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Strong maximum and minimum principles for parabolic
functional-differential problems with initial inequalities

u(ty, x) < K

(Z)

by Lupwik Byszewski (Krakow)

Abstract. The aim of the paper is to give strong maximum and minimum principles for
parabolic [functional-differential problems with initial inequalities in relatively arbitrary
(n+1)-dimensional time-space sets more general than the cylindrical domain.

1. Introduction. In this paper we consider diagonal systems of non-linear
parabolic functional-differential inequalities of the form
(1'1) u:(t’ x) s f‘(t! x’ u(t’ x)l u‘l(t’ x)’ uixx(t’ x)’ u) (i = 1’ v m)
(2)
for (t, x)=1(t, x{,..., x,)eD, where D c(ty, t,+T]xR" is one of three
relatively arbitrary sets more general than the cylindrical domain
(to, to+T]x Dy = R**' The symbol u denotes the mapping

u: Da(t,x)-u(t, x) = ('(t, x),..., u"(t, x)) e R™,

where D is an arbitrary set contained in (— oo, to+ T] % R" such that D < D.
The right-hand sides f* (i=1,..., m) of systems (1.1) are functionals of
u; ul(t, x) = grad,u'(t, x) (i=1,..., m) and ul,(t, x) (i = 1,..., m) denote the
matrices of second order derivatives with respect to x of u'(t, x) (i=1,..., m).
We give two theorems on strong maximum and minimum principles for
problems with inequalities (1.1) and with the initial inequalities

uty, x) < K for xe8§,,
(%)

respectively, where K = (K!,..., K™ is a constant function and
S,,:=int{xeR": (ty, x)eD}.

The results obtained are a generalization of those given by Redheffer and
Walter [3], by Szarski [4] and [5], by Besala [1], by Walter (7] and, by the
author [2] and base on those results. To prove the results of this paper we use
the theorem on strong maximum principle from [2].
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2. Preliminaries. The notation and definitions given in this section are valid
throughout the paper. Some of them are similar to those applied by Szarski
([6] and [57), Redheffer and by Walter [3], Besala [1] and by the author [2].

We use the following notationn R=(—o0, ), N={1,2,..},
x=(x,..., %) (nEN).

For any vectors z = (z*,..., z"eR™, Z=(Z',..., 2")eR" we write

<z if Z<gF (i=1,....,m).

Let t, be a real finite number and let 0<T <oo. A set
D < {(t, x): t >ty,, xeR"} (bounded or unbounded) is called a set of type (P) if.

(a) The projection of the interior of D on the t-axis is the interval
(tOs t0+ T)
(b) For every (f, X)e D there is a positive r such that
{{t, x): =P+ 3 (x;—X)P2 <rt<f}eD.
i=1

For any te[ty, t,+T] we define the following sets:

q {int{xeR": (to, x)eD}  for t = t,,

‘ —

{xeR": (t, x)e D} for ¢ +# t,,
_ {intfDn({t} x R")] for t =¢,,
7= DAt} x RY) for t # t,.

It is obvious that S, and o, are open sets in R" and R"*!, respectively.

Let D be a set contained in (—o0, t,+ T]x R" such that D = D. We
introduce the following sets:

6,,D:=5\D and I':=0,D\o,.

For an arbitrary fixed point (£, £)e D we denote by S~ (i, %) the set of points
(t, x)e D that can be joined to (f, X) by a polygonal line contained in D along
which the t-coordinate is weakly increasing from (t, x) to (i, X).

Let Z, (D) denote the space of mappings

w: Da(t, x)-wit, x) = (w!(t, x),..., w"(¢t, x))eR™

continuous in D,
In the set of mappings bounded from above in D and belonging to Z
we define the functional

(D)

LY

fw],= max sup{0, w(f, x): (f, x)eD, I<t}, where t<t,+T
i=1,..., m
By X we denote a fixed subset (not necessarily a linear subspace) of Z, (D)
and by M,..(R) we denote the space of real square symmetric matrices
r= [rjk]nln-
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A mapping ueX is called regular in D if u, ul=grad i
uhy = [Wypdnxn (i=1,..., m) are continuous in D.
Let the mappings

fii DXR™" X R"X M, x,(Ryx X3(t, x, z, q, 1, w)—> fi(t, x, z, g, r, W) R
(i=1,...,m
be given and let the operators P; (i =1,..., m) be defined by the formulae
Pu(t, x) = ui(t, x)—f(t, x, ut, x), uk(t, x), ut, (¢, x), u),
ueX, (t, x)eD (i=1,...,m).

A regular mapping u [v] in D is called a solution of the system of the
functional-differential inequalities

(2.1) Pu(t,x) <0, (t,x)eD (i=1,...,m)
[(2.19 Pu(t,x)=20, (@, x)eD (i=1,...,m)]

in D if (2.1) [(2.1"), respectively] is satisfied.

For a given regular mapping u in D and for an arbitrary fixed index
ie{l,..., m} the mapping f* is called uniformly parabolic with respect to u in
a subset E < D if there is a constant x¥ > 0 (depending on E) such that for any
two matrices 7= [F,], F = [F]eM,.,(R) and for (¢, x)e E we have

(22) F<F= [, x, u(t, x), ullt, x), £, w)=f (¢, x, u(t, x), ult, x), F, w)

n
> Y, (Fy—Fy,
Jj=1
n

where 7 < 7 means that Y (7, —Fy)44; <O for every (4,,..., 4,)eR"
k=1 . .
If (2.2) is satisfied for 7 = ul,(t, x), F = tl(t, x)+r, r 2 0 and » = 0, then f*

is called parabolic with respect to u in E.

t
to+T

to

Fig. 1. The set D of type (P;) if D =(intD)uo, .
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An unbounded set D of type (P) is called a set of type (P;) (see Fig. 1) if
(2.3) rné,, +#9.

A bounded set D of type (P) is called a set of type (Pp).

It is easy to see that each set D of type (Pj) satisfies condition (2.3). Moreover,
it is obvious that if D, is a bounded subset [D is an unbounded proper subset]
of R", then D =(ty, t,+T]x D, is a set of type (Py) [(P,). respectively].

3. Lemma. As a consequence of Theorem 3.1 from [2] we obtain the
following:

LeEmMMA 3.1. Assume that:
(1) D is a set of type (P).

(2) The mappings f* (i=1,..., m) are weukly increasing with respect to
2T 2 2™ (i=1,..., m). Moreover, there is a positive constant
L such that

f‘.(t’ x’ z’ q’ ri w)-fi(t| x' z-’ q‘ F’ w)
< L( max |z*—2 + |x] Z lg” — | + x| Z |r i —Fpl + [w—w])
k=1,....m =1 Jk=1
for all (t,x)eD, z,ZeR"™, q, §eR", r,FeM,,(R), w, we X, where

sup [w(t, x)—w(t,x)] <oc (i=1,...,m)
(t.x)eD

(3) The mapping u belongs to X, and sup u(t, x) < 0.
(4.x)eD

(4) u(t, x) < K for (t. x)ed, D, where K = (K'...., K™ is a constant func-
tion belonging to X.

(5) f't, x, K,0,0,K) <0 for (t, x)eD (i=1,..., m).
(6) The mapping u is a solution of system (2.1) in D.

(7) The mappings f' (i = 1,..., m) are parabolic with respect to u in D und
uniformly parabolic with respect to K in any compact subset of D.

Then
u(t, x) < K for (t, x)eD.
Moreover, if there is a point (t, €D such that u(l. %) = K. then
ult, x) =K  for (t, x)e S~ (1. %).
4. Strong maximum and minimum principles with initial inequalitics in sets of

types (P;) and (Pg). Now we shall prove the following theorem on strong
maximum principles with initial inequalities in sets of types (P,) and (P).
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THEOREM 4.1. Assume that:
(i) D is a set of type (Py) or (Py) and assumption (2) of Lemma 3.1 holds.

(i) The mapping u belongs to X and the maximum of u on I' is attained.
Moreover,

4.1) K:= max u(t, x)
,x)elr

and KeX.
(iii) The inequality
(4.2) u(te, x) < K for xe§,,
is satisfied.
(iv) The maximum of u in D is attained. Moreover,

4.3) M = max u(t, x)

(l,x)eﬁ

and MeX.
) fi(t, x, M,0,0, M)< 0 for (t,x)eD (i=1,..., m).
(vi) The mapping u is a solution of system (2.1) in D.

(vii) The mappings f* (i = 1,..., m) are parabolic with respect to u in D and
uniformly parabolic with respect to M in any compact subset of D.

Then

4.4) max u(t, x) = max u(t, x).
(t,x)eD (¢, x)el
Moreover, if there is a point (t, X)e D such that u(f, ¥) = max u(t, x), then
(1,x)eD
u(t, x) = max u(t, x) for (t, x)eS™(t, %).

(t.x)el

Proof. We shall prove Theorem 4.1 for a set of type (P,) only since the
proof for a set of type (Pp) is analogous.
We shall argue by contradiction. Suppose

(4.5) M +#K.
From (4.1) and (4.3) we have

(4.6) K<M,
Consequently,

4.7) K <M.



192 L. Byszewski

Observe, from assumption (iv), that

(4.8)  There is (t*, x*)e D such that u(t*, x*) = M:= ma)gﬁ u(t, x).
(t,x)e

By (4.8), by assumption (ii) and by (4.7) we have

4.9) t*, x*)eD\I' = Dug,,
Suppose that
(4.10) (t*, x*)eD.

From assumptions (v) and (vi) and from (4.8), we get
e, x, M,0,0, M) <0 for (t,x)eD (i=1,..., m),
ueX and u, v, u., (i=1,..., m) are continuous in D,
(411) Pu(t,x)<0 for (t,x)eD (i=1,...,m),
u(t, x) <M for (t,x)eD,
u(t*, x*) =MeX.
The assumption that D is a set of type (P), assumption (2) (see assumption (1)),

relations (4.10) and (4.11) and assumption (vii) imply by Lemma 3.1 the
equation

4.12) u(t, x)y=M for (t, x)eS™(t*, x*).

On the other hand, from the definition of a set of type (P), there is a polygonal
line y < §7(t*, x*) such that

(4.13) ¥l # .

Since ueC(D), we have a contradiction of formulae (4.12) and (4.13) with
formulae (4.1) and (4.7). Therefore, (t*, x*)¢ D and, consequently, from (4.9),
(t*, x*)eq,,. But this leads, by (4.7), to a contradiction of (4.2) with (4.8). The
proof of (4.4) is complete.

The second part of Theorem 4.1 is a consequence of equality (4.4) and of
Lemma 3.1. Therefore, the proof of Theorem 4.1 is complete.

Arguing analogously to the proof of Theorem 4.1, we obtain the following

theorem on strong minimum principles with initial inequalities in sets of types
(Py) and (Pp):

THEOREM 4.2. Assume that:

(1) D is a set of type (Pr) or (Py) and assumption (2) of Lemma 3.1 holds.

(2) The mapping v belongs to X and the minimum of v on I' is attained.
Moreover,

k:= min v(t, x)
(t,x)el’

and ke X.
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(3) v(ty, x) = k for x€8,,.
(4) The minimum of v in D is attained. Moreover,
m

:= min v(t, x)
(t,x)eD

and meX.
5) fitt, x, m, 0,0, m) =0 for (t, x)eD (i=1,..., m).
(6) The mapping v is a solution of system (2.1) in D.

(7) The mappings f' (i = 1,..., m) are parabolic with respect to m in D and
uniformly parabolic with respect to v in any compact subset of D.

Then

min v(t, x) = min v(t, x).
(1,x)eb (t,x)el’

Moreover, if there is a point (f, X)eD such that v(f, %) = min v(t, x), then
t.x)eD

(t, x) = min v(t, x) for (t, x)eS™(t, X).
(t,x)ell
Remark 4.1. If D is a set of type (Pp) and if D = D, then the first parts of
assumptions (ii) and (2) of Theorems 4.1 and 4.2 relative to the maximum of
u and the minimum of v and the first parts of assumptions (iv) and (4) of these
theorems are trivially satisfied since u, ve C(D) and I' is a bounded and closed
set in this case.

Remark 4.2. If the mappings f* (i=1,..., m) do not depend on the
functional argument w, then Theorems 4.1 and 4.2 reduce to theorems on
parabolic differential inequalities of the form

u;(t» x) < fi(t: X, u(t- X), u;(ta JC), u.l;:x(t: X)) (l = 1: Ty m)

()

and in this case we can put D =D.
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