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Abstract. There are considered three different subspaces of Schwartz’s space Z such that
cach element splits to a convolution of two elements of the same subspace.

We are going to define some subclasses &, of 2 such that each function
@€ 2 is decomposable in 2, i.e. ¢ = @,*@,, where ¢, € 2, and ¢, Z,. We
shall first construct the Fourier transforms of functions belonging to 2,.

Let G(2) (z = x+iy) be a function of exponential type, not identically 0,
such that '

1) IG@I < eV,
(2 N1-G@) < Alzl for |zl <1,
3) IG() <Bfit|] fort<—1and t>1,

where A, B and a are positive constants.

an
TueoreM. If A, R and ) |i,| < oo, then the product
n=1

4) F@z)=[] G(4,2)
n=1
represents an entire function, not identically O such that
&) |F ()] < eV
and
(6) [ I F(ldt < M,,

where B and M, are positive constants and k=1, 2,...
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Proof. By (2), we have
[1—G(4,2) < Al |zl Tfor |z| < 1/|4,].

Since 1/|4,] — oo, the series

Y. [1-G(4,2)

n=1
is uniformly convergent on compact sets and thus the product in (4)
represents an entire function which is not identically 0.

By (1), we obtain
|G (4, 2)| < exp(B| ),

where ﬁea(z |4}, so (5) holds.
Since, by (1),
' |G <1 for real ¢,

we have

k+2

[ F (o) < |t n G(4,1)|.

Hence, in view of (3), we get

7 IFF() < CJi2 for 1] = a
and
(8) [ F@) <t for i <a,
where
=B**2|A;,....,4+2"' and g max( 1 L)
14" A2l

Relations (7) and (8) imply (6) and the proof is completed.
As a function G satisfying conditions (1)—(3) we can take s—lgi Another

function of that type is G(z) = (expiz—1)/z.
By the Paley-Wiener theorem, the function F(z) in (2) is the Fourier
transform of the function

1 —ist
f(3)=‘2;t J e " F(t)dt,
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whose support is contained in [ —f, f]. Moreover, condition (6) guarantees
that f(s)e C* and

[« 2]

f®(s) = 51; J‘ (it e ™" F(t)dr.

— ab
Therefore to each function G satisfying (1)+(3) there corresponds a class
Do = 9¢ < 2 of functions, depending on the sequence A,, whose Fourier
transforms are equal F.
Evidently, if we split the sequence 4, in two subsequences 4, and 4,

an a0
then ) |4, <o and ) |4,] <o and

n=1 n=1
F(z) = F,(2) F1(2),

where

F,(z)= ﬁ G(A,z) and F,(z)= ﬁ G (4} 2).
n=1 n=1

That means, we have ¢ = @ *¢@,, where ¢, ¢,, ¢, are the functions of the
class 2y, corresponding to the functions F, F,, F,, respectively. Thus we
have

(9) @0 = @0*@0.

Another class 7, with this property was given in the paper: L. A.
Rubel, W. A. Squires and B. A. Taylor, Irreducibility of certain entire
functions with applications to harmonic functions, Ann. of Math. 108 (1976),
560-561. The method of the authors consisted in considering zeros of the
Fourier transforms of e %.

Piotr Mikusinski has remarked that a class 2, & with property (9) can
be easily constructed directly, without any help of Fourier transform. In fact,
there are functions d,€ 2 such that §, >0, [é, =1 and the support of §, is

in [~4,, 4,], where ) 4, <. We put @€ P, if ¢ =6,%5,+... Then and

n=1
(9) holds, because we may set @, = 0, *%03%..., @, = J,% 4% ...
The class of Piotr Mikusinski is the simplest, but does not include the
preceding classes. The variety of possible subclasses satisfying (9) suggests
that we possibly have 2 = 2*2 for the whole class 2.
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