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On some non-local boundary value problems
with distributional data

by H. MARCINKOWSKA (Wroclaw)

Abstract. The paper is a continuation of the author’s earlier work [5]. It is
well known that the homogeneous elliptic boundary value problemn (with differential
boundary conditions) yields a family A; (s = —1, —2, ...) of homeomorphisms between
suitably constructed spaeces, which are subspaces of a Sobolev space or are adjoined
to them. We are going to prove that the mapping A, defines another boundary value
problem. The differential equation is the same as in the basic problem, but the boundary
conditions are the closures of integro-differential operators and the boundary data
are distributions, non-vanishing in general. Similar results are obtained for homeo-
morphisms connected with a non-homogeneous elliptic boundary value problem.

Let us consider a properly elliptic differential operator L of order 2m,
defined in a bounded domain 2 < E,, covered by a normal set B = {B;}-,
of boundary differential operators. All the coefficients of L, B; and the
boundary 42 are assumed to be infinitely differentiable. We shall use-
the following notations: D; = d/dx;; D* = Dt ... Dyny LY — the differ-
ential operator formally adjoined to L; BT = {B;}j*, — a normal
set of boundary differential operators adjoined to B with respect
to L; m; = order of B;, m; = order of B; (0 <X my, m; < 2m); |; = order
of C; (see (25)) (L;+m; =2m—1); I; = order of C; (see (25)) (L;+my,
=2m—1); H,(2, B) = {ue H,(2): Bjulyo = 0iff m; < k} (k =0,1,2,...);

[}

H,(£2) = the closure of C3(2) in H,(2); N ={ueH,,(2): Lu =0,
Bjulpg =0 for j =1,...,m}; N* = {ue H,,(R2): Lu =0, Bjulpg =0
for j =1,...,m}; © — orthogonal substraction in L,(£2); (,) — the
scalar product in L,(£2) or its extension onto H,(R)x H_,(2); {,> —
the scalar product in L,(£2) or its extension onto H,(082)x H_(3%2);
X* = the dual space of X; H ,(Q) = (H,(2))"

It is well known [2], [4], [7] that the homogeneous boundary value
problem Lu = f, Bjulj, =0 (j =1,...,m) with fe L,(2)ON"* is cor-
rectly posed in the space H,,, ({2, B)© N. This theorem may be formulated
as follows: the mapping

A: Hy (2, BION su—Lue L,(QONT
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is a linear homeomorphism. It was proved in [1], [2] that the closure

A, of A with s = —1, —2,... is a homeomorphism
—2m<Ls<0) H 2,BYON
( m ) 2m+a( y BJ© , —>(H_3(Q,B+)@N+)*-
(s < —2m) (B _sn_s(2)ON)

Fors = 0,1, 2, ... we denote by A, the restriction of A to H,,, (£, B).
The author has proved in [5] that the mapping 4, defines a boundary
value problem (non-homogeneous in general) in which the boundary
data are distributions on 4£2. The aim of the present paper is a more
detailed investigation of this question. In particular, we are going to
show that the boundary operators connected with A, (which have been
introduced in [5]) are the closures of the integro-differential operators
with weakly singular kernels. In the last section we obtain similar results
concerning the homeomorphisms connected with the non-homogeneous
boundary value problem. For the convenience of the reader we shall
recall here some results of [5].

1. Linear functionals over Sobolev spaces. The results of this section
are based on the following theorem, which is the special case of a more
general theorem due to L. N. Slobodetskii [8].

THEOREM A. For every j = 0,1, ...,1—1 (I positive integer) the map-
ping

u

H(Q2)>u->—5| eH; ; ,(00Q)
oy o

(where v = (v,, ..., v,) ts the normal unit vector field on 0Q) is continuous
(the boundary value is understood as the trace on 052).

Conversely, for any given functions ;e Hy ;_,,(02) (j = 0,1,...,1—-1)
one can construct an we H,(Q2) which satisfies the conditions
u )
T Lo =¢ (J=0,1,...,1-1)

and which depends continuously on g;.

The proof may be found in [6], [8]. The above theorem may be
reformulated in the following way:
THEOREM A,. The linear mapping
) k-1
a]u k—1
- } e”Hk—j—llz(aQ)
09 Jji=0 =0

: H .
n k(!))au-—>{ 5

i8 an epimorphism and

(1) kern = ﬁ,‘(Q).
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Proof. We have only to show (1). It follows from the continuity
0

of n that ker n o H, (L), thus it remains to show the converse inclusion.
Every we H,(f2) may be decomposed into the sum
0
U =u+u,

o O 0
with ue Hy(2) and %, orthogonal to Hy(R2). If ue ker n, so does », . But.

(2) (u,,0), =0 (ve Hyp(£2))

0
and for ve H (2)NnH,,(£2) we can integrate by parts the left-hand side
of (2), obtaining

(3) (u,, dgv) =0,
where 4; = Y (—1)"D*. As is well known, to every fe L,(2) there
la) <k
. 0
may be found an ve H,(2)NH,,(2) such that
Ak'v =f.

0 o O
So (3) yields u, = 0 and therefore ¥ = ue H)(£2), which completes.
the proof.

0
COBROLLARY 1. Let M, (L2) be the orthogonal completion of H,(Q) in
k-1
H, (R2). Then n maps isomorphically M, (£2) onto the product [ Hy_;_,,,(02).
j=0

According to the orthogonal decomposition
0

H,(Q) = H,(Q)@M,(2),

cevery linear functional f over H,({2) may be uniquely represented in
the form

f=Ffo+foas
where f, (the inner part of f) vanishes on M, (£) and f;, (the boundary

0
part of f) vanishes on H,(R2). It follows from the Riesz theorem that.f,

0
is a linear functional over H,(£2), which may be identified with a distri-

bution in 2 of the form > D°f, with f,e L,(2). The boundary part f,,
lal<k

belongs to Mj(2), so Corollary 1 yields
THEOREM B [5]. For every fe Hy(R) its boundary part admits the
representation
k—1

&
(4) (@, foa) =Z<qui1f;> (pe Hy(£2)),

j=0
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where the mapping

k-1

M (2) > foa>{fi¥fzoe [ [ Hotrsi1n(09)
j=0

t8 a linear homeomorphism.

Every function fe L,(£2) defines a linear functional over H,(£2) by
the formula

(5) H,(2)29—>(9, f).

Denoting this functional by this same letter f we shall study it more
detailly. It follows from the definition of the interior part of a functional
that

(@, f) = (¢, f0)

for pe C7°(£2); so the distributions f, and f are equal. Let us now consider
the boundary part. Applying the Riesz theorem to the space H, () we
get

(6) (@, f) = (@, B (pe Hy(2))

with an he H, (). It follows from identity (6) that h is a solution of the
generalized Neumann problem. Thus ke H,,(£2) and

(7) kb = G.f,

where G, denotes the corresponding resolving operator (it is well known
that it has an integral form on the set C3°(£2), see e.g. [2]).

0
If we decompose h = hy+ h, with hye H,(£2) and h,e M, (), then
we get

(@, ) = (@, ho)  (pe H(2)),

80 h, is a solution of the generalized Dirichlet problem. Denoting by A4,
the resolving operator (it is an integral operator in the same sense as G)
we obtain

ho = Akfa
0
where hoe H, (2)NH,, (). So
(8) (@, fo0) = (@, M) (pe Hy(Q)),
where h, belongs to M, (2)NnH, () and has the form

(9) hy = (G, — A,)f.
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For arbitrary ¢ H,(£2), g H,.(2) we have the well-known Green’s
formula

k-1 .
0
(10) (@5 9)k =I(‘P7 Akg)‘l‘ j=§o; <3‘Vj ’ Ta'g>7

where T); is a differential operator of order 2k —j—1. It follows from (10)
that A,9 = 0 if ge M, (Q), so according to (8), (9) we obtain the following
representation of the boundary part of f:

k—1 s
a]
W @) = D (55 TG40 (peH@).

Comparison with identity (4) yields

(12) Ji = TG — Ap)f
for fe L,(02).

2. The case of a subspace defined by a normal set of boundary operators.
Let e, be the unit vector of the x, —axis. At every fixed point xe 32 we
have the decomposition
(13) e, = v, (x)v(2) + 7,(%),

where » = (v,, ..., #,) 1s the normal unit vector field and 7, is a tangent
vector field (which may vanish in some points). Therefore the derivation
at the point # may be decomposed in the following way:

a 9

(14) D, = »(@ o

A3 02 is a regular surface (it would be sufficient to assume that

it is of class C2), every point :2; e 02 has an n-dimmensional neighbourhood &
with the following property: through every point ye = there goes a uni-
quely defined normal to 9Q. Shifting the tangent plane along this normal
we can extend in a natural way the fields » and z, onto =Z. So the decom-
positions (13) and (14) hold in the whole of Z. For to calculate the deriva-

0
tives in the point = of a function %, which is defined in a domain containing

.{5, it is sufficient to consider only #|;. The above remarks enable us to
decompose the derivation of higher  order as follows:

9 9\ 3 9\
5 . = oy — 4
(15) D ("1 PR +61) ( > Tac)

o 0
An elementary calculation shows that the commutator [ 3 3 ]
Ty
is a differential operator containing the tangential derivatives only.

5 — Annales Polonici Mathematici t. 29. 2.
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Usiné this fact and (15) we can bring the boundary operator
B,u = 2 b,’,,(:l;)D"’u

la]<m,
to the form

. mi—l

~ b™tu - 0"u
(16) Biu = bzm +Z bt,rFyT’

r=0
where
El = 2 bt,a(ﬁ)'l’a # 0
|al=m,

(because B;,t =1,...,m, form a normal set). We shall denote in the

sequel by 6, (with k¥ = 0,1, 2,...) the class of all boundary differential
operators of order at most k, involving only the tangential derivations.
By ©_, we shall mean the class consisting of the identically vanishing
operator only. Then it is easy to see that &, , e ©,_,. Thus the space H, (2, B)
may be characterized as the set of all functions gpe H,(£2) which satisfy
on the boundary 092 the following relations:

r J
an B = i

jeP
where re{0,1,...,k—1}n{m}j~,, P = {0,1,...,k—1}/{m;}~, and
d, ;e 0,_;. As in the case of the whole space H, (L), the orthogonal de-
composition

0

Hy(Q, B) = H,(2)0M,(2, B)

yields the decomposition of a functional f over H,(£2, B)

J =TFat+foa)
where the inner part f, -vanishes on M;(Q, B) and the boundary part
0

Jfso vanishes on H,(£2). Similarly as in Section 1, the inner part belongs
o ;

to H_,(2) and may be identified with a distribution. Let us now consider
the boundary part. It follows from Theorem A, that the mapping

ank(O,B): H, (L2, B)*”Hk_j—uz(ag)
jeP
0

is an epimorphism with the kernel H,(f). This yields

THEOREM C [6]. For every fe Hy(L2, B) ils boundary part admits
the representation

a:'
(18) (9 fo) =Z<—a—§—,ﬁ> (pe H,(2, B)),

jeP
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where the mapping

My (2, B)Gfanﬁ{fj}mﬂ]ZH—k+1+112(69)
je
t8 a linear homeomorphism.
In order to consider more detailly the case of a functional defined
by a square integrable function f, we shall need the following lemma:
LEMMA 1. For every u,ve H,(Q) and for every tangent vector field
of class C" over 32 we have the formula of integration by parts

/

(19) %vda = fu 0(;0 do, ‘
Q
where
v v
or ot T

and p is an infinitely differentiable function on 02.
Proof. The surface 02 may be locally described by means of the
equation

Ty = h(@) (& = (@1 .e0) Tpy)e Bpy)

with an kb of class O (possibly after a suitable change of the numeration
of the coordinates). Let usput s;, = o5 (j, k =1, ..., n—1) and s, = D;h.
Then the vectors o; = (8;,...,8,) (j =1,...,n—1) give a natural
basis in the tangent plane and considering #l,, as a function of local
parameters ' we have

ou S
(20) == ) VDl
i=1

n-—1
if v = Y t/0;. Using the natural Riemannian structure on 02 with g,
n  jml
= D' 8,8, We can write (20) in an invariant form

r=1
(21) L
ar

where |7, denotes the covariant derivation. Our lemma now follows im-
mediately from the well-known formula (see e.g. [9]) '

f Vay'do =0,
FY)

where y* is a contravariant veetor field of class O' over 2. We have
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only to put

a

y* = uvt”
with u, ve C'(2) and note that according to (21)

ou o0v

t%) = — °,
7 o (uvt®) F v+u F +uvp ¢

This yields (19) for smooth %, v and therefore for all u, ve H,(2) if
we understand. the boundary value in the sence of the trace.

Remark. Obviously our proof remains valid if we replace 02 by
an arbitrary regular surface X of class (%, assuming only one of the funec-
tions u|y, vl to have a compact support.

The above proved lemma yields now

COROLLARY 2. Let b be a tangential differential operator of order k
on 0 with smooth coefficients. There exists a tangential differential operator b
of the same order and such that

Cbu, vy = (u, b o)
Jor u,ve Hy (£).

Using equalities (17) together with Corollary 2 we now obtain the
following form of formula (10) valid for e H, (2, B) and ge H,, (2):

. aJ'
(22) (@, 9 = (p,4,9)+ 2<3§7Rjg>- .

jeP

Here
By =T;+ > dj T,
s=1

is a boundary differential operator of order 2k —j—1.

Now consider a function fe L,(2) and the linear functional (5) on
H, (2, B) defined by f. We obtain from (8), (9) and (22) the following
representation of its boundary part:

&
@1) (g o) = 2(—63 R,-(Gk—Ak>f> (pe H(Q, B)).

jeP
Comparison with (8) yields in this case
Ji = B;(Gr— 4,)f.

3. Boundary value problem connected with the homeomorphism /,.
We shall apply in this section the well-known generalized Green’s formula
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(for the proof see c.g. [4], [6]):

m m .
(25) _ (Lw,v)+ ) (Bju, Cjv) = (u, L¥ o)+ Y (Cju, Bjv).
i=1 i=1

It is well known that the operators C; may be arbitrarily chosen
to complete the system {B;}j~, to a Dirichlet system of order 2m. If this
choice is fixed, then {B;, C;}7*, is a uniquely determined Dirichlet system
of order 2m. )

Let us first consider the casc —2m < s < 0. Denoting by A/ the

homeomorphism corresponding to the adjoined boundary value problem
we get from (25) ’

(26) (A, v) = (u, A% oy, 0)
for ue H,,, (2, B), ve H_ (£, B™), thus the equality
(27) A =f

is equivalent to

(28) (AL amv, ) = (v,f) (ve H (2, BY)).

Splitting the functional A 4 into the interior and the boundary part
we see that (27) holds iff « is a solution of the following boundary value
problem:

(29) Lu = fq,
(30) Bjulyo =0 iff m; < 2m+s,
(31) Qu=Ff (jel).

Here I ={0,1,..., —s—1}\{m;}*, and Q;u are defined by A,u
according to Theorem C, s0 we have ‘

& -
(52) (72 (Aa) = D (55 Q) (w2, B,
jel

It was remarked in [5] that the boundary value problem (29)—(31)
0

is well posed in H,,, ,(2)ON for arbitrarily given foe H,(2) and f;e
e Hy ;,.,(00) satisfying the orthogonality condition

0’ i
(‘F’yfg)+2<a_jsfi>=0 (¢€N+)~

jel

' Using the fact that m+1 = 2m—1 one can easily calculate that

.~

there are m boundary conditions (30), (31). For ue H,,, (£, B) we have
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~

Agu = Lue L,(2) and it follows from the investigations of Section 2
that

(33) Qiu = R;(G_,—A_)Lu (ueH,, (2, B); jel)

in this case. Thus the closure of a homogeneous elliptic boundary wvalue
problem yields another boundary value problem with the same differen-
tial equation but with other boundary conditions.

According to (31), (33) the boundary operators are the closures of
integro-differential expressions and the boundary data are distributions
on 02 non vanishing in general.

Let us pass to the case s < —2m. Formula (26) now has the form

(34) (Agu, v) = (u, LT0)  (we Hypyo(2, B),ve H (2, BY)).

Splitting the functional A,# into its interior and boundary part we
can define the operators @; by formula (32) just in this same manner
as in the preceding case. We shall study them more detailly. Note that
% 18 also a functional as well, so it can be split

U = Ug -+ Usp;

this yields

(35) Qiu = Q;ug +Qu0  (Jel)
and
(36) Agu = Aug+ Ag%sg-

Replacing in (34) 4 by u;, we obtain
(37) (LT @, %ag) = (95 As%sa) (9 H_o(2, BY))

and it is easy to see from the last identity that the functional A,u;, has
a vanishing interior part. The study of its boundary part give us some
information about the operators @; acting on wu,,.

The comparison of (37) and (32) with u replaced by u,, yields, accord-

ing to Theorem B
o
—s—1

at
+ 2 <0—5’Q¢u69> (‘Pe'H—s(Q’B+))’

t=2m

—8—2m—

OB 1<—6‘%L+¢,w>=2

te K

where K = {0,1, ..., 2m—1}\{m},_,.
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Writing
Lp = ) a(@)D%

la|<2m

and using the decomposition (15) we can bring the differential expression
Y

— L% @|;, to the form

v Al
. 2m-+J

d’ )

(39) gLJ'(P =2, bt,jw’
i—0
'Whel'e bm-e @2m+j—t &nd
(39) bomiiy = ), B
la|=2m

(50 byp.j,; does not vanish, according to the ellipticity of L).

Using (39), Corollary 2 and relations (7) with P replaced by K we
can transform (38) as follows:

oo —s—2m—1 _3_2,1,,_1
(40) Z<W D p:.;u;) 2< =2 P ba;-u;-)
te K 7=0 ;—-2m
—8—1 at¢\
2< P ’Qt’“a.o> ¢Z <W;Qtuaa> (pe H_,(2, BY)),
=2m

where
m
Pry = b+ D A bk,
8=1
80 Py ¢ Ogpnyi_e. According to Theorem A the derivative 8'¢/3¥' may be

an arbitrary function from H_, ,_ l,2(6.(2) therefore (40) is equivalent
to the following relations:

—8—2_‘1m.—1
(41) QiU = Z i (te K)
j=0
and
'-—8—-2m—1
(42) Qithog = 2 biiu; (t=2m,..., —s—1).
j=t—2m ’

We have thus proved that the application of the operator @, to the
boundary part of » may be described by means of suitably defined tan-

gential derivations applied to the “components” of wu,, deflned by
Theorem C.
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Note that according to (39')

bi‘:l—Zm = 2 a’ava #0
laj=2m
and therefore the system of equations (42) may be solved with respect
to ;. We obtain in this way
) —s5—1
(43) w= Y ,Qma (G=0,..., —~s—2m—1),
r=j+2m -
where ¢; ,¢ ©,_;_,, and substituting (43) into (41) we get

—8-1

(44) Qiusn = Z 7y, » @ U (te K)

r=2m
r—2m

with 7., = ' p,;4;,€0,_,. Using the fact that according to (35)

j=0
QiU = Q;u—Q;uqg,
we obtain from (44) the following statement:

THEOREM 1. If Au =f (with ue H,, ,(2),s << —2m), then the
interior part u, is a solution of the boundary value problem

(45) Lug = fy,
(46) Quuo =hy  (te K)
with
—3-1
hy = 2 T, Jr—Ji
r=2m
(50 hye Hopyy1(09)). ‘

Note that for ue H,,, (2, B) we have f = Lue L,(£2) and u, = u.
According to what we have proved in Section 2, the boundary value
problem now gets the following form:

Lu = f,

Qu =h (e K),
where

—8-—1

Qu =) 7u,R(G_,—A_)Iu—R(G_,~A_)Lu

r=2m

— s0 @, has an integro-differential form in such a case.

4. The case of non-homogeneous boundary conditions. It was proved
in [3] that the non-homogeneous elliptic boundary value problem

Lu = f,
Bj'“‘l(m = ¢; (1 =1,...,m)
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yields a family of homeomorphisms between suitably constructed product
spaces. Assuming we have fixed the operators C; occurring in Green’s
formula (25) let us introduce the following notations:

{U =(u,Cyu,...,Cpu): ue H(2)} for t > 2m

the closure of K, () in the space
K,(Q) = am (£2) P

n
H,(2)x ”H‘t_,j,_l,z(a.(?) for t < 2m,
11 .

K} (2) — the analogue of K,(£2) with C; replaced by C}; O, (,) — the ortho-
gonal substraction and the scalar product in L,(£2) X Ly,(082) X... X L,(02)
(or its closure if necessary). s

According to Theorem 1 of [3] the closure %, (s = —1, —2,...) of
the mapping

#: (u,City ..., Cpu) > (Lu, Byu, ..., Byu) (ueH,,(2))
is a homeomorphism

gs: K2m+s(-Q)@'/V">(Kts(-Q)e/V+)*s
where # = ker.# and &+ = ker %+ with
Zt: (v, C, ..., Cpv) —>(L*tv, Biv, ..., B,,v) (ve H,,(RQ)).

For s =0,1,... we denote by %, the restriction of ¥ to K,, ,(£).
Denoting by %;" the closure of the operator #* considered as the
mapping

2m+t(‘Q —>(K
we can write Green’s formula in the followmg rform (see [3]):
(46') (thm-sQ)’ U) = ((D, 33 U)

valid for arbitrary ®e K (), Ue K, ,(2).
We can assume without loss of generality that the numbers I; and I

(j =1,...,m) form two increasing sequences. For fixed ¢ let p be the
greatest number such that

(47) i<t forj=1,...,p
(if (47) is not satisfied for any 7 we put p = 0). Let us denote
#,0) = {(w, Cru, ..., Chu): ue H(Q)} if 1 <p<m,
H, (2) if p = 0.

We denote by ;" () the analogue of () with C;, p replaced
by C;, q respectively. It was proved in [5] that

(48) K,(Q) = ) X H Hy y 1p(09)

j=p+1
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and similarly

(49) KA (Q) =7 (2 x [] B 1(09).
j=a+1
Obviously the mapping
K (D)o (u, Cruty ..., Opu) >ue H(Q) (1<p<m)

is a linear homeomorphism, so the orthogonal decomposition

H(®) = H(0M,(2)
yields the topological decomposition
(50) H(Q) = H(Q)+ M, (2),
where #; (2) consists of all vectors of the form (u, 0, ..., 0) with ue ]E?[,(Q)
and
My(2) = {(u, Cyu, ..., Cpu): ue M,(2)}.

Therefore every linear functional F over K;}'(2) can be uniquely
decomposed into the sum

F = Fo+ Fyq,

where F, (the interior part) vanishes on M (Q) x ” H; ;;_1,(092) and

=g+l
F,, (the boundary part) vanishes on #;(2)x(0,...,0). Obviously F,

m—q

0
is in H; (Q), so it may be identified with a distribution on Q.
According to what has been precedingly proved F,, aects on
D = (@, 0190, s Cq0, @iy -y Pm) € K (2) as follows:

(-1 k

a m
(51) (2, Fog) = 2<—a%fk> + D) o ap
k=0

j=aq+1
and the mapping

Fog = (foy - oy fiz1s Gav1r -9 Gm)

is a linear homeomorphism of (.#;" (2 ” H,_,;_11,(02))" onto the product
i g+1
r] H-‘+'¢+112(a'9 X ]!_ H—t+lj+1lz(ag)
i=q

Every vector (v, vy, ..., v,) with ve Ly(2), v;e L,(02) (j =1,...,m)
defines a linear functiona.l V over K; () by the formula

m

(52) (@, V) qo,v>+2<o,¢, v + 2 CAENE

=q+1
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If one brings C; to the form

t—1

' oy
(53) G = D) et

r=0

where ¢; ¢ @,}_,, then making use of Corollary 2 and (11), (12) we obtain

g
(64) Jo = Ti(Gi— A)v+ Z‘%}fk"’j (k=0,1,...,2—1).

j=1

For F = %, U with Ue K, ,(£2) one obtains from (51) the boundary
operators 8, U = Jr introduced in [5]. In particular, when U = (%,C,u, ...
eeey Cpu) with we H,,(L2), then F = (Lu,B,u,...,B,u). Then the
application of identity (54) with v = Lu, v; = B;u yields

P
(55) 8,U = Ty(G— A) Lu+ D ¢ Byu.
j=1

Identity (55) shows that the operators 8, have on a dense subset
an integro-differential form. We shall study them more detailly.

Let us first suppose —2m < s < 0. It follows from (48) that every
vector Ue K, ,(£2) may be uniquely written as the sum

(55") U="Uy+Us
with the inner part

U_Q - (u, Olu, csey Cpu,o’ a--,O)
m-—-p

and the boundary part

Usg =1(0,...,0, Upary ey Up),
[ —

r+1

where we H,, ,(2) and ujeHZmH_l,,_l,z(a.Q) for j =p+1,...,m.
Puting U,, in the place of U in formula (46’) and using (51) with
F = -Ya Uag ‘we Obtain

m —s5—1

. , o
5 D) Beyw ,=2< - S,-Um> (peH_,(9))

oy’
j=p+1 =0

(note that m; < —s for j >p and Bju =g¢; = 0 for j > gq).
The differential expressions B;p may be written in the form analogous
to (63) with ¢; , instead of ¢;, and ¢ = —s. As the tangential derivation

may be shifted to the second member of ¢,> (Corollary 2) and the normal
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derivatives of ¢ may be arbitrarily chosen, we obtain from (55)

m

(56) S, Uzo = 2 e (r=0,1,..., —s—1).

j=p+1

So the operators 8, are acting on the boundary part of U by means
of tangential derivations (obviously in the distributional sense).

Since ¢;, with r = m; is a non-vanishing function, we can solve
(m — p)-equations (56) with respect to u; obtaining the relations

(57) 4= GBS, Usa (G=p+1,...,m)

k=p+1

with o, ,; vanishing for j < k. Making use of (57) we can eliminate the
distributions u; in the remaining equations (56). So we obtain

m

(58) 8, Usg = 2 T+ S, Usa
k=p+1
forre{0,1,..., —s—1}\{m;}j",, where 7, . 0,; _,.
Since
(38") 8, Usa =8, U—8,U,,
equalities (58) may be written in the form
m T m

(59) 8,Ua— Y t%:BmUo=8U— 3 7.,8,U.

k=p+1 k=p+1

The left-hand side of (59) is a boundary operator acting on u; we
shall denote it by %, u. Comparing the right-hand side with (55) we can
see, that &,u has an integro-differential form for we H,,(2). If we put
F =%,U and —s =1t in (51), then it follows from the definition of the
operator &£, that

g9; = Bju (j =q+1,...,m).

Thus we have the following

THEOREM 2. Suppose —2m < s < 0. If 2, U = I, then u is a solution
of the following boundary value problem:

(60) Lu = F,,
(61) B;"“Lm =9; (3 =4q+1,...,m),
(62) S =h, (re{0,1,..., —s—1}\ {m;};n=1)7

where h, = f,— 3 Tk, nfm;, omd the distributions f;, g; are given by (51).
k=p+1
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The case $ < —2m may be treated in a quite similar manner. For
arbitrary U = (u, %, ..., U,) e Ky, (2) the first component « is a linear
functional over H_,, .(2) and equality (55') holds with

Upg = (ug,0,...,0)

N— —
m

and

Ua.o = (’“'am Uyy «-y um)~

Formulae (46’) and (51) yield for @e M_,(£)

m -8—1 .
‘ , o
(63) (LF @, Up0) + 2 (Bijp, u;) = 2 <3v77 S; Uaa>~
7=1 3=0
According to Theorem B we have
—2m—8—1 a]
(64) (L* 9, u0) = ) <WL+"” vf> (pe M _y(2)
=0

with o; uniquely defined by u. Puting (39) in (64) and making use of

67
the fact, that avq; may be an arbitrary function from H_,_; ,,(00),
we obtain from (63), (64)
—2m—s—1 m
(65) 8 Usa = D bim+ Dy (1=10,1,..., —s—1).
7=0 k=1

Since b},_,, and e; ), aTe non-vanishing functions, one can solve
—s$—m equations of (65) with respect to v;, u, obtaining in this was
the relations

—s5—1
(66) v = > 0,8Un (G=0,1,..., —2m—s—1)
r=j-+2m
and
k —s-—1
67)  we =Dyl Usat Y 0,48, Toa  (k=1,...,m),
i=1 r=2m

where 7;,,.€0,_; sy Vi1€ Oniom)y a0d 6 e Op_p .
Substituting (66), (67) into the remaining equations (65) we get

m —s5—1

(68) Z aj,tSm;. Uan:|‘ 2 ﬁr,r‘sr Uso = 8, Usq

j=1 r=2m

(te {0,1, ..., —2m—1}\{m;}]-)),
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where a; ;€ Om;,_t and 8, ,¢0,_,. Using (58’) we can write (68) in the form

m —8—1
(69) ‘ S iug =2aj,tsm;-U+ 2 B8, U—8, U,
=1 r=2m
where &,;u, denotes the right-hand side of (69) with S, U replaced by
8, Ug. Equality (69) yields now:
THEOREM 3. Suppose s < —2m. If £, U = F, then ugy is a solution
of the boundary value problem

(70) Lug = Fy,
(71) Frug =k (te{0,1,...,2m—1}\ {m}],),
where
m —85—1
he = X g fus+ Y Brafi—1
j=1 r=2m

and the distributions f, are given by (51).

Note that for uwe H,,(R2) we have u, = u and the left-hand side
of (71) has an integro-differential form.
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