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In the present paper I deal with the problem of the existence of
solutions ¢(x) of the functional equation

(1) o[f(z)] = G(w’ ‘P(“’)) ’

which are of class C" in an open interval (a, b). f(z) and G(z,y) denote
here known, real-valued functions of real variables.

This problem has been solved for » = 0 by J. Kordylewski and
M. Kuczma in paper [3]. The authors have proved that there exist an
infinite number of solutions of equation (1) that are continuous in the
interval (a, b).

I shall prove in § 2 that under suitable assumptions equation (1)
possesses also infinitely many solutions of class C” in the interval (a, b),
where r may be infinite.

U. T. Boédewadt has considered in [1] the Abel equation

elf@)]=e(@)+1

and has proved, the assumptions on the function f(x) being similar to
those formulated in (I) below, that there exist infinitely many solutions
of the Abel equation of class ¢ (r < o).

§ 1. DEFINITION. We shall denote by COTE] a class of functions
defined and of class C” in a set E.

We suppose (ef. [6]) that

(I) The function f(x) belongs to class C[(a,b)], 1 <r < oo, and
fulfils the following conditions:

lim f(#) =a, lim f(z)=b, f(x)>x for =xe(a,bd),
z—a+0 —b—0

(2) f(®)>0 for xe(a,bd).
(The values a and b may be infinite.)
o*
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(ITI) The function G (z,y) belongs to class C'[2] in an open region 2,
normal with respect to the z-axis. Moreover, the inequality

=0

G(z, y)
® T
holds for (z, y) e 2.
Let us denote by £, the xz-section of the region 2, i.e.
Q5 (5 (@, 9) e D),

and by I, the set of values assumed by the function G(z,y) for
(z, y) € {x} X £, le.

L2 e Dy e Q2= G2, y))}.-

We suppose that

(III) 2, # 0, I, = 2y for z € (a,d).

Inequality (3) guarantees the existence of the function H(z,z)
inverse to the function G(z,y) with respeet to the variable y, i.e. we have

(4) 2= G(z,y)
The function H(xz, z) ¢ C'[2'], where

y=H(z,z).

QY w,2); e (a,b),zely}.

Let us introduce the following notation:

61(8,7,9) * 55 (62le, 2(9) + Gofe, 9 9)9'(5)

d
Gri($, @,y ..y pFFD) = ]Ts)' : %Gk(sy Py ey §0)
k=1,...,r—1.
Finally, we note the following
LEMMA. Suppose that the sequence {an)o is strictly increasing,
(@) € C[<an, ay41)], n =0, 0 < r <oo, and that we have

lim ¢P(x) = ¢ i(ans1)y, k=0,1,..,7.

T—>ap+1—0
Then the function
9(x) L ga(x) for 2z e<an, ann)

belongs to class C'[ D {an, @ps1)]-

n=0
We omit the simple induective proof of this lemma.
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§ 2. Let us take an arbitrary z,e(a,b). Denoting by f '(x) the
function inverse to the funection f(z), let us put

T=[f(x), Xpy1=7Ff(xn), n>0,
By =f@) )y Bopr=1] (@), n>0.

(6)

The sequence {x,} is strictly increasing and converges to b, and the se-
quence {r_} is strictly decreasing and converges to a.
We shall prove the following

THEOREM 1. Suppose that hypotheses (1)-(II1) are fulfilled and a func-
tion y(x) iz defined in the interval {x,, 2., v(z) € C[{(Zy, 7,)] (1 < < o0),
and fulfils the following conditions:

(7) p(@) ey for xelmy,Ty),
(8) y(z,) = G(%y 'I’(-’l"o)) ’
(9) ’r‘j(k)(ml) = Gil@o, ¥y ¥’y oory ), k=1,..,r.

Then there exists ewactly one solution ¢(x) e O[(a, b)] of equation (1)
which is an extension of the function y. This solution is given by the formulae

B Pal®) for  ®el&n, Tpny), n=0,
(10) 'P(a"") - { l}?—n(w) fm' X e <w_n, w—n+1) ? n>1 ’

where the functions pu(x) and @_a(x) are defined in the intervals {xn, X,.,)
and {X_n, X_n+,) respectively (cf. (6)) by the formulae

(11) g@) =9(@), @ar(@) =6 @), @lf (@), n>=1,
(12) p-n(®) = H(-'Dy @ntalf (a’)]) y n=1,

and the function H is defined by (4).

Proof (1). From a theorem proved in [3] it follows in particular
that the function ¢(z) defined by formulae (10)-(12) is a continuous so-
lution of equation (1) for x ¢ (a,b) already when the function y(z) is
continuous in the interval {x,,z,> and fulfils conditions (7) and (8).
Consequently it remains to prove that, if the function y(z) fulfils the »
of conditions (9), then formulae (10)-(12) define the function of class C”
in the whole interval (a, b).

At first we shall prove that

(*) ?’n(-’”) € Of[<wﬂ, w'n+l)] b n > 0 ’ 0 < r < °°’
(%) lim oq:ﬁ."’(w) = q;;"j_l(wn“) , m=0, k=0,1,..,r.
T—>Tpp1~

(1) I should like to express my thanks to Dr St. Balcerzyk for his valuable remarks
concerning the proof of this theorem.
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We shall prove assertion (x) by induction. Let » = 0. Then, ac-
cording to (11), @(z) = y(x) for x e {x,,2,) and (x*) holds as a con-
sequence of the assumptions regarding the function y(x). Further, if
om(®) € C[{&my Tm41)], m = 0, then by (11) we have

Pm4a(T) = G(f-l(m)y ?’m[f_l(m)]) y L€ <{Lmt1) Tmse2) -

But now [ Nx) € {Zm, Tms1) and @u[f ()] € C'[{@n+1, £ms2)], and con-
sequently, on account of hypotheses (I) and (II) we have @p.(z)e€

€ C'[{@m+1) Tmy2)]-

Equalities (xx) follow for ¥ = 0 from the fact that the function ¢(z)
defined by formulae (10)-(12) is continuous in (a, b). Let us fix a number %,
1 <k <r Let us note that from definitions (5) we have

k
(13) d—‘i;G(f"(w),qJ[f"(w)])=Gk(s,¢, ey @®), s =f"().

Since we have @,..(z) € CT{Zn41, Tns2)], the above formula yields for
every natural n (ef. (11))

Pali (@) = G(Sy Pny ey §0), s =fYa).

In particular, we have for z = z,4,

(14) ‘Pg?-l(mn+l) = G(Zn, @n, ---’YP(nk)) .

It follows from (9), (11) and (14) that (xx) holds for n = 0. We now
assume that

15)  lm ¢h@) =¢nn(@mn), m>0, 1=0,1,..,k.
d m+1—
We have by (11) and (13)
: : a - -
lim q)gfll(x) = llm_om G(j l(w), QJm[f l(a})])

Z—Tm+a—0 T—>Tm+a

= lim Gi(s, gm, ..., ¢2).
§->Zm+1—0

Finally, we get on account of (15) and (14) (for n = m+1)

. k k
lim 9’51»5-1(-"’7) = @re(Tmez) , B=1,..,7,
Z-Tmi—0

Assertions (x) and (xx) are valid for every n. Now let us put in lemma
an = Tn, gn(®) = @a(x), » > 0. We infer that the funection

(16) ¢*(x) 4t on(z) for zelmp,Tps), n=0

belongs to class O'[{x,, b)], since 7.@0 {&ny Tpy1) = Xy, b) (cf. (6)).
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Now we define the functions

Polr) =@"(®) for ®elm,d),
P—n-1(Z) = H(a’a P—nlf (x)]) for zelw_p-1,b).

We have g_,_:(z) = p_,(x) for z e {x_,, b), since ¢p_,(x) fulfil equation (1)
in (x_,, b). If gp_,(x) e C"[{x_,, b)] then p_,_.(x) € C[{x_,_1, b)], Decause
for x e w_n_1,b), p_u[f(x)] € O"[<2_p, b)]. Consequently

¢(x) & p-nlx) for zelT_n,b), n=0
is a function of class C'[(a, b)]. But we have

¢*(x) for ze<{x,b),
p-n®) for xelZop,Tpny1), n2=1

P-nl®) = {

whence, according to (16),ywe see that
plz)=¢(x) for xe(a,d).

This completes the proof of the theorem.

THEOREM 2. Suppose that (I)-(IIT) are fulfilled. Then equation (1)
possesses an infinite number of solutions of class C'[(a, )] (1 <7 < oo).
These solutions are given by formulae (10)-(12), where y(z) ¢ C[{xy, )]
i8 an arbitrary function which fulfils conditions (7)-(9).

Proof. For r < oo this theorem is an immediate consequence of
theorem 1. For » = oo the question arises whether one can find a funection
p(x) € C7[{Zy, z,>] which will satisfy an infinite number of conditions (9).

Let us take an arbitrary Z e (x,, x,). Let a(x) be an arbitrary function
of class C[{zy, z>] which fulfils the condition

a(x)e, for xelmy,ZT).

Then the function G(f™'(x), a[f '(x)]) belongs to class C™[<wy, f(Z))].

It is known (cf. [6]) that there exists a function y(z) ¢ C™[{x,, f(Z))]
such that

a(x) for zelzy, 7,

y(z) = { G @), alf N@)]) for xelm, f(E),

and
p(@)e 2, for ez, f(Z)).

Of course, this function fulfils an infinite number of conditions (9).
The function a(xz) may be chosen in infinitely many ways, and thus

we obtain an infinite number of functions y(x) € C°[{z,,2,>] (since we

have <z, z,> C (&, f(Z)>) which fulfil conditions (9) for r=1,2, ...
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From theorem 1 we infer that there exist infinitely many solutions ¢(x)
of equation (1) given by formulae (10)-(12), belonging to class C™[(a, b)].
This completes the proof.

Remark. Theorems analogous to theorem 2 may be proved for
more general equations

17 F(z, @), p[f (@], ..., p[[(x)]) =0,
(18) F(z, ¢(@), plh(@)], .., ¢[falx)]) =0,

which have been considered in [2] and [4]. In these equations ¢(x) denotes
the required function, and the remaining ones are known.

Namely if the assumptions stated in [2] (resp. [4]) are fulfilled, the
known functions belong to class C" in suitable sets, and the function f(x)
(resp. fa(z)) in equation (17) (resp. (18)) fulfils condition (2), then equa-
tion (17) (resp. (18)) possesses an infinite number of solutions of class C
(1 <r < o) in the interval (a, b).
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