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The u-invariant of fields with 16 and 32 square classes. I

by BroNiscawa Breaszczyk (Katowice)

Abstract. We discuss here the conjectures of Kaplansky and of I.am concerning
the w-univariant of a field of characteristic different from two. 3oth conjectures are
shown to hold true for any ficld having at most 32 square classes.

Introduction. For a non-real field K the u-invariant is defined to be
the maximal dimension of anisotropic quadratic forms over K. Thus,
for the field of complex numbers, for finite ficlds and for p-adic fields »
is 1, 2 and 4, respectively. It was conjectured by I. Kaplansky in 1953
that w, if finite, is always a power of two, but this has been verified only
in some special cases.

Elman and Lam [3] gencralized the notion of wu-invariant to the
case of an arbitrary field K. The general w-invariant is defined to be the
maximal dimension of anisotropic torsion quadratic forms in the Witt
ring W(K) of K. If I = I(K)is the fundamental ideal of W(K), then from
Arason—Pfister’s Hauptsatz [1] it follows that I is torsion-free whenever
u < 2" (cf. [3], Corollary 1.2). T. Y. Lam ([4], p. 333) asks whether the
converse is true, that is, does I"NW, = 0 imply « < 2"? (here W, denotes
the torsion ideal of W (K)).

In this paper we answer Lam’s question in the affirmative for any
field K having at most 32 square classes, and for any such field we prove
that u is a power of two, thus verifying Kaplansky’s conjecture for this
class of fields.

The first section contains the results for the case of fields with 16
square classes. If the numbers ¢ of square classes is < 8, the above state-
ments holds truc as was proved by R. Elman and T. Y. Lam.

In the second scction we consider the fields with ¢ = 32 and we
prove that I"nW, = 0 implies v < 2", when n = 3. The cases where
7 < 3 have been settled by Elman and Lam ({31, Proposition 1.8). The
remaining cases will be considered in the sceond part of the paper.

We usc standard notation and terminology. Thus # is always the
general u-invariant, ¢ = ¢(K) 1s the number of square classes, that is,
the order of the group g(K) = K*/K*, s = s(K) is the level of the field K,
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i.e., the minimal number of summands in a representation of —1 as
the sum of squares. For a formally real field K we put ¢ = co. Both ¢
and s, if finite, are powers of two.

The diagonalized quadratic form ¢ = Y a; 2% is denoted by ¢ = (a,,...,a,)
and the set of square classes represented by ¢ is denoted by D(g).

The form ¢ = (1, a,)-... (1, a,) is called n-fold Pfister form and is
denoted by {a,,...,a,)». The value set D(p) of a Pfister form is always
a subgroup of ¢g(K).

The cardinality of a set X is denoted |X|. Thus ¢ = |g(K)|. The fields
under consideration are assumed to have characteristic different from two.

1. Fields with 16 square classes. First we state and prove a couple
of lemmas which will be of use in both sections. The main result of this
section is Theorem 1 which verifies Kaplansky’s conjecture for any field
with ¢ = 16 and answers Lam’s question for the same class of fields.

LevmMA 1.1. If I3nW, = 0 and I2NnW, does not contain any 6-dimen-
sional anisotropic form, then u < 4.

Proof. Let ¢ # 0 be any anisotropic form in I2NnW,. According to
Theorem 2.8 of [2] ¢ = ) {a;, b;), where the Pfister form {a;, b,) is torsion.
Since 2{a;, by e I*NW, = 0, we have f = (a;, b)) +<La;, by = a;, by —
—{a;, by = (a;, by, a;b;y —a;, —b;, —a;b;) e W(K). If f 0, its aniso-
tropic subforn f;, has dimension 4. Indced, dimf,, = 6 is excluded by
assumption and dimf,, = 2 is impossible by the Hauptsatz of Arason—
Pfister [1]. Now, f,, € I* implies that d(f,,) = 1, and so f,, is a secalar
multiple of a 2-fold Pfister form. But I*nW, = 0 implies that f,, is uni-
versal (cf. [3], Lemma 1.3); hence f,, is a 2-fold Pfister form. It follows
that @ itself is a 2-fold Pfister form. Hence » < 4 by [3] Proposition 1.8 (3).
Q.E.D.

LEMvA 1.2. If I3nW, = 0 and ¢ is an arbitrary 6-dimensional form
in 1AW, then for any a € K* there exist z,y € K* such that

(1.2.1) ¢ ~=(1, —b)ilx(l, —c) Ly(1, —bc), where b,ce D(1,a).

Proof. For any a € K* we have (1, a):¢ e I’NW, = 0; hence (1, a)-¢
is hyperbolic and by Corollary 2.3 of [3], ¢ =~ 2(1,—b) 12(1, —¢) Ly(1, d),
where b, ¢, d € D(1, a).

Moreover, (1, —2)-¢ = 0 in W(K) implies that ¢ =~ 2¢, s0 we can
assume that 2 = 1. Further, ¢ € 12 implies that d(¢) = 1 (cf. [5], Satz 13);
hence bed = 1 and d = be in g(K), as required.

The next lemma records some instances where a 6-dimensional form
in I2nW, is necessarily isotropic. The result will be used repeatedly in
the sequel.
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LuvMA 1.3. Suppose K is a field with ¢ = 2" and I’NnW, = 0. Let
p = (1, —b) La(l, —¢) Ly(l, —bc) be an arbilrary 6-dimensional form
in I* NV,

(i) If g(K) = D1, —b)-D(1, —¢), then ¢ is isolropic.

(iiy If D1, —b) =« D(1, —¢) and (1, —b)e W, or (1, x) € W,, then
@ 1S tsotropic.

(iii) If 1D(1, —b)| =2""" and (1, —c) € W,, then ¢ is isotropic.

Proof. Assume (i). Then —x = kI, where k e D(1, —b),le D(1, —¢)
and the form (1, —b) l&(1, —¢) = (1, —b) L(—k)(1, —c) is isotropic;
hence ¢ itself is isotropic. "

Assume (ii). Then D((1, —b) La(1, —¢)) > D((1, —b) La(1, —b))
= D({x, —b)) = ¢g(K), since I*NW, = 0 implies that any torsion 2-fold
Pfister form is universal, and {x, —b)» € W;since (1, —b)e W,or (1, z) e W,.
Thus ¢ contains a 4-dimensional universal subform and is isotropiec.

Now consider (iii). If D(1, —b) does not contain D(1, —¢), then
D(1, —b)-D(1, —¢) = g(K) and, by (i), we are finished. If D(1, —¢)
= D(1, —b), then by (ii), zg is isotropie. This proves the lemma.

The next three lemmas give some sufficient conditions for » < 4
to hold for a field K.

LEMMA 1.4. Let K be a field such that I’nW, = 0 and suppose that
there exists a € K* such that |D(1, a)] = 2. Then u < 4.

Proof. Suppose there exists a 6-dimensional anisotropic form ¢ e
I’ n'W,. Then we have the decomposition (1.2.1) for ¢. Since b, ¢, bec e
D(1,a)and |D(1, a)] = 2, one of the threc elements must be a square
and then, by (1.2.1), ¢ is isotropic. Hence I*nW, does not contain
anisotropic 6-dimensional forms, and by Lemma 1.1, » < 4.

LEMMA 1.5. Let K be a non-real field with s(K) = 1 and assume I* = 0.
If there exists a € K* such that |D(1, a)| = 4, then u < 4.

Proof. If a = 1, then 4 = |D(1, 1)| = ¢, and % < 4. So assune that
a is a non-square in K. Then there exists be K* such that D(1, a)
={l,a,b,ab} and from s =1 we obtain easily D(1,a) < D(1,b).
According to Lemma 1.2, any anisotropic 6-dimensional form in I* (I®
= I*NW,) has the decomposition

¢ ~(1,a) Lz(1,b) Ly(1, ab),

and by Lemma 1.3(ii) ¢ is isotropic, a contradiction. Hence u < 4, by
Lemma 1.1.

LEMMA 1.6. Let K be ¢ non-real field with s(K) = 2 and assume I* = 0.
If there exists a € D(1, 1) such that |D(1, a)| = 4, then u < 4.

Proof. Wehave D(1,a) < D(1,1). Indeced, if s = 2, thena e D(1,1)
implies —a e D(1,1) whence —1 e D(1,1). Hence if a is a non-square,
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then D(1,a) = {+1, +a} is contained in D(1,1). Now, by Lemma 1.2,
if ¢ is a 6-dimensional anisotropic form in I?, then

p==(1,e) lz(l, —a) Ly(1,1),

and Lemma 1.3(ii) implies that ¢ is isotropic. Hence « < 4, by Lemma 1.1.
Now we can prove Kaplansky’s conjecture for all ficlds with ¢ < 16.
THEOREM 1. Let K be any field with square class number ¢ < 16, Then
(i) v = u(K) s a power of two,

(ii) I*NW, = 0 implies u < 2% for any k> 1.

Proof. (i) By the results of Elman and Lam ([3], Theorem 2.7; The-
orem 2.7'; Corollary A.6) we have either # < 8 or # = 16. It is well known
that u # 3,5, 7. Hence, to prove (i) we must show that « +# 6. First
observe that » < 8 implies I’NW, = 0 (by Arason-Pfister’s Hauptsatz)
and so we can apply our Lemmas 1.1 through 1.6. If « < 8 and there
exists a binary form representing exactly 2 square classes, then u < 4,
by Lemma 1.4. So we may assumme that [D(f)| > 4, for any anisotropic
binary form g over K. If the field is non-rcal and s(K) = 1, then Lemma 1.5
applies in the case where |D(f)| = 4 for a binary form 8, and if |D(f)| > 8
for every binary form f, then Lemma 1.3(iii) applies, and in both cases
we obtain « < 4. If s(K) = 2 and there exists a form (1, a), a € D(1, 1),
representing exactly 4 square classes, then by Lemma 1.6 we obtain u < 4,
and if every such binary anisotropic fcrm represents 8 square classes, then,
by Lemma 1.3(iii), again we get u < 4.

Thus we may assume that s > 2 and |D(g)| > 4 for cvery anisotropic
binary form §. If # = 6, then by Lemmas 1.1 and 1.2, there exists a 6-dimen-
sional anisotropic form ¢ e I*’nW,, and

¢ =(1, —a,) 12(1, —a;) Ly(1, —aya,), where a,,a,eD(1,1).

Since, by Lemma 1.3 we can assume |D(f;)| < 8 = ¢/2, the forms g, = (1,
—aq), B, = (1, —a,), B, = (1, —a,a,) represent exactly 4 square classes.
So we have D(f) ={1, —1,a,, —a;}, D(f,) = {1, —1,ay, —a},
D(gy) = {1, — 1, aya,, — ay0a,}, whence D(,)-D(,) = D(B,) D(B,)
= D(f;): D(p,). Observe that x and y do not belong to the set D(f,)-D(8,),
since otherwise ¢ would be isotropic. Hence

g(K) = D(By)-D(B:) {1, 2} = D(B,)-D(By)-{L, x}.
Now, y = b,b,x, where b; € D(B;). Then
@fs Lyfy = —abyfy | @by fy,

and we conclude that 28, 1 y8, is isotropic. Thus also ¢ is isotropic, a contra-
dietion.
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Summarizing, we have proved that in any case u # 6, and so % is
a power of two.

(ii) In the above part of the proof we have checked (ii) for k¥ = 3.
If ¥ = 1, 2, the result is true for any field K, as proved by Elman and Lam
([3], Proposition 1.8). If k > 5, then u < ¢ < 2%, so that (ii) is satisfied.
It remains to check (ii) for ¥ = 4. Suppose % > 2 = 16; then from ¢ < 16
and from Kneser’s theorem we obtain 4 = 16 = ¢. Now, ¥ = ¢ can happen
only in a non-real field K with s = 1 or 2 (cf. [3], 2,7; 2,7"; A.6). If s = 1,
the u-dimensional anisotropic form has ¢ = u = 16 different entries in
the diagonalization and so it is a 4-fold Pfister form. If s = 2, and g(K)
= {1, —1}-D, then it is easily seen that the u-dimensional anisotropic
form is 2 -¢, where ¢ has the diagonalization consisting of all elements of D,
since any other u-dimensional form is necessarily isotropie.

Thus 2-¢ is again a 4-fold Pfister form. Hence, u > 2* implies I*'nW,
# 0, and the theorem is proved.

2. Fields with 32 square classes. In this section we consider fields K
with 32 square classes and such that I*NW, = 0. The main result is
contained in the following theorem.

THEOREM 2. For any field K with ¢ = 32 and PnW, =0, the u-
invariant satisfies u < 4.

The theorem combined with Corollary 1.2 in [3] and with the results
of the first section, gives immediately the following

COROLLARY. For any field K with q < 32, we have v +# 6.

To prove the theorem, it suffices to show that I?’NW, does not con-
tain 6-dimensional anisotropic forms (ef. Lemma 1.1). If such a form ¢
does exist, we take its f-decomposition (cf. [3], p. 289)

¢ =pf1 LB LB, where g, =ua;(1, —a;),a,€D(1,1),1=1,2,3.
Now, we can assume that |D(8;)| <8, for ¢ =1, 2, 3 (by Lemma 1.3)
and also we can assume that |D(f;)| =4, ¢ =1,2,3 (by Lemma 1.4).
In the cases where s <2, we may even assume that |D(8;)| > 8,

1 =1, 2,3, by Lemmas 1.5 and 1.6. Thus it recmains to consider the follow-
ing three cases:

1° [D(B)i = ID(Bu)] = 8;
2° [D(B,)| = 8 and [D(By)l = [D(By)l = 4 and s > 2;
3° |ID(B) =4, i=1,2,3 and s> 2.

We prove that in the first two cases the form ¢ is necessarily isotropic.
This is done in Lemma 2.2 and Lemma 2.3, respectively. Lemma 2.1 shows
that the third case cannot occur for any field with ¢ > 32 and PNnW, = 0.
Thus in every case any 6-dimensional form in I*nW, is isotropie, and
80 % < 4, by Lemma 1.1,
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We now complete the details of the above discussion.

LemMA 2.1. Let K be a field with [g(K)| = 2" > 32 and I’°NnW, =0
and assume that s(K) > 2 (we allow s = o). If a,, a, are any elements
of D(1, 1) and a; = a,a,, then there exists © € {1, 2, 3} such that the binary
form (1, —a;) represents at least 8 elements of g(K).

Proof. Suppose the assertion does not hold. Put 8, = (1, —a;),
t =1,2,3. Then a; e D(1, 1) implies that —1 € D(f;), and s > 2 implies
that a; # —1. So we obtain D(f;) = {+1, +a;}, + = 1,2,3, that is,
all the three forins §; represent exactly four square classes. From I’nW, = 0
we conclude that any torsion 2-fold Pfister form over K is universal;
hence for any i,je{1,2,3}, ¢ #j, we have D{—a;, —a;» = g(K).
On the other hand,

D —a;y —a)) = D(B; L—a;p,) = \J{D(x,¥): xeD(B),ye —a;D(B)}.

Here each of & and y takes on 4 different values and so we obtain the
union of 16 sets D(z, y). We observe that D(f;) < D(1, a,)u—D(1, a;):
= +D(1,a;), + = 1,2, 3, and using this we can represent g(K) as the
union of 8 sets D(x, y) in the following way:

g(K) = £ D(1, a)VU+a,D(1,a)v+D(1,a,)V+a,D(1,aq),

where a, = a;a4;. Now, T, = £ D(1,a;)Utae;D(1,a) is a subgroup
of g(K), and so is Ty,.. Thus g(K) = T;UT;;, implies that one of the two
subgroups contains the other and that the larger one is equal to g(K).
Suppose T, < T;; = g(K). Since T;; consists of four cosets of D(1, a;),
we obtain

ID(1, a)| > 22,

Now, if we change the role of ¢ and j in the above argument, we
obtain g(K) = T;;uT,,, and as above we conclude that one of the forms
(1, a;) and (1, a,) represents at least 2" * square classes. Thus we have
proved that two of the forms (1, a,), i = 1, 2, 3, represent at least 2"?

square classes. Without loss of gencrality we can assume that
ID(1,a,)|>2""* and |D(1,a,)| > 2""2,
It is known that for any a, b in K*,
(2.1.1) D(1, —ab) > D(1,a)nD(1,d) (cf. [6], p. 50).
So we obtain
D(1, —a,) o D(L, a,)NnD(1, a,).
We also have [D(1, a,)nD(1, a,) = |[D(1, a,)|-|D(1, a,)|/|D(1, a,)-
-D(1, ay)| = 2"72.2"7% /2" = 2""* > 2, since we have assumed n > 5.

Hence f, = (1, —a,) represents at least 2 eclements of D(1, a,)N
ND(1, a;). But B, represents 4 square classes {41, 4 a,} and —1 and a,
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certainly do not belong to the intersection (since s > 2 and |D(8;)| = 4),
so we have —a; = —a,a,eD(1, a;,)ND(1,a,). This implies that
—a,eD(1,a,) and —a,eD(1, a,), and so ¢g(K) =T, = +-D(1,a,)U
v+ta,D(1,a,) = +D(1, a,), and g¢g(K) =T, = +D(1,a,), whence
D1, a))|=2"""' and |D(1, a,)| =2""'. We obtain [D(1, —ay)| >
[D(1,a,)ND(1,a,)| > 2""1-27"1/2% — 2% > 8 which contradicts the hypo-
thesis |D(f;)| <8, ¢ =1, 2, 3.

Thus the lemma is proved.

LEMMA 2.2. Let K be a field with ¢ = 32 and IP0nW, = 0. Let ¢ € I*'n
NW, be 6-dimensional and let ¢ ~ f, L xf, 1 yB; be the B-decomposition
of ¢, where p; = (1, —a,;), a; € D(1,1), i =1,2,3, a,a, = a3. If |D(,)]
= |D(B,) = 8, then ¢ is isotropic.

Proof. First observe that D(B,)-D(f,) = g(K) implies that ¢ is
isotropic (Lemma 1.3(i)). So we can assume that D(8,)-D(B,) is a proper
subgroup of g(K) and in this case D = D(8,)nD(f,) has at least 4 elements.
If |D| =8, then D(B,) = D(f,) and ;€ W,. Hence by Lemma 1.3(il),
we obtain that ¢ is isofropic. So we can assume that {D{ = 4. Now we
shall consider three cases:

1° a, ¢ D(f,), 2° a, e D(B,) and s > 2, 3° a, € D(B;) and s = 1.
1° If a, ¢ D(f,), then also a, ¢ D(B,) and a,a, ¢ D(B,)vD(f,). Hence

Dn{l, a;, a,, a,a,} =1.
Now, a; € D(f;), and so
(2.2.1) D) ={1,a}-D, i=1,2.
As regards f,, we have D(f;) > {1, a,} D, since
D(fs) = D(1, —a,a,) > D(1, —a,)NnD(1, —a,) = D.

If D(p;) contains something else, then |D(8,)| = 16, and by Lemma 1.3(iii), ¢
is isotropic. Thus we may assume that

(2.2.2) D(fs) = {1, ag}-D.

From (2.2.1) we conclude that D(8;)-D(8.) = {1, a,} {1, a,}* D consists
of 16 elements. Now, x ¢ D(8,)-D(8,), since otherwise f#, | zf, is isotropic.
Consequently,

(2.2.3) {1,z}-{1,a,}-{1, a,}-D = g(K).
From (2.2.1) we obtain
{1, a,}-D(B,) = {1, a,}-D(By) = {1, a,}-{1, a,}' D,
and this combined with (2.2.3) gives
9(K) = {1, a;}-D(B) V{1, a,}-D(B,)
= D(By)VaD (B)Va,D(B,)Vwa,D(f,).
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We shall show that for every y € g(K) the form ¢ is isotropic. Indeed,
if y e D(B,)vxD(B,), then also —y belongs to the same set, and ¢ is iso-
tropic. The other possibility is y € a,D(B;)Vxa, D(8,) = a,-Dua,a, DU
vaza,Duza,a,D, we have a,a,DUza a,D < D(B;)UxrD(f,); hence, if y €
a,a,Duzra,a,D, we may take y =1 or y =« and so f, 1y, or
xf, LyP, is isotropic; hence so is ¢.

Thus it remains to consider ¥ € a, DUza, D. Since D < D(f,), we may
take y = a, or y = za,, and then yg8, = a,(1, —a,a,) represents —a,,
or yf, = xa,(1, —a,a,) represents —axa,. But B; represents a, and 8,
represents za,; thus in any case, ¢ is isotropic.

2° Now assume a, € D(f,) and s > 2. Since —1 is not a square in X,
D(g,) = +{1, ay, a,, a,a,}. Also a, € D(B,) implies a, € D(f,), whence
D(B,) = D(B,), and we obtain |D| = 8, the case considcred at the begining
of the proof.

3° If a, € D(B,) and s = 1, then all the threc groups D(f;) = D(1, a,),
i =1,2,3, contain {1, a,, a,,a,a,}. In view of Lemma 1.5, we may
assume that every binary form over the field represents at least 8 elements
of g(K). Thus the form (1, ) represents at least 8 elements of ¢(K), and if,
moreover, D(1,z)n{1, a,, a,, a,a,} =1, then ¢(K) = {1, a,, a,, a,a,}"
-D(1,z) and the form g, [ 28, =(1,a,) 1x(1,a,) represents all the
clements of the sect

D(1,z)uD(a,, xa,)v D(a,, xa,)J D(a,a,, za,a,)
= {1, a,, a,, @,8,} - D(1, 2) = g(K),

Hence 8, 1 2f, is universal, and ¢ is isotropic. Also if D(1, y)n{1, a,, a,,
a,a,} =1, then the form g, 1 yp, is universal, and ¢ is isotropic. Thus
we may assume that D(1,z)n{1, a,,a,, a,a,} *1, and D(1,y)N
Nn{l,a,,a,, a,a,} #1. If (1,x) represents a, or a,, then g, [z,
~ (1, z) | (a,, ra,) would be isotropic; hence we may assume that a,a,
e D(1, z), and, similarly, a, e D(1,y). But then xeD(1, a,a,) and
y € D(1, a,), and we obtain

z2By LYBy = wy(1, ay) Lay(1, a,a,) = xy(1, 1) 1zy(a,, a,a,),

which is isotropie, since s = 1. Thus in any case ¢ is isotropic and the
Lemma is proved.

LEMMA 2.3. Let K be a field with ¢ =32, s> 4 and IPnW, = 0.
If ¢ i3 a 6-dimensional form in ’NW,, if ¢ = B, 1 B, L B, is the B-decompo-
sition of @ and if, moreover, [D(B,)| =8, |D(B.)l = |D(fs)| =4, then ¢
18 i8otropic.

Proof. We have g, =x(1, —a), B, =y(1, —b), B, =2(1, —ab)
and the assumptions imply that a,be D(L,1), D(1, —a) = {+1, +a,
+¢, £ ac} for a suitable ceg(K), D(1, —b) = {+1, £b}, D(1, —ab)
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= {4+1, +ab}. Here b¢ D(1, —a), since otherwise a e D(1, —b) and
|D(1, —b)| > 4, contrary to the assumption. ITence we ean write (for
a suitable d e g(K)):

g(K) =D, —a)-{1,b})-{1,d} =D(1, —a)-{L,b}udD(1, —a)-{1, b}
=D(1, —a)-D(1, —ab)udD(1, —a)-D(L, —ab).

On scaling ¢, we may assume that z =1, i.e, f}3 = (1, —ab). Now, if
zeD(, —a)-D(1, —ab), then also —meD(l a)-D(1, —ab) and
f:1 1B = —x,2,(1, —a) L(1, —ab), where z, € D(1, —a),z,e D(1, — ab).

Now, «,(1, —a) = (1, —a); hence B, 1f; = —:1;2(1, —a) 1 (1, —ab) is
isotropie (since @, € D(1, —ab)). Thus we may assume that z e dD(1, —a)-
-D(1, — ab).

Consider y. If y edD(1, —a)-D(1, —ab) = dD(1, —a)-D(1, —b),
then B, | f, = dx,(1, —a) | dy,(1, —b), where z, and ¥y, bhelong to
D(1, —a)-D(1, —b). We can write B, 1.8, == dy, (€,y,(1, —a) 1(1, —b)),
and the form is isotropic, since here z,, ¥, can be chosen from D (1, —b),
the other factors being absorbed by (1, —a). Thus we may assume that
yeD(, —a)-D(1, —b), and, in fact, it suffices to take y e D(1, —a),
since the other factor can be absorbed by the form (1, —b). Now, the
forms +a(1, —b) L(1, —ab) are isotropic; henee, without loss of gen-
erality, we may assume that y = ¢ or y = ac.

We have reduced the g-decomposition of the form ¢ to cither of the
following two diagonalizations:

¢, >~ x(l, —a) Le(d, —b) 1(1, —ab)
or ¢,=>~x(1, —a) Lac(l, —b) L(1, —ab).

Rearranging the diagonal entries one can also obtain the following diago-
nalizations for ¢, and ¢, (but these are not necessarily g-decompositions):

(2.3.1) ¢, >~22(1, —a) L(1,¢) L—0b(1, ac),
(2.3.2) g1 = a(l, —a) L(1, —¢) L—b(1, —ac),
(2.3.3) 9, =21, —a) L —b(1,¢) 1(1, ac),
(2.3.4) ¢, =2x(1, —a) L —b(l, —c) 1(1, —ac).

Now we show that each of the forms (1, 4-¢), (1, + ac) appearing in

the above decompositions can be supposed to represent exactly 8 square
classes. Indeed,

(2.3.5) {1,a,c,ac} = D(1,c¢)nD(1, ac)
and {l,a, —¢, —ac} = D(1, —e)nD(1, —ac)

80 that each of the four forms represents at least 4 elements of g(K). If
|D(1, ec)] =4 for an ee {+1, +a}, then from the above inclusions we
obtain D(1, ec) = D(1, aec), and since (1, —b) e W,, by Lemma 1.3(ii),
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cach of the forms (2.3.1)-(2.3.4) is isotropic. If, on the other hand, |D(1, ec)|
> 16, then ¢ is isotropic by Lemma 1.3(iii). Thus we may assume that
every form (1,ec), e = +1, 4+ a, represents cxactly 8 square classes.
Further, we may assume that — 1 ¢ D(1, ec), since otherwise —ec e D(1,1)
and one of the decompositions (1.3.1)-(1.3.4) is, in fact, a B-decomposi-
tion for ¢ containing two binary subforms, each of which represents exactly
8 square classes. Aceording to Lemma 2.2, ¢ is isotropie.

For the rest of the proof we consider the diagonalizations (2.3.1)
and (2.3.3) of . On scaling ¢, we can assume that

(2.3.6) =~ (1, —a) La(1,c) Ly(1, ac),

where «x any y arc appropriate clements of K* and |D(1, —a)| = |D(1, ¢)]
= |D(l,ac)] =8, —1¢D(1,¢), —1¢ D(1,ac) and tD L, ¢)-D(1, ac)l
= 16 (the latter follows from (2. 3 5)).

First consider the case where —1 e D(1, ¢)-D(1, ac). Then

D(1,¢)-D(1,ac) = {1, —1}-D(1,¢) = {1, }-D(1, ac)

and
(2.3.7) ¢(K) ={1, —1}-D(1, 0)-{1, k} = {1, —1}-D(1, ac)-{1, k},
for a suitable k € g(K). Since (1, —a) represents +1, and ¢ has diago-
nalization (2.3.6), we may assume that z ¢ + D(1, ¢) and y ¢ 4+ D(1, ac).
Hence, by (2.3.7), we must have ¢z = kx,, y = ky,, where z, ¢ +D(1, ¢)
and y, e £ D(1,ac). But now x(1,¢) Ly(1, ac) =~ kz,(1,¢c) Lky,(1, ac)
~ (+k)(1,¢) L(+k)(1, ac), and this is isotropic if the signs are opposite.
If the signs coincide, we take d € D(1, ¢) such that —d € D(1, ac), which
is possible since —1 e D(1,¢)-D(1, ac). Then

(1, ¢) Ly(1, a0) = (+*)d(1, ¢) L(F k)d(1, ac).

and again the form is isotropic.
Now consider the case where —1 ¢ D(L,¢)-D(1, ac). In this case

(2.3.8) g(K) ={l, —1}-D(1,¢)-D(1, ac),
and the form (2.3.6) can be written as follows:
(1, —a) Ltax,(1,¢) LE+y,y,(1, ac),

where #,, ¥, € D(1, ¢) and x,, ¥, € D(1, ac).
On scaling, we obtain

'7;2?/1(1, _’a’) |—:i:(17 C) —i—:}:(]" a’c)'

Hence we may assume that

¢ =2(1, —a)L(1,¢) L1, ac),
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or, rearranging the diagonal entries,
(2.3.9) p =(1,1) Led,a) Lz(1, —a).

Here the case {D(1, 1), > 16 is ruled out by Lemma 1.3(iii), since (1, —a)
eW,, and if [D(1,1)] =8, we get ¢g(K) = D(1,1)-D(1, —a) (since
D(1,1)nD(1, —a) = {1, a}, according to the fact that —1 ¢ .D(1, ec),
for ¢ = 41, 4+ a). By Lemma 1.3(i) we obtain that ¢ is isotropic.

So let us assume that |D(1,1)| =4, ie., D(1,1) ={1,a,b, ab}.
Supposc the field is non-real; then s >> 4 and I®* = 0 imply s = 4. Thus
we must have —1 e D(a, b) for appropriate a, b € D(1, 1), and we obtain
—beD(1,a) and —b e D(1, ab). Since I* = 0, every 2-fold Pfister form
is universal; hence D((1, —b) La(l, —b)) = g(K) and we obtain

g(K) = J{D(a, p): a e D(1, —b),feaD(1, —b)}
=D, —a)ubD(1l, —a)u+D(1,a)uD+(1, ab),

since —b e D(1,a) implics +bD(1,a) = +D(1,a), and —be D(1, ab)
implies +bD(1, ab) = + D(1, ab), and the other subsets arc casily seen
to be contained in the union.
If now |D(1,a)| =4, then +D(1,a)=4+{1,a, —b, —ab} c
+ D(1, ab), and
g(K) = D(1, —a)-{1, b}u+D(1, ab),

i.e., g(K) is the union of two subgroups, and D(1, —a)-{1, b} is known
to have 16 clements. Hence g(K) = +D(1,ab) and |D(1, ab)| = 16.
Now, (1, —ab)-¢ =0 in W(K) and D(1, —ab) = {1, --ab}. Whence,
by Lemma 1.2, we must have (up to a scalar multiple)

¢ =(1,1) Lz(1, ab) Ly(1, —ab), w’yeK*-

But here |D(1, ab)| > 16, and according to Lemma 1.3(iii), ¢ is isotropic.
The other possibility is |D(1, a)| > 8. But then from D(1, —a)nD(1, a)
= D(1,1) (use (2.1.1)) it follows that D(1, —a)nD(l,a) = {1, a},
whence g(K) = D(1, —a)-D(1, a). Relation (2.3.9) and Lemma 1.3(i)
show that ¢ is isotropiec.

It remains to consider the case where K is a formally real ficld. We
have a,beD(1,1) and D(1l,a)nD(1,b) « D(1, —ab) = {41, 4 ab}.
If abe D(1,a)nD(1,b), then also a and b belong to D(1, a)nD(1, b),
which is impossible. Hence D(1,a)nD(1,d) = {1}. If |D(1,a) =2
or |[D(1,b)| =2, Lemma 1.4 applies. Otherwise we have |D(1, a)-D(1, b)|
= |D(1, a)|-|D(1, b)] > 16 and since ¢ = 32, the subgroup D(1, a)-D(1, b)
consists of all totally positive square classes. In particular, K has a unique
ordering, and we can assume that ¢ is positive. Then from (2.3.8) it follows
that D(1,¢)-D(1,ac) = D(1,a)-D(1,b), and hence b € D(1, ¢)-D(1, ac).
But the latter implies that the forms (2.3.1) and (2.3.3) are isotropie.
Thus in all cascs ¢ turns out to be isotropic and the lemina is proved.
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