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On expansions of Meijer’s functions III

A problem of the changed parameters and particular cases

by J. LawryNowioz (Xi6dZ)

§ 4. A problem of the changed parameters. Let us introduce
the notations of the first part of this paper (see [3]) and further let
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148 J. Lawrynowicz

where the asterisk * in the first formula denotes that the number 1+ ap— a,
is to be omitted in the sequence 1+ ar— @y, ..., 14 ar— ap and, analogously,
the asterisk * in the second formula denotes that the number 14 d,—dp
is to be omitted in the sequence 1+ dp—d,, ..., 1+ dp— d,. In formulae (65)
and (66) we assume that z > 0 and ¢ fulfils the condition

(28) t£0, |argtl<irm.

The functions 4, and Dj exist if the Gamma functions appearing
in the numerators have no poles at the given points. Analogously, the
functions a and ¢ exist if the Gamma functions appearing in the respective
formulae exist. The functions G.4 and Gqp exist in each of the cases (VI),

(VII), (VIII), (IX); this will be proved below in Theorems 2A and 2B,
respectively. In the case where some of the numbers

(67) ai—an  (j=n+1,.,p5h=1,..,n),
(52) dy—dp  (j=p+l,.,15h=1,..,p)

are natural, formulae (65) and (66) must be understood in the sense
of Remarks 9 and 6, respectively.

Remark 9. In the case where some of the numbers (67) are natural,
the respective coefficients Ax(an) are to be replaced by the limit of
the products Ax(a})a(a}) as af -ap, and the respective functions
a1 Fp—1(1+ ap— by, ...) by the limit of the quotients

g+1Fpa(1+ak—by,..) a(ad) as  af—>an.

Remark 6, analogous to Remark 9, was formulated in the second
part of this paper (see [3], § 3).

Now we shall formulate and prove two more theorems. To this end,
in the considerations of the previous paragraph, we replace formula (7)
by formula (32), as has been announced in § 1 of this paper.

THEOREM 2A. Let m, n, p, q, 4, v, 0,7t be integers, let t fulfil (28) and
let one of the cases (VI), (VII), (VIIL), (IX) take place. If for large z,
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where the asterisk * denotes that the number 14 ap— ap 18 to be omitted in
the sequence 1+ ap— @y, ..., 1+ ap—ap, and in the case where some of the
numbers (67) are natural, formulae (69) and (65) must be wunderstood
in the sense of Remark 9. The connection between the branches of Gailipee
and G4I3Y is determined by Remark 3.

Proof. As in the proofs of Theorems 1A and 1B, we first state that
for any complex t + 0 in each of the cases (VI), (VII), (VIII), (IX) we
have
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Let us congider first the cases (VI) and (VII). Write the integrand
of (70) in the form
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where
0,4 = — max rec;—e*  (e* > 0 sufficiently small)
F=1,...,9

and introduce the notations
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Applying, as in the proof of Theorems 1A and 1B, the Tests 1 and 2
from § 1, we state when it is possible to perform integration in (70) term
10



150 J. Lawrynowicz

by term with the restriction that the integrals will be summed first
with respeet to # and only then with respect to ». Moreover, we state
when it is possible to evaluate these integrals from the formula (43) with
r=0,1,.. The required conditions are (28) and (68) in each of the
cases (VI) and (VII). Parts (i) and (iii) of the proof are analogous to the
corresponding parts of the proof of Theorems 1A and 1B. In part (ii)
the estimation of |§®4| in the sector 0 < » < B, where 8 (0 < B < 1) is
sufficiently small, runs in a different manner.
Here, for » > 0 we apply a well-known asymptotic formula

@ w3 %) | 3ol [Byot-Bialofa) +Bralwfe) .1,

~
dyy ey ly j=1

Q. (m/a:

where Bjp (j=1,..,7; h=1,2,...) are constants (see [4], I, formula
(32), p.87). Hence, if B (0 < f < 1) is sufficiently small, there exists
such a constant M > 0 that

0%(5)| < M| (nw)"4 " exp(—tz)| D |Byo(wf@)? | (1/a)

j=1

< My~ max {1, exp(—pret)} {Z 1Bjq w”’“l}w“‘*" ,
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and consequently the integral
8

(72) o [10% (@) de
0

converges. Similarly, for » =0 we apply a well-known formula

T=4

G wfw) = D) BiGE2((w/z) e )

he=0
where the function G:ﬁ has an asymptotic expansion

@z2wlol” 2 ) ~(@f0)” oxp (o= 2) (wfo) ) x

yy ey dy

X [BB’-{-B’{(w/w)"”““"’+B§’(w/w)"2’("")+ .];

here By (h =0, ...,7—u), ¥, By (h=1,2,..) are constants and

Y = (v— 0)—1[i(0—7+1)— ZGH— j dn]
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(see [4], I, formulae (34) and (33), pp. 87-88). Hence, if 8 (0< B < 1)
is sufficiently small, there exists such a constant M’ > 0 that

—p
@) < M’ |(7w) 4" exp(—tz)] D)
h=0
X exp(—(v— o) [(w/w) * =) (1)

T—H

< My~ 0¥ max {1, exp(~— ,Bret)}{z |BrBa| x

]
X ex] (—(z— o) re[(e/z) ¢+ } g Sramamred’
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But inequalities (8) and (10) yield for A =0, ...,7—u

|arg (we™ )| < |argw|+ [r— u—2h| =
< (p—}to— i) mt (r—p)m = Rr—o)m.
Thus, in view of (33) in case (VI) and (34) in case (VII), we obtain

— (v~ o) re[(w/@) eF IR = (B =0, ..., 7— ),
where & and ¢’ = 1/(v— o) are positive. In consequence (72) converges.

In cases (VIII) and (IX) we write the integrand of (70) also in
form (71), but now we admit

524 = (1— a)"[&(a—r-{—l)—l— Za‘rec;,-q jredh].
h=1 h=1

The proof is quite analogous and the required conditions are also (28)
and (68); only for the estimation of the modulus of

Gy veey c,) (1))

() = (nm)__s"_lexln (—tz) Go7 (w/w
dy o d

we must apply, besides the asymptotic expansions quoted above, the
well-known formulae
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where k* y3 (h=0,..,v—1), v (h =1, ..., 7—pn), I & (h =0, ..., 7—1),

AL (h=1,...,7—pu) are constants (see [4] 1, fmmulae (39), (40 (41),
(42), p. 90)

Assuming that all the conditions mentioned in the reasoning are
fulfilled, we obtain from (70) and (43)
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i.e. formula (69), and thus the proof is ended.

THEOREM 2B. Let m, n, p, ¢, u, v, 0, T be integers, let t fulfil (28) and
let one of the cases (VI), (VIIL), (VIII), (IX) take place. If for small z,

To
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where the asterisk * denotes that the number 14 dr— dy is to be omitted in
the sequence 1+4-dp—dy, ..., 14+dy—d,, and in the case where some of the
numbers (52) are natural, formulae (74) and (66) must be understood in
the sense of Remark 6. The conmection between the branches of Garim”
and GapiT is determined by Remark 4.

As is eagily seen, this theorem is equivalent to Theorem 2A.
Investigation of the integrals

f G (1jnem) G wfx) dee f G (n|z) @22 o) (1) do

gives nothing new, which may be easily verified.
The author poses the problem of finding the sets of validity of (53),
(69), (68) and (73).

§ 5. Particular cases. We shall confine ourselves to an analysis
of the case m =1 for Theorem 1A, of the case n = 1 for Theorem 2A,
and of the case u = 1 for Theorems 1B and 2B. The cases will be numbered
80 a8 to correspond to the theorems discussed; e.g. case B(VII) will cor-
respond to case (VII) from Theorem 2B. Since the cases in Theorems 1A
and 2A are numbered from (I) to (V), and in Theorems 1B and 2B from
(VI) to (IX), such notation excludes ambiguity. Note moreover that
since Theorems 2A and 2B are equivalent, we may consider Theorem 2B
alone.

Case A(I). Here we have n = ip+3g—43, whence by an easy
calculation ¢ = p+1 and # = p. Then formula (54) takes the form
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whence for b, = d;, = 1, in view of (see [5], II, formula (39), p. 486)
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we receive, after a suitable change of notations, formula (1) (¢). In view
of Remark 1 the system of assumptions (I), (28) and (53) must be completed
by the condition |arg(n[t)] <%m. Now, if we replace the condition
largw| < (u+r—3o—4v)n by |arg(w?)| < (u+v—3}o—37)n, then the
conditions |argn] < 3= and |arg! < $= may be omitted (?). Finally,
as is easily seen, formula (75) is satisfied if

n+0, w=#£0, t#0,

% laxg (/t)] < =, |arg(wi)| < (u+v—to—147)7,

(1) =0, O<u<7, O0<v<o<t=1, jot+fr<putv

and if the conditions (11), (12), (13), (14), (63) withm =1, n =p,q¢ =p+1
are fulfilled. The result obtained corresponds to Theorem 4.1 from [5],IV
(pp. 189-190) (®).

Case A(II)). Here we have two possibilities: either n = ip+3q¢—%
or n = $p-+4g—1. In the first case we state that n =p, ¢ = p-+1 and
thus nothing new is obtained: it is included in A(I). In the second case,
however, we have n =p, ¢ = p+2 and in consequence we find, as pre-
viously, that the conditions

n 0, w#0, t#0, larg (nft)| = 0,
larg (wt)] < (u+r—40—4%7)m,

(9 =20, O<u<tr, 0Krvr<o<1—-2, Lotdr<putr,

(78)

p+2 by
(80) 2 reby+ Zrea;mh-g < 2 maxre ¢4
h=1 h=1 L B

() It may easily be verified that formula (75) is only apparently more general
than (1). An analogous remark concerns also formulae (81), (90), (100) and (109) below.

() Putting it in a different way formula (75) is valid if |argn| < §=n, |argow|
< (u+v—}o—37)m, largl| < §m, l|arg(y/t) < in and as well if jarg(nft)] < im,
larg (wt)] < (u+v—}o—47r)w with the restriction that in both cases all the other con-
ditions given in the assumption of the theorem considered are fulfilled. A similar remark
concerns also formulae (81), (90), (96), (100) and (109) below. Wishing to compare the
results obtained here with C.S. Meijer's results the author will give in the sequel only
the systems of assumptions analogous to the second one of those presented here; to
obtain systems analogous to the first one gives no difficulty at all.

(*) From the above consideration it follows that formula (1) requires, in the nota-
tions of this paragraph, additionally x # v. Moreover, conditions (11) and (13) may be
rejected in the case b, = d, = 1 (but not in the general case) by analytic continuation
of the series on the right-hand side of formula (75), as is easily seen on the basis on the
completed definition of Meijer’s functions (see e.g. § 1 of this paper). An analogous
remark concerns also the next cases.
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and (11), (12), (13), (14), (53), where m =1, n = p, ¢ = p+ 2, must be
fulfilled. If this takes place, one obtains

(81) [ / Zl’(l—bﬂraf] ﬁi£¢2’1+p(n

f=1
p+2

- 1/ Sra-s+ b»](t/ml"" X

=1
N =¥ 1=bitay, .y 1= b+ ay;
x§(1/7-)p+1Fp+1(1_b,+b2, ooy L= By b tin) ™

G#H—:( bl_"'y C1y ooy ca)
o Ay ooy d; ’
whence for b, = d, =1, analogously to the previous case, we receive,
after a suitable change of notations, formula (2). The result obtained
corresponds to Theorem 7A.1 from [5],VII (pp. 84-85) for ¢ # p-+1
(according to our notations for v—1 # o+41). If one extends this result
also to the case ¢ = p+1 (i.e. T = ¢+ 2), then, as is shown by C. S. Meijer
in [b], all the given conditions remain unchanged. Hence it is easy to
infer Theorem 6B.1 from [5], VII (p. 84) and thus formula (6).

Case A(III). In this case we receive # = p, ¢ = p+1 and in con-
gsequence the conditions

n#0, w=#0, t+#0, larg(nt)<in,
|arg (ot)| < (p+r—4o—37)m,
83) p=20, O<u<t, O<pu<Lo<r—1l, }ot+dr<<puitr,

b1y €1y eey Cgy bay uey bp+2)
0,1, 2eny alp, dl’ (LN ] d‘r

(82)

(84) D reds— D rea—3(r—o+1) < (1—0) min re o,

hw=1 Timal i=1,.
and (11), (12), (13), (14), (53), where m =1, n = p, ¢ =p—|—1, by which
one obtains formula (75). This corresponds to Theorem 4.2 from [6], IV
(p. 190).

Case A(IV). Here we have, as in case A (IT), two possibilities: either
"= %‘_’P"‘%q—% or 7 = %p+%q——1 If n= %p—f—%g—-%, then »n = p,
g = p-+1, ie. nothing new is obtained: it is included in A(I). However,
ifn=3p+1g—1, then n = p, ¢ = p+2 and the conditions
n#F0, w#0, t+#0, larg(n/t)] =0,
larg(ot)| < (u+r—3to—%1)7,
(86) p=0, O<u<Tt, 0<v<o<T1—2, 3}0t+ir<put,

(87) i+ Zrebh—Zreah>—(a}+ Zredh—21ecn)

h=1

(85)
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and (11), (12), (13), (14), (80), (84), (53), where m =1, n = p, ¢ = p+2,
are obtained; under these conditions formula (81) holds. The result obtained
corresponds to Theorems 7A.2 (for ¢ # p+1, ie. T—1 # ¢+1 according
to our notations) and 7A.3 from [5], VII (p. 85). If one extends this result
also to the case ¢ = p+1 (i.e. 7 = o+ 2), then, as is shown by C. S. Meijer
in [B6], the constant § in (80) must be replaced by % and, moreover, one
must assume }o-+ 37 < g+ v; the remaining conditions are unchanged.
Hence it is easy to infer Theorem 6B.2 from [5], VIL (p. 84).

Case A(V). In this case we receive p = 0, ¢ = 1 and in consequence
the conditions

(88) n#0, w#0, t#0, |agnl) <in,

(89) p=0, O<pu<r, O0<KLr<Lo<r-1

and (11), (14), (b3), where m =1, n =0, p =0, ¢ =1, by which one
obtains formula (75). This corresponds to Theorem 4.3 from [5],IV
(p. 190) (°).

Case B(I). In this case, as may easily be verified, the system of
inequalities (9) and (10) is contradictory.

Case B(II). Here, as we verify analogously, the system of (16) and
(10) is contradictory.

Case B(III). Here we have » = ¢, whence v = 0+ 2, ¢ = p-+1 and
consequently formula (60) takes the form

(90) P/[?Jn1+dr-qﬂx

7=1

b y bm,y C Cy, b y b
+1mto ol 011 1 Omy Cuy wey Coy Bmgay - p+1)
G:+u+1,p+a+2(’7 al,.. a,,,dl,... a+z,an+1,,,,,%
o+2
[/[]Pa+@ @kymwmwﬂl
2

= =7y 1+ di—6y ooy 1+ dy— 55
y D)o o T ( r, 17 01y «ovy 17— Coy )
Z( (MenFonly La—ay o, 148~ doss; o)

Tw=0

d _r _a saey T
?+"1*;:1+1 (1/ ﬂtl b1 ’ 1y ap) ’
1y e=y ™ b”+1

(°) It is easy to see that the condition m+n—34p—34g—3 > 0is superfluous in
this theorem.
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whence for by, =d, = 0, analogously to the case A(I), but using more-
over (62), after a suitable change of notations, we receive formula (3).
Simultaneously we obtain the respective sufficient conditions

17#0, w#0, t#£0,
larg (7t)] < (m—+n—p—43)m, |arg(oft) =0,
(92) O<m<p4+1l, 0<Kn<p, p+ti<m+tn, o=0,

(91)

a+2
(93) Z red,— Zrec;.—- i< 2 mm re a;
h=1 he=1 yoeayTb

and (11), (12), (13), (14), (69), where g =p+1, u =1, v =0, 7= 04 2.
The above result corresponds to Theorem 7B from [5], VII (p. 85) for
p+3i<m+mn, largw| < (m+n—p—3})n (according to our notations
for p+3% < m+mn, larg(n)| < (m+n—p—4)mn).

Case B(IV). Similarly, as in the previous case, we have » = o,
whence r = 06+2, ¢ = p+1 and then formula (90) is also valid under
the conditions

n#0, w#0, 1#0,
larg (nt)| < (m+n—p—4)m, |argloft)) =0,
(95) o<m<pt+l, 0<n<gp, p+i<m+n, o=0

(94)

and (11), (12), (13), (14), (17), (93), (22), (59), where ¢ =p+1, u =1,
vy=o0, 7= 0+2 (). This corresponds to Theorem 7B from [5], VII
(p. 85) in its complete form.

Case B(V). In this case we receive the formula
(96} [1/n I'(1-+d, “01)] Zi".?.?ﬂ(n byy ey by €1y oy Coy Omtry ooey bq)
=1 dli" dr,al, vey Gy

-[1/ []re—a ][] rava- )| W ol x

j=rtl i=2
= Py 1ddy—cy, oy L4 di— Cg; )
xg(llﬂ)cﬂﬂd (1+d —dy, ... 1+d1 dr; (—1)" "0ft
— @y, ey —ly
”“’"(”"tl—bl, ,—be )

(1) In the cage bp+y = d; = 0 conditions (11), (14), (17) and (22) may be rejected
(comp. (%)).
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which for m = ¢, in view of (37), may also be written in the form

o0 ([ e[| reotnall 27 re )

j=1 1' =1

= Y amenn [T )

7e=0

X (Wt)rE(ﬁrf"’" oy Ba b1 a7y g apt-15 1nt)

where v = (—1)" o, 8 =1—1,aq; =1+d—a; (j =1, ..., p), =1+ d,— by
(=1,.,q) y=1+d—q (G=1,..,0), 4= 1+di—diyr (=1, ..,
and E denotes MacRobert’s function (for the definition, see e.g. [2], II,
p. 433). Formula (96) is valid if

n#0, w#0, #0,

(98)
larg(n/t)] < (m—3p—3q)m,  |arg{(-1

cr b4

ol}] < $n,

n=0, O0<m<gqg, Osp<g<pti—oa,

(99)
ipt+ig<m, 0<v<o,

and if conditions (11), (14) and (59) are fulfilled. It seems to the author
that conditions (11), (14) and (59) may be simplified or, on the other
hand, weakened by analytic continuation; the problem requires a separate
publication.

Case B(VL). In this case » = 4o+ 47— 4%, whence v =10, 1 =0+1
and consequently formula (74) takes the form

(100) [1/[1 ri+d,— cl)]

G1L+1 7)1+U ?w| b]_’ < b?n, 01, ey Ca, b1n+1, reey ba
q-+o,p+a+1\ 7 la an. d d a a
[ 1y envy Qg Wry vovy Qo 1s Wnd1y «ovy Wp

_ [1 / [ +11 T+4d— d;)]-(cu/t)d‘ x

[a<]

° 7y L dy— €y ooy 1+ dy— g )
X 1/rh), Fﬂ' ’ ' Ul ) u

r=0

nw+1,m
X G (

bl;' bG )
di+7,y 8y, .y ap)’
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whence for by = dy = 0, in view of (see [6], IL, formulae (40) and (43),
p. 486)

n+1l,m+o
Qgioprott (ﬂm

bl’ sany bm’ 01, ser y Cg, bm-].l’ weey bq_l’ 0)
1y ey Ony 0y dyy ooy dotr; Gngay oy dp

biy ey bmy €1y ey Coy bmgay ooey bq-l)
Qpy .. Qp, da, ey d¢+1, Apt1y ooy Qp

ym+o
= Ug+o-1,p+0 (nw

{(m<g—1, n>0)
and

a.; ::71" (ﬂt

b]., eeny bq_]_, 0) r m+1( O b ore b —
— __1 ¥ t ) Y1y yYaq 1)
Ty Ay eeey Gp (=1) Gopi | Ay ey Qpy ¥

0<m<g—-1<p, 0<<n<gp, r=0,1,..),

we receive, after a suitable change of notations, formula (4), which is
valid under the conditions

n#0, w#0, 1#0,
larg (nt)] < (m+-n—3p—3q)n, |arg(eoft) < in,
(102) 0<n<p, O0<m<g<p, Ipti¢g<mtn, o>0

and (11), (12), (13), (14), (73), where u =1, » = 0, 7 = ¢-+1. The result
obtained corresponds to Theorem 3.1 from [5], IIT (p. 43) for m > 0,
p < ¢—1 and |argw| < (m—+n—}p— $g— %)= (according to our notations
for n >0, g<p and |arg(nt)| < (m+n—4p—4¢)=). Formula (100), as
can be verified after C. S. Meijer in [5], is also valid for n» = 0 and for
¢ = p, provided that

(103) by #1,2,.. (j=1,..,m), reg<l (j=1,..,0)),
and thus the system of inequalities (102) may be replaced by
(104) O0<n<p, 0<m<q<p, pt+tg<mtn, oc>0.

Remark 10. To shorten the text, in the following cases the author
will include among the conditions obtained the cases n = 0, ¢ = p with
(103), though it does not spring from the above considerations.

Case B(VII). Here we have, as previously, » = 304 37—}, whence
v = ¢, T = o+1 and then formula (100) is also valid under the conditions

n#0, w#0, 1#0,
larg (t)| < (m+n—3p—3q)m, |arg(oft)| <im,
(106) p>0, 0<n<p, 0<Mm<qg<p, Ip+i¢<mtn, >0

and (11), (12), (13), (14), (35), (73), where u =1, v= o0, v = o+1 (cf.
Remark 10). If (103) is valid, we can get rid of condition (35) with u=1

(101)

(105)
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by analytic continuation. Then, in a similar way, we can prove that the
inequality |arg(n?)| < (m+n—3%p—4%q)m is superfluous and then the
formula (100) holds for any values of arg(nt) (). This corresponds to
Theorem 3.1 from [5], IIL (p. 43) in its complete form.

Case B(VIIIL). Here we have two possibilities: either v = $o-- }7— 3%
or v = }o+4r—1. In the first case we state that v = ¢, v = 0+1, and
thus nothing new is obtained: it is included in B(VII). In the second
case, however, we have » = ¢, T = 0+ 2 and in consequence we find that
the conditions

(107) 7 #0, 0 #0, 1#0, |arg(nt)| < (m+n—ip—g)m, |arg(wft)]=0,
(108) p>0, O<n<p, 0<mMm<q<p, Hp+ig<mtn, o=0

and (11), (12), (13), (14), (36), (73), where u=1, » = g, 7 = ¢+2, must
be fulfilled (ef. Remark 10); if (103) is valid, we can get rid of condition
(36) with 7 = ¢+2 by analytic continuation. If the above conditions
are fulfilled, one obtains the formula

(109) [1 / n I+ d— c,)] X

j=1
Dyyeeey Dmpy Cry couy Cgy b vy b
XG”+¢1,'m-|}U ( 1} y Ymy L1y y Yoi Um+1y y Ve )
atoptatz| N0 Ayy euvy Opy dl’ ceny d,,+2, Ant1g <oy Qp
o+2
= [t/ [ [ re+a—a]con x
Fe1

00

_ —ry1+di—er, oy 1+ di—og;
X 2 (/) a+1F¢+1(1+ di—dyy ooey 1+ dy— dyp; a’/t) 8

r=0

n+1,m

X Ggpia ("ﬂ

biy -eey bg )
d1-|—7’, Qyy ooy Ap)’

whence for b; = d;, = 0, analogously to the case B(VI), we receive, after
a suitable change of notations, formula (5). The result obtained cor-
responds to Theorem 6A.1 from [6], VII (p. 83) for |argw| < (m+n— $p—
— 3g— %)= (according to our notations for |arg(nt)] < (m+n—ip—3}q)=).

Case B(IX). Here we have, as in case B(VIII), two possibilities:
either » = 4o+47—% or v = 4o+ 3v—1. If » = Yo+ 37v— %, then » = o,
7 = ¢+1, i.e. nothing new is obtained: it is included in B (VII). However,

(') The condition }p+ 3q < m+n is evidently also superfluous. It seems that
these results may be generalized also to the case where (103) is not valid and for u > 1.
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if v=4%0+%tv—1, then v =0, 7= 0+2 and we obtain the conditions
n#0, w#0, t#0,
larg (ot)] < (m+n—3p—3q)n, |arg(eff) =0,
(111) p>0, O0<n<p, 0<Sm<Kg<p, IIp+ig<m+n, o=0

(110)

and (11), (12), (13), (14), (35), (36), (73), where uy =1, v =0, T= 0+ 2
(cf. Remark 10}, by which formula (109) holds. If (103) is valid, we can
get rid of conditions (35) with # = 1 and (36) witht = ¢+ 2 by analytic
continuation. Then, in a similar way, we can prove that the inequality
larg(nt)| < (m+n—4p—4%g)n is superfluous and then formula (109)
holds for any wvalues of arg(xt) (**). This corresponds to Theorem 6A.1
from [6], VII (p. 83) in its complete form.

Other cases of the quoted theorems of the papers [5], which have
not been mentioned here, do not immediately result from Theorems 1
and 2 of the present paper.
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