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Abstract. For a polynomial f with integral coefficients and f(0) # 0 the number
of its irreducible factors counted with or without multiplicities and the maximal
multiplicity in question are estimated in terms of its degree [f| and of the sum of squares

of its coefficients [|f|| roughly by V|f|log||f||. The estimates in their exact form are
nearly best possible.

This paper is a sequel to [9] and the same notation is used. For a poly-
nomial f with integral coefficients |f| is its degree, ||f|| the sum of squares
of its coefficients ; if | f| > 1 then 2(f) and w(f) are the number of irreducible
factors of f counted with or without multiplicities, respectively, 2,(f) and
,(f) the relevant numbers of irreducible non-cyclotomic factors. Finally,
m(f) is the maximal multiplicity of a factor of f. Clearly,

max{w(f), m(f)} < 2(f) < If]
and it has beenfproved in [9] that if f(0) # 0, then

2,(f) < V26filog7|flog |l
1) o(f) — oy (f) < 1fI*3,
Q(f)— 2.(f) < [f*doglog|fI)*2(loglifI)*  (Ifl = 3).

Here as everywhere in the sequel the constants implicit in the Vinogradov
symbol < are absolute.

It has been conjectured in [9] that for every & between 0 and 1
(2) «(f) = o(1fI*) Tog lIfl)'~*,
(3) Q(f) = O(If") (log ifl)* .

Dobrowolski’s result on the Lehmer problem about algebraic integers
implies (see [1], Theorem 2)

(4) 2.(f) = o(If1) Qog If1)"~*
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for every ¢ between 0 and 1; on the other hand, he has disproved conjec-
turcs (2) and (3) for every ¢ << 1/2 or £ < 1/2, respectively. For m(f) there is
an estimate implicit in a theorem of Erdds and Tur4n [3], namely

(5) m{f)< 16]/nlog @0, "2 Y la;l,  wWhere f(z) = ) aa"

=0 T==0
(thisx has been pointed out to the author by M. Mignotte).
An easy modification of the proof of (4) gives

THEOREM 1. For every ¢ between 0 and 1 and every polynomial f with
integral coefficients and f(0) # 0

w.(f) = o(1f1°) (log [IfI)*~*.
Our main result is

THEOREM 2. For every polynomial f with integral coefficients and f(0)
# 0

(6) o(f) = oV Iflloglfl)  (Ifi = oo),
(7 m(f) < VIfllogifl,
(8) Q(f) < V\fllog|filogrloglogr,
r = ma-x(3,T£:ﬁ .
COROLLARY. For every ¢ between 0 and 1/2
(9) 2(f) = O(f1"***)(log |IfI)"* .

The given estimates are quite precise, as it is shown by the examples

L@ =[] @=i), fu@) = @17, flo) =] ] @1y,

=1

Here |fil = |fl = ny, |fsl ~n% loglfill < nlogm, log|f.l <mn, log(fsl
< nlogn (see [1], p. 401), w(fy) = n, m(fy) = n, 2(fs) > n*logn. Hence
for f = f, the left-hand side of (6) is n, the right-hand side is o (n(logn)'?),
for f = f, the left-hand side of (7) and (9) is », the right-hand side is < ,
for f = f; the left-hand side of (8) is > m?logm, the right-hand side is
< n?logn-loglogn. Note that (7) is weaker than (5), but the proof will be
entirely different. There is still room to conjecture that

Q(f) < VIfllog|filogr.
Proof of Theorem 1. Put

M(f) = lay) [ | max{1, la}

=1
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where q,, a,, ..., a, are the zeros of the polynomial f listed with proper
multiplicity and a; is its leading coefficient.
Let

21
(10) F(@) = fo(@) [ ] f:(@)s,

=1

where f; are for ¢ > 0 distinet non-cyclotomic polynomials and f, is a
product of cyclotomic factors. Then

u(f) = [ m(f%.

f=ml

Landau [4] showed that M (f) < |IfI%, thus

e
loglIfll=> ) log M (f,).

i=1

On the other hand, by comparison of degrees in (10),

1= D) 15l

=1

By Holder’s inequality

(11) 2 74+ (log 2 (£~ < (37 1) ( 3 1o 2r(£)) ™

i=1

< 1f1*(og llf I)'—*.
Take an arbitrary 4 > 0 and consider separately ¢ < w, such that

(12) |f;|* (log M (f,))' = A

and the remaining ones. The number of ’s satisfying (12) does not exceed,
in virtue of (11), IfI*(logllf I)*~*/4.

On the other hand, by Dobrowolski’s theorem ([1], Theorem 1)
either |f;| <2 or

loglog|f;1\?
eears) > (<)
whence for a certain ¢(¢) > 1
1
c(e) Ifif*
Thus the negation of (12) gives [f,|° < ¢(e)4 and also log M(f,) < AM1-,

logM (f;) >
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The number of polynomials g with integral coefficients with bounded
lg] and M (g) is finite; hence the number of ¢’s for which (12) fails does not
exceed B(e, A) independent of f. Eventually we obtain

\f1*Qog lIfI)*—*
A

and since A4 is arbitrary, the theorem follows.
For the proof of Theorem 2 we need several lemmata.

LEMMA 1. Let @,(x) be the n-th cyclolomic polynomial, D, (x)™|f(z).
Then for every prime p

@ (np) If1
< o (7% o) T o811)

where ¢ is Euler’s function.
Proof. Let

f(@) = Py (2)'2r @, (2)ng(2), geZ[x].

Differentiating ¢,, times and substituting afterwards for # a primitive
npth root of unity, {,,, we get

(13) T (Lap) = (2p) ! Prp (Lap) ™ Pr(L0p) 9 (L) -

Taking norms from @(¢,,) to the rational field @, we obtain

0, = o (f) <

+B(e, A)

- Ifl #(np)
(14) V(72 (Cap))| < 11672 (L) "7 < (enp!(e )llf ll) )
np
(15) IV (@5 (Lap) g (L)) > 1.
On the other hand, since @,(z) = [] (a:d—l)# (E) , we have
din
np np ”(E)
No, ) = [[ oty = [] [] -0
Gop)=1 am-1 "
np n 7\ @(np)
-x[] ]] a-4 v +[] 2. @
dn  j=1 a? an ¥
(jinp)=1
However,

D

T

q if r=4q", q prime,
(1) = (0 if r =1,
1 otherwise;
hence
+ qsp(l)w(np)lw(p) if ptm,

No =
n(Cup) Iiqu(l)‘p(np)lw(p)@pz(l)—ﬂnp)/ﬂpz) if pln.
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and
(16) l-N@n(cnp)l = P'P(n).
The lemma follows from (13)-(16).

LEMMA 2. There exists an absolute constant ¢ > e¢* such that in the
notation of Lemma 1 we have

* elo(n) Ifl
1 1
2 it BTy < flloglllog 1ot

where w(n) is the number of distinct prime factors of n, 3™ is taken over all
n with &, > clogl|if|l.
Proof. Let us assume that ¢, > e?log|/f] and define b, by the equation

b 2 2
a7 " En e

>
logh, 2logifll log2
Sinece z/logz is increasing for z > ¢, we have

&

(18) b, > " log—

T

2logllfl ° loglifll "
Let us consider prime numbers p < b,,. For such primes p we have
P 5

logp — 2loglif|l’
hence by Lemma 1

e,,plog esf = log lfl) ———;();pfp

. —log Ifll = log If1l-
np snp

It follows that
1 logelflles, _ logllfll (log 171"

;/e——m/gnp/ elfllens ~  elfl 1]
(note that |[f]>= e, = e2log||fll); hence
elfl (m )“ toe ! _ 3160 M
oglfl]’ "%, ~° Elogifi

and by Lemma 1

39 (np) s,,log 'f”'f" > p(n)s,logp —g(n)plog f -

Now
D) logp = b,+0(b,flogd,),

P<by,

3 =wn Ol
= 2logd, (logb,)?
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Hence

Il
& Tog 171 p% np® (1)

b,loglIfl £,@(n)b, b,
= b,e(n) (Sn—m—)'l'o(-?gb—)-l-O((l ogh)? S o(n) gllfll)

and using (17) and (18)

Ifl 3 ‘ (ezqo(n)- )
19) 31 = — e,@(n)b, +0 | ——F-
G0 PRETogIfT g ¥ =% WO g
3 o) | e, (e,iqo(n)
=8 Toglfl CToghfl -~ \loglfil]"

Let the constant implicit in the O symbol on the right-hand side of (19)
be ¢,. We now choose a constant ¢ > 2 such that

loge > 4c,.
Then if g, > clog||f|l, we get

ep@(n) 1 &.p(n) £,

c S 0
Tlogf S L loglfll € log |l

and (19) gives

S T AL) En
1 .
log|Ifll < o (NP) = 8 log|If1l ° log Il

ﬂ

3log

Summing over »n sub]ect to the condition ¢, > ¢ log||f|, we obtain

1f1 ntp(np)
=0 glognfuz 2 oML

1 v* &, @(n) &y
- 1 .
7§ L log||fl{w(n+1)) °8 log il

On the other hand, for every m

1
> - .
1/,,,2", w(m/p) +1

113 snpim) 223’%_’%

This together with (26) gives the lemma.

hence
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LevMA 3. We have

and for z =2

B(z) =
on)<z

Proof. The estimate for A (z) is due to Erdos [2]. The estimate for
B(z) is obtained by partial summation (see [8], p. 371) as follows:

B =40, (A

< logz.
@(n) &

x &

LEMMA 4. For every a >2 and x> 3

w(n)+1
< (logl 2,
éij(n)log (aw/q,(n)) < ( og ogw)

:!:dE
At €1+ | — < logx.
/%

Proof. We shall first show that for £>3

(21) C(&) = D w(n) < &loglogé.
p(n)<é

By a theorem of Landau ([5], p. 216) for a suitable constant b and & > 3
p(n) < & implies n<<bfloglogé =9>1.

Now by Lemma 2 in [9]
§ ' n
o(n) € Tog7 .

n<n
a(n)>10loglogn

Hence we get

1 £loglog &

o) < logn log &

n)<sé
a(n) g( 10)103103 7

On the other hand, by Lemma 3

w(n) < 10loglogn-A(§) < £loglogé.
pn)<s
o(n)<10loglog
Thus (21) follows. Now using partial summation, we get

z

Z w(n) < C(x) f logax —log £ —1
¢ (n)log(ax/p(n)) ~ wloga £2(log ax [£)*

C(§)ds

#(n)<z
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3
zloglogz d& £loglog &

< zloga +1f Elogaw/t ~ J & |logaz/§| a

1 v 13

loga +loglogs ;{ flogax —log &

v

< loglogz —loglogx -log(logax —log &)13

< loglogz -+

= loglogz —loglog«-logloga +loglogx -loglog %w_

< (loglogx)?.
Since

R w(n)+1 1 w(n)
< 2 ,
,(;K'z ¢(n)log(az/p(n)) " logaz + q,(;)f; ¢ (n)log (az /o (n))
the lemma follows.

Proof of Theorem 2. By Theorem 1 with ¢ = } we have
@, (f) = o(VIflloglifi)  (If] — o0),

thus in order to prove (6) it is enough to show that

o(f) — o (f) = o (VIfllogllifIl)  (If] - o).
Take a number A arbitrarily large. If log||f|| > 4* we have by (1)

(22) o(f) —wx(f) < If12< —}V Fiog 7.

If log|if|l < A% the number of distinct terms of f(x) does not exceed ||f||
k
<expA’. Let f(z) =3 ;2% 0 =g,<g¢<...<a, Suppose that
k

i=0

&, (@) |f(xz). Then D> a;f3 = 0 and there exists a subset 8 of {1,..., %}
i=0
such that
a'o‘]"\Z a; b =0,
ieS
but no subsum of the left-hand side vanishes. It follows from the result

of Mann on sums of roots of unity ([6], Theorem 1, see also [7], Lemma 2)
that ¢ = n/(n, g.c.d. ¢;) is square-free and is composed entirely of primes
ieS

< k+1. Hence x is of the form gd,where q| [ p and d|aq; for an ¢ € 8. The
p<k+1
number of pairs (g, @) satisfying these conditions is less than 2*¥! 3' d(a,),
ieS
where d(m) is the divisor function. Thus we get

k
o(f) —ou(f) <2 Y d(ay).

t=1
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However, d(m) < mY*, hence
k

o(f) —oy ()< 2% DT ol <2HHE|fI < |f[Mexpexp A%,

i=1
If |f|Y* > 24 expexp A% we get
IfM _ Viflloglif]
24 A
which together with (22) proves (6).
In order to prove (7) and (8) let us observe that the multiplicity

m of an irreducible non-cyclotomic factor of f does not exceed ,(f).
Hence by (4) with ¢ = §

m < 2,(f) < VIfllogfll.
It remains to show in the notation of Lemma 1 that for every =

(23) e, <VIflloglfl = B,(f)

and
(24) D&, <VIfllogllfillogrioglogr = By(f), r = max(3, |f|loglf)-
‘We set

o(f)—o,(f)<

l =logr
and in order to prove (23) we distinguish three cases:
(i) p(n) > Vr,
(i) p(n) <Vr and s, < cloglfll,
(iii) ¢(n) < Vr and ¢, > clog||f]|
(¢ is the constant of Lemma 2). The obvious inequality

(25) D eup(m) < |f1

gives in case (i) ¢, < [fI/Vr < By(f).

In case (ii) we get ¢, < cl/_loornfu B, (f)-
Finally, in case (iii) we have by Lemma 2 and (25)

&, (n)
<l|f|1
om) 1 log "f“ < U floglifil
. @(n)
&nd, smcem = %,

( En )2 lo En <rl
loglfl] Clogifl <
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where the right-hand side is at least cloge > 1, because by (iii)

112> &, = eloglfll.

The function zlogz is increasing for x> 1; hence xz2?logw < y implies
x < 2Vy[logy for y > 1 and we get

20 rl _
Toglfii < l/logrl <Vr, & <Vrloglfil< By(f).

The proof of (23) and thus of (7) is complete.
In order to prove (24) we observe that if »/l < 9, then

IfI < 3VIfllogf I
and (24) follows from (25). Thus we assume that

(26) rft>9,
and decompose the sum )¢, into three sums
(27) Zen = Zlen +228n +23€'n’

where X, is over n such that

@(n) >]/il;

loé Il r
p(n) < ]/1 < —
( 7 and ¢,<c¢ ) 79

2, is over n such that

2y is over m such that

r loglifll o /7
<L and T,
pm) ]/z amd =y Vo1

By (25) L
(28) Zen < IfIVAY = B,(f)(logh)™" < By(f).

For the sum X, ¢, we get the estimate

Zye, < clogifl l/% B(‘l/‘;‘),

hence by Lemma 3

r r — ,
(29)  Zye, < clogifll ]/7 log— < logllf W1l = B,(f)(logl)™ < By(f)-
To estimate Zj¢, we use Lemma 2. We have

loglifil 4 /7 .
() 7 =cloglifll;

Y
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hence
82‘7’(’"’) &n '
“o(m)F1 log 10g If] <Iflloglifll,
and
&, @(n) o
o1 E o) Vel <1\fllogllf!.
On the other hand, by Lemma 4 with z = Vrfll>3
5200 < (loglogVrlly < (g,
(p('n)log( l/r/l)
@(n)

By the Schwarz inequality
L6, <V1fllog |flilogl = B,(f),
which together with (27)~(29) proves (24), and hence (8).

Proof of the Corollary. If |fl/logllfll<3 we have Q(f)<|f}
<V3 |f[togIfIl. I£ |f|/loglifll = 3, we have for every ¢

If1
log |ifI

hence

2(1) = Vifitogizio ([ ) = o+ qogifiy=-).

Note added in proof. Taking in the proof of Theorem 1 ¢ = }, 4 = loglog|f|
and in the proof of (6) A = %loglog|f] we get a quantitative version of (6)

flogIf)
loglog|fi
It seems likely that loglogif| can be replaced here by log|f|.

o(f) <
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