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Directional qualitative cluster sets

by A. K. Lavex (Calcutta)

Abstract. For arbitrary function f defined on the half plane H above the real line R, the
interesection properties between directional and sectorial qualitative cluster sets C, (/, x, 6) and
C,(f, x, S), and between directional cluster set C(f, x, 0) and directional qualitative cluster set
C,(f, x, 6) are studied. The results proved here state that: If f: H — W, W is a compact, normal
and second countable topological space, then (i) except a countable set of points on R, for every
sector S in H, C,(f, x, ) intersects C,(f, x, 8) for a residual set of 8 in (0, =), (ii) except a first
category set on R, for fixed 6 in (0, ©), C(f, x, 0) intersects C,(f, x, ¢) for each ¢(0, n), and (iii)
except a countable set on R, for every ¢ in (0, n), C,(/, x, ¢) intersects C(f, x, 6) for a residual
set of @ in (0, m).

1. Let R be the real line and H = R x(0, a). Let Ly(x) be a ray in H
emanating from x in R and in the direction 0, 0 < 6 < . Also, let S,; denote
a sector in H having vertex at the origin, defined by

S =1{Z2: ZeH: 0 <a <arg(z) < B <mj.

S.5(x) 1s the translate of S,4, obtained by taking the origin at x. If there is no
confusion, simply § and S(x) will stand to denote §,; and S,5(x). For xe R
and r > 0, set

L

K(x,)=1{Z: ZeH: |1Z-x| <r},
S(x,r)=S(x)nK(x,7),

and
Lg(x, r) = Lo(x) " K(x, ).

Further, E will denote the closure of the set E.

Throughout the paper, f.c. and s.c. will mean first category and second
category, respectively.

If f: H— W, W is a topological space, the qualitative cluster set C,(f, x)
of f at x is the set of all win W for which f "' (u) " K (x, r)is sc. for all r > 0
and for every open set ¥ in W containing w. The definitions of sectorial
qualitative cluster set C,(f, x, S) and directional qualitative cluster set
C,(f, x, 0) are similar with K (x, r) replaced by S(x, r) and Ly(x, r), respect-
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ively. The cluster set C(f, x, S) (resp. C(f, x,0)) of f at x in S (in the
direction 6) is the set of all w in W for which xef '(u)eS(x)
(xef Y (u) n Ly(x)) for every open set u in W containing w.

2. Wilczynski [6] proved that if f: H — R has the Baire property and
6e(0, m) is a fixed direction, then C,(f, x) = C,(/, x, 0) at all x but a f.c. set
on R. Supplementing this result, Evans and Humke [1] proved that C,(f, x)
= C;( £, x, 0) for a residual set of directions 6 in (0, «) at all x but a fc. set
on R. In [3] it is also proved that if {S} is the collection of all sectors in H
then

U IC,(f, x, 5): SeiS}} =C,(f, x, 0)

for a residual set of directions 6 (0, ) at all x but a o-porous set [7] on R.
In [2], intersecting properties of qualitative cluster sets are studied. A result
of this paper states that if f/: H— W is arbitrary, W is a compact, normal
and second countable topological space, then except a countable set of points
x in R, C,(f, x, $;) nC,(f, x, S,) # @ for each pair of sectors S; and S, in
H. Here further properties of qualitative cluster sets are studied.

3. In this section, some sets are defined which will be used in the sequel.
For Ec H and xeR set

E(x)=1{0: 0 <8 <n: Ly(x,r)nE is residual in Ly(x, r) for some r >0},

E(x)=1{0: 0<0 <n: x¢ Ly(x) nE},
and

E[x]={S: ScH: S(x,r)nE is fc. for some r > 0}.
For positive integer n and rationals a, f§ in (0, «), let
E,(x)=1{0: 0 <8 <m: Ly(x, I/n) nE is residual in Ly(x, 1/n)},
E,(x)={0: 0 <8 <m: Ly(x, /) nE = @),
E,[x]=1{S: ScH: S(x,1/n)nE is fc.],
E,[x,a, Bl = {S: S « H\S,5, S(x, I/m) A E is fc.},
and, for any set @ < (0, n), let
O, = 0 N(a, P).
For a set E c H we also define
(E) = {x: xeR; E(x) is sc. and E[x] # @},
(E)}p = {x: xeR; x¢ Ly(x) "E and E(x) # @},
(E)° = {x: xeR; E(x) is sc. and E(x) # @)}.
Lemma 1. If E c H is arbitrary, then the set (E) is countable.
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Proof. For positive integers n and p and rationals «, B, 0 <a < f < n:
let

Tooep = {x: XeR; E,p(x) is sc. and E,[x, a, f] # @},

where E_;(x) = E,(x) n(a, f).

If xe(E) then E[x] # @ and E(x) is s.c. Thus one can choose positive
integers p, n and two rationals y, §; 0 <y <J < r such that S,;(x, 1/p)nE
is fc. and E,(x) i1s s.c. Then by a result in [5], p. 56, either (O, y) or (8, m)
contains a point @'e E,(x) such that every neighbourhood of € intersects-
E,(x) in a s.c. set. Thus there exist rationals a, #; 0 <a < f < n such that
(@, )N E,(x) is a sc. set and [a, f] N[y, 6] = Q. Hence E,z(x) is a s.c. set
and E,[x, af] # Q. These imply that xe T,,,5, and hence (E) is contained in
a countable union of sets T;,;.

If possible, let T = T,,,, be uncountable for some n, p and « and B.
Then there is xo, in T which is a two-sided limit point of T Let
S(xo)€E,[xo, a, B]. Then S{x,, 1/p) NE is a fc. set. Let r > 0. Then there is
ne(xo—r, xo+r) such that S,,(y, 1/n) intersects S(xo, 1/p) in a quadrilateral
Q (say), and E,,z(n) is a sc. set. Since for OcE,;z(n), Ly(n, 1/))nE is
residual in Ly(n, 1/n) and E,4(n) is a sc. set, therefore Q NE is a second
category set in H [5], p. 56. Thus S(xq, 1/p) N E is a second category set, a
contradiction. Thus T,,; is countable for all positive integers n, p and
rationals a, ; 0 <a < f < n. Hence (E) is countable.

LemMA 2. If E < H is arbitrary and if 0e(0, n) is a fixed direction, then
the set (E)' is a first category set.

Proof. For positive integers m and n, let
P, ={x: xeR; Lg(x, 1/m)nE =@ and E,(x) # Q).

Then (E)! is contained in a countable union of the sets P,,.

If possible, let P,, be a s.c. set for some m and n. Let x4€ P, be such
that (xo—r, x¢) N P, and (xo, Xo+r) N P, are second category sets for each
r>0. Let 8o E,(x,). Then clearly 8 # 6,. Let ne(xq—r, xo+r)n P,, be
such that Ly(n, 1/m) N Ly (xo, 1/n) # @. Let |xo—n| = ro. Set

Z = {z: ze Ly(x, 1/m) 0\ Ly (xo, 1/n) for xe(xo—7, Xo+7) N Ppp}.

Then Z = H\E and Z is a second category set in Ly (Xo, 1/n). This contra-
dicts the fact that 6,¢ E,(x,). Hence P,, is a first category set for all m and
n. This proves that (E)! is a first category set.

Lemma 3. If E c H is arbitrary, then the set (E)° is countable.

Proof. For rationals a, f, 0 <a < < n and positive integers m and n
let

M pap = {x: x€R; E (%) is sc. and E,(x)\[a, B] # @}.
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If £(x) is sc. and E(x) # @, then, for some m and n, E,,(x) is s.c. set and
E.(x) # @, ie., there is some 6eE, (x) such that (0—A46, 0+460) NE, (x) is
s.c. for each 460 >0 and E,(x) # Q. If #cE,(x), then 6 # &. So there are
rationals a, § in (0, n) such that E‘,,,,,, (x) is sc. and E,(x)\[a, ] # @. Thus
xe(E)° implies x € M, for some m, n and a, B. Hence (E)° is contained in a
countable union of sets M.

Suppose M = M,,,,; is uncountable. Let x,eM be such that,
for each r>0, (xo—r, xo) "M and (xq, xo+r)"M are non-void. Let
0o €E, (xo)\[x, B]. Then there is ne(xq—r, xo+7r) such that neM
also, and S,4(n, 1/m) N Le (xo, 1/n) is a segment J (say) with end points at
Ly (n, 1/m) 0\ Lo, (xo0, 1/n) and Ly(n, 1/m) m Lg (xo, 1/n). Since for 6 € E (1),
Lg(n, 1/m)nE =@ and since E",mﬁ (n) is a second category set in (x, ),
the set J N(H\E) is a second category set in Lg,(xo, 1/n). This contradicts the

fact that 0, €E(xo). Thus M = M,,.,., is countable for all positive integers
m, n and rationals q, f, 0 <a < < r: and hence the set (E)° is countable.

Lemma 4. If f: H— W is arbitrary, where W is a compact topological
space, and if U is an open set containing C,(f, x, 0), then Ly(x, r) N f~ L) is
residual in Ly(x, r) for some r > 0.

The proof follows from Lemma 3 in [2].

Lemma 5. If f: H— W is arbitrary, W is a compact topological space,
and if V, and V, are closed sets such that C,(f,x,8)nV, =0 and
C(f,x,0nVy,=0Q, then S(x,r)nf~"(V,) is fc. set for some r >0 and

x¢Lo(x) N f 1 (Va).

Proof of the first part follows from Lemma 4 in [2] and the proof of the
second part is similar. .

4. Throughout this section, W is taken to be a compact, normal and
second countable topological space.

Tueorem 1. If f: H— W is arbitrary, then except a countable set of
points x on R, for every sector S — H,

C.fix,)nC,(f, x,8)# O

for a residual set of directions 0¢(0, n).

Proof. Let I be the exceptional set of Theorem 1 in R. Let ¢ be the
collection of all sets G which can be expressed as a finite union of members
of B, where B = {V,} is a countable basis for the topology of W. Then % is a
countable collection. For Ge % let f~!(G) = G*. Let xoel. Then there are
S(xo) = H and a second category set O(x,) in (0, n) such that C,(f, xo, S)
and C,(f, xo, 0) are disjoint closed sets for every 0eO(x,). Since W is
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compact and normal, there is Ge % such that C,(f, xo, )nG =@ and
C,(f, X0, 8) = G for a second category set of directions 8e O(xo). Then by
Lemma 5, S(xo, r) " G* is a [.c. set for at least one r > 0, and by Lemma 4,
Lg(xo, r) N G* is residual for some r > 0, for a s.c. set of 8e O(x,). Thus the
set G*[x,] # @ and G*(x,) is a s.c. set in (0, n). These imply x,€(G*) and
hence

I1<U{(G*: Ge¥).

By the result in Lemma 1, (G*) is countable for each Ge %, and hence I is
countable. This completes the proof.

THeorRem 1. If f: H — W is arbitrary, then, except a countable set on R,
at every x in R there is a residual set O(x) < (0, =) such that for every 0e O (x)
and every Sc H

C,(f, x, 0) " C,(f. x, §) # D.

This theorem can be proved by considering the collection {S,;} of all
sectors with rationals a, § in (0, n) and applying Theorem 1. (As the proof of
Theorem 2 in [4])

CoroLLArY 1. Let f: H— W be arbitrary. Then, except possibly a
countable set on R, the degeneracy of C,(f, x, S) for any S in H implies that
C,(f, x, 6) have common value for a residual set of directions 6€(0, n).

(Degeneracy of C,(f, x, S) means that C,(f, x, S) is singleton.)
THEOREM 2. If f: H — W is arbitrary and if 0e(0, n) is a fixed direction,
then except a first category set of points x on R
C(fi x, ) nCy(f, x, ?) # @
for every ®e(0, n).

Proof. Let K be the exceptional set in Theorem 2. Let 4 and G* be the
same as in Theorem 1. Let xo,e K. Then there is 6,e(0, n) such that
C(f,x,0 and C,(f, xo, 8y) are disjoint. Let Ge¥% be such that
C(f, X0, ) "G =@ and C,(f, X0, 8p) = G. Then by Lemma 4 and Lemma
5, Lgy(xos 1) N G* is residual in Ly (xo, ) for some r > 0, ie, G*(xo) # @

and xq¢ Lg(xo) " G*. Thus x,e(G*)!, and conséquently it is proved that
Kci(G*': Ge%.

By Lemma 2, (G*)! is a first category set and hence K is a first category set.
This completes the proof.

CoroLrAry 2. If f: H— W is arbitrary and if 00, n) is a fixed
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direction, then except a first category set of points x in R, the degeneracy of
C(/f, x, 0) implies that

N Cf, x, ) # D.

0<d<n

Now we give an example to ensure that the exceptional set of Theorem
2 need not be of measure zero.

ExampLE. Let P — R be any set of the first category but of positive
measure. Set :

F =) !Ly(x): xeP}.

Let f be the characteristic function of F. Then clearly for xeP, C,(/, x, 0)
=10 for every 8€(0, n)\{n/2}! and C(f, x, n/2) = {1}. Hence at every
xeP, C,(f, x,0) and C(f, x, n/2) are disjoint for every 6e(0, m)\{n/2}

TueoreM 3. If f: H— W is arbitrary, then except a countable set of
points x on R for each ®¢(0, n)

C(f, x,0) nC,(f, x, ®) # D
Jor a residual set of direction 6¢(0, ).

Proof. If T be the exceptional set of Theorem 3, then by using Lemma
4 and Lemma 5 as in Theorem 1 and Theorem 2, it can be shown that

Tc U (G*°: Ge¥%).

By Lemma 3, (G*)° is countable and hence T is countable. This completes
the proof. '

CoroLLARY 3. If f: H— W is arbitrary, then except a countable set of
points x on R for each sector S < H and each 0¢(0, n)

C(f, x, )N C,y(f, x, 0) # .

Proof. For each S — H there are @’ and #' in (0, n) such that S = S,5..

And for each fe(a', B), C(f, x, 6) = C(/, x, S). Thus the proof is complete
by Theorem 3.

CoroLLARY 4. If f: H— W is arbitrary, then, except a countable set of
points x in R, the degeneracy of C,(f, x, 0) for any 6€(0, n) implies that the
sets C(f, x, 0) have a common value for a residual set of directions 8¢ (0, n).
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