feD, and set f,=P"f, n=0,1, 2, ... Further, let A < R, and
¢ >0 be given. Then, from the definition of P in equation (4), we have

e x 1
P dx = Vg | = | <dvd:
£ fa(x) dx j ! f,.(})y(s(}_))s(y) vdx

a

= | L) [ L(S0)2)g()dzdy,
0 0

where 1, is the characteristic function of the set A. Taking an arbitrary
¢ €(0, ao) we immediately obtain

9) {Pf(x)dx = [ f,(») | 14(S0)2)g(z)dzdy+
A 0 0

+ e o]

+ [ L) | LSk z)g(2)dzdy.

0

Now we are going to evaluate the first term in (9). Since

1+£0
— [g—(;ldx<l
v aox

we may choose ¢ > 0 so small that

l *!?g(x)
(r—o) 5 X

K = dx < 1.

From the continuity of the function y — S (1) and assumption (iv) it follows
the existence of a positive constant J < a, such that

(10) S(y)=(y—0)y for ye[0,d].
The mathematical expectation of

/S (y) &)

1s evidently given by

' I "7g(x)
E = _ d' .
((S () &) ) S g P
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Using inequality (10) we obtain

1 K
(11) E(W)S —+d  for ye(0, +0),
where
_ I "Pg() 1 *'7g(x)
d max (S(—(S); (E xl dx, b;‘ (‘; xA dx )

Now let

V.(f)= j ;'fn

so from inequality (11) we have

+ o te] X 1
= ‘_ ) —_— - | = d d
Va(f) gf,. 1 () g xlg(S(y))S(y) xdy
+ @ 1
= _ E|l——
[ fma ) ((S(y)én)‘

By an induction argument we obtain

)dysKVn—l(f)_{'d-

d
V) <K Vo (N)+

Since V,(f) < + oo there is some integer n, = n, (f) such that
d
Vn(f)<l—_?+l for n > n,.
As a consequence
R

c Cl
ff,,(x)dx— = [ falx)dx < f—l f.(x)dx
0

0X
<AV <A (]—+1) for n > n,

c‘( d <:
1-K )

and using the previous inequality we conclude that

Fixing ¢ so small that

(12) [j,,(x)dx g/2 for n=n,.

7 — Annales Polonici Muthematici L.2
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Finally we estimate the second term in the sum (9). Set
¢, = min(S, (¢), b)
and denote by ¢, (¢) a positive number such that

fg(z)dz <¢/2  whenever u(B) < o, (¢).
B

It 1s clear that if u(A4) < ¢, ¢,(¢) then
+ @ + ®
[ £ | 1,8 2)g(z)dzdy < ¢/2.
< 0 '

This inequality in conjunction with inequality (12) and equality (9) gives

[P"f(x)dx <e whenever u(A)<c;¢,(e) and n=n,.
A
As a consequence P"feF¢ with ¢ =c, ¢, for n = max(ng, n,). Since
Dy, 1s dense in D, this implies (5), and the proof is complete. o

Remark. The importance of weak constrictiveness is a consequence of
the following theorem of Komornik [10]:

SPECTRAL DECOMPOSITION THEOREM. Ler P be a weakly constrictive Markov
operator. Then there is an integer r, two sequences of nonnegative functions
heD and w,eL™ i=1,2,...,r, and an operator Q: L' — L' such that for
all feL', Pf may be written in the form

r

(13) Pf(x) = Y A4(f)hi(x)+Qf (),
i=1
where
Ailf) = [ f(X)w;(x)dx.
0

The functions h; and the operator Q have the following properties:

(@) hi(x)h;(x) =0 for all i+#j, so that the density h; have disjoint
supports.
(b) For each integer i there exists a unique integer w(i) such that

Ph; = h,,;,. Further, (i) # w(j) lor i # j and thus the operator P just serves
to permute the [unctions A;.

(©) |IP"Qf|| =0 as n = + 0 for every felL!.

From equation (13) it is clear that P"/ may be written as

r

(13) P f =Y (/) hpy +Calf).
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where Q,=P""'Q, and 0"() =w(w" ")) =..., and ||Q,f]| 20 as n —
+ 0. The terms in the summation in equation (14) are permuted with each
application of P. Hence, the summation portion of (14) is periodic with
period less than r!. Furthermore. since ||Q, f|| =0 as n = +oc we say that
for a weakly constrictive Markov operator the sequence |P" [} is asymptoti-
cally periodic.

4. Asymptotic stability. A Markov operator P is said to be asymptotical-
ly stable if there is a unique f, €D such that Pf, = f, and

lim ||P"f—fJJl=0 for all feD.

n—+x

Using Theorem 1 we may prove the following result concerning the
appearance of asymptotic stability of the Markov operator P defined by
equation (4):

THEOREM 2. Let the transformation S: R, — R, and the density g satisfy
conditions (1)—(v) and inequality (6). Assume that there exists a nonnegative
constant u such that

(15) g(x)>0 ae for x = u.

Then the Markov operator defined by equation (4) is asymptotically stable.
Proof of Theorem 2. To prove this theorem, we employ the follow-
ing
LeMMA. Ler P be a weakly constrictive Markov operator. Assume there is

a set E < R, of nonzero measure, u(E) > 0, with the property that for every
J €D there is an integer n,(f) such that

(16) P f(x)>0
for almost all x€E and all n > ny(f). Then P is asymptotically stable.
“The proof of this lemma may be found in [10]. ~

Since, by Theorem 1, we know that P is weakly constrictive, we need
only to demonstrate that P satisfies the rest of the assumptions of the lemma.

Let f €D be arbitrary. Since f is integrable there is a bounded subset B < R,
such that

| f(x) dx =1

B

Define f(x) = 2f(x)15(x). Clearly, feD and M(f) < +oo. From inequality
(8) it follows that

| P"f(x)dx < M,/r for r>0 and n > ny(f).

xZr
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Thus
(17) | P fxydx =3 P f(x)dx =} 1 — | P" f(x)dx}

=3(1-M,r)>0 for r>M, and n> nO(.f).

Now we may write

+ x I
18 pr! N
(18) fx)= \ /(\)/(S( )>S(J') i}

‘ 1
pr-! e |y,
)L' f(l)g(s( ))S(."‘) *

Fix r > M_ and set E = [(yr+p)u, +oc). Using assumption (v) and inequal-
ity (15) we conclude that

X 1
—— )= >0 for xeE and vy <
g (S(y) )SU‘) '

From this and (17) it [ollows that for every xe€E the product

p- ‘;mq(i)-i with 1> ng(f)+1
S /S -

as a [unction of y. does not vanish in the set defined by y<r. As a

consequence, applying inequality (18), we finally obtain

P f(x)>0 for xeE and n > no(f)+1.
Thus, the proof of the theorem is complete. -

5. An application. As an illustration, we now apply our results to a
special case of the MacDonald and Watkinson “bottleneck™ model of annual
plants with a seedbank.

In this model the size x, of the population in the n-th generation is
given by the formula

X, &,

(19) Xntl =(1+(k+p)x)“(l+p.t)'_”

where k, p. « are positive constants.
It is easy to verify that the transformation

X
(1 +(k+p) xy(1+px)' ==

(20) S(x) =

satisfies conditions (iii)-(v). In particular condition (v) is satisfied with n =0
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and
-1 a—1
@ . ’ if kx> k+p,
(L
f= 1

Thus il the density g of the independent random variables &, has a finite first
moment and satisfies the condition

+ox
[ éL?dx <1
5 oX

with some constant 4+ > 0, then Theorem 1 implies that the Markov operator
P corresponding to (19) is weakly constrictive.
If, in addition, the density g satisfies the following condition

g(x) >0 ae. for x> u,

where u is a nonnegative constant, according to Theorem 2, then the
operator P is asymptotically stable.
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