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Mean growth and Taylor coefficients
of some topological algebras of analytic functions

by M. StorrL (Columbia, South Carolina, U.S.A.)

Abstract. Lot D denote the unit dise {|e| < 1} in C and let H (D) denote the
space of analytic functions on D. For each § > 0 we denote by ¥ the set of all functions
fe H(D) for which lim (1 —#)flogt My (r, /) = 0, where Mo, (r,f) = max|f(e)|, and

lel

>l

<r
for each a > 1 we denote by (LogtH)® the Hardy-Orlioz space of functions fe H (D)

for which sup f [logt|f(ret)|]2dt < co.In the paper we ghow that for f(2)= 3 a,e"
0<r<1 0
€ H(D), the following are eqmvalent

(8) fe Fg;
(®) 1FNle “fﬁxp[—o —1)=P] Moo (r, f)dr < oo for all 0> 0;

©) IIflle = E |ay| 6xp [ — enfl1+8] < oo for all o0 > 0.

n=0
‘We also show that Fy with the topology given by the seminorms ([ ||, {or |[| [Ils), ¢ >0,
is a Fréchet algebra, and that for each a > 1, (Log+H)* with the topology given by
the tranglation invariant metric g, defined by

2x
i 1 : i a ta
ety 0) =lim| 5 [ Dogla-+1stt o]

i8 a dense snbspace of Fy),. Furthermore, the topology in Fyj, defined by the family
of seminorms || ||, is weaker than the topology in (LogTH)? given by the metric g,.
1. Introduction. Let D denote the unit dise {|2| <1} in € and let
H (D) denote the space of analytic functions on D. A function f e H (D)
belongs to the Nevanlinna class N of functions of bounded characteristic
if .-
2w

sup 1 log™ |f(re*)|dt < oo.
0<r<1 27 :

A function fe N is said to belong to the class N* if
2 27
, 1 .
Tim - f log* |f(ré) dt = — f log* [f*(6™)] dt,
r—>1 2r H 27: °

where f*(¢%) = limf(re*) a.e. on |¢| = 1.

r=>1
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In [9], N. Yanagihara has shown that if fe N*, then

(1.1) lim (1 —r)log* M (, f) =0,
el

where M, (r, f) = max|f(2)[. Using (1.1) as a motivation, for each § > 0,

j2|=r

denote by F, the space of all functions f e H (D) which. satisfy

(1.2) lim(1 —7)’log* M (7, f) = 0.

r—>1

For § = 1, the space F, has also been denoted by F* and has been studied.
by N. Yanagihara in [7], [8]. In [7] it was shown that F* is the con-
taining Fréchet space for N*. By [2], p. 106, N < I, for all > 1.

In Section 2 we give several necessary and sufficient conditions for
a tunction f € H (D) to be in F,. Here we show that f(2) = }a,2" e Fy if
and only if

a, = Ofexp[o(n?*+#)]},

In Section 3 we consider some topological properties of the space Fg.
Since the results are in .many cases analogous to the results established
by N. Yanagihara in [7], the proofs will be kept brief and in some cases.
omitted. _ "

In Section 4 we consider the Hardy-Orlicz spaces (Logt H)® defined
for all @ >1. A funection f € H(D) is said to belong to (Log*H)*, a > 1,
if '

2

1 .
Sup o— [log™ [f(re®)|1"dt < oo.

0<r<l 4TC 5 .

Here we show that (Log*H)%, o > 1, is contained in F',,,, but is not con-
tained in ¥, for any f < 1/a. We will also defino a translation invariant
metric g, on (Log*™ H)* and show that with respect to o,, (LogtH)® is
an F-algebra, i.e., a topological vector space with a complete tramslation
invariant metric in which multiplication is continuous. Some other prop-
ertics of the spaces (Logt H)® are also given.

Finally in Section 5 we consider the Bergmann algebra 4 *(D),
which is defined to be the space of all f € H(D) for which log* |f| is inte-

grable on D with respect to the area measure dd = L dxdy. Here we
T

show that 4+ (D) is a dense subspace of ¥, and that 4"+ (D) is not contained
in Fj4for any f < 2. Also, we concludo by showing forall § < 1, Fy< 4+ (D).
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2. Mean growth and Taylor coefficients. For f e H(D), we write

2n
: 1 .
My(r,f) = 5 [ 1fre)Pat, 0<p< o,
0

Mo (7, f) = max |f(2)].

le|=r

For each g > 0, F, denotes the space of all analytic functions f on D
for which lim (1 —r)Plog* M, (7, f) = 0. Clearly, if 0 < a < B, then F, = F,

-1
and Theorem 2.2 of this section can be used to show that the containment

is proper.
THEOREM 2.1. For f amalytic on D, the following are equivalent.
() feFy.
(b) For all p, 0 <

r—>1

< oo, Hm(1—7)*log* M ,(r, f) = 0.
<

P
(¢) For all p, 0 <p < oo, and ¢ > 0,

1
(2.1) fexp[—c(l—r)’ﬁ]MP(r,f)dr< go.
0

1
(d) For some p, 0 <p < oo, [exp[—o(l—r)"?1M,(r, fldr < co for
all ¢> 0. 0
~ Proof. Since M, (r,f) < [M,(r,f)I", 0 < p < oo, (b) follows directly
from (a). . .
Suppose lim(1—7)logt M (r,f) =0, 0 < p < oo. Then there exists

r—»1

a function w(r) § 0 as r—1 such that

3, (r, 1) < o33 | s .

1 .
Therefore, for any ¢>0, [exp[—ec(1—7r)""]M,(r,f)dr < oo, which
; |

proves (2.1). Clearly (c) = (d).
We now show that (d) = (a). Suppose that for some p >0, I,(0)

1 .
= [exp[—c(l—7)"%1 M, (r,f)dr < co for all ¢> 0. Since M,(r,f) is a
0

non-decreasing function of r, for any R < 1,

(2.2) L,(0) > My(R, f) [exp[—o(l—r)~"1dr.
R
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By the change of variable ¢ = (L—7)"%,

1

Rfexp[—-c(l—r)"”]dr —-%fexp(—_—ct)t"’dt,

where T = (1—R)™# and y = (f+1)/f. The function #"exp[—ect] for
{ € (0, co) has a maximum at ¢ = y/c. Therefore

"Yexp[—ct] = (%) exp[—2¢t],

and

§ Jomc-aas 32 Znion

Combining this with (2.2) gives.
2.5) 1, (2, 1) < 260 (L) expizo1—B)11,0),

valid for all B, 0 <R <1, with y = (841)/8.
If p = oo, then by (2.3), lim(L — R)’log™ M, (R, f) < 2¢, for all ¢ > 0y
R1
from which it follows that fe F,.

Suppose 0 < p < co. Since [f(2)|? is subharmonic in |2] < ¢ and
continuous in |2| < p, where 0 < p < 1 ia arbitrary,

b

1 —_
If@)F < lse i 'z|f(9e*°)|z'¢za

which is valid for all 2, |2| < ¢. Henceif z = 7¢”, 0 < r < 1and ¢ = (1+7)/2,

P <2

IV[ (fo)

My(e,f)-

—
Combining this with (2.3), with B = (14-7)/2, gives

exp [e2F+1(1 —7)~"] I

(2.4) LMo, NP < A(B ) =51,

(e),
where 4 (B, ¢) is a constant depending only on § and ¢. Hence,
lim (1 —#)log* M, (r, ) < % c2f+1
r—+1 _-

for all ¢> 0, from which it follows that f e F,.
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Remark 1. I f € Fy, then there exists a constant 4 (B, ¢), depending
only on § and ¢, such that
(2.5) If(2)l < A(B, e)exp[2e(1—[21) ] Io(f, 0)
and for 0 < p < oo,

(2.6)  If(2)1P < 44(B, o) (1 — o)) exp[27+ e (L~ 2])~"1 L, (f, o),

where for 0 < p < o0, I,(f, ¢) = fexp[—c(l — 1Y P1 M, (v, f)dr, and A (B, c)

= 2fc(y/ce)’y y = (B+1)/B. These follow directly from. inequality (2.3) for .
p = oo and from (2.4) for 0 < p < oo.

Suppose f(z) = ) a,2" In [7], N. Yanagihara has shown that f e I,

n=0

(r+ in notation of [7]) if and only if

» = Ofexp(o (l/;))],

—-— 1
i.e., lim—logla,l < 0. We obtain the following generalization.
n—-00 n

THEOREM 2.2. Suppose f(2) = Z‘a 2" is -analytic in D. Then the fol-

n=0
lowing are equivalent.

(al fEFﬁ
(b) There exists a sequenoce {A,} of positive real numbers with y Y
such that

(2.7) la,) < exp[4,nf0+0],

(c) For any 0> 0,

o0
(2.8) Z @, exp[ — onft+P] < oo,

n=0

Proof. (a) = (b). Suppose feF,. Then by Theorem 2.1 (b), there
exists w(r)}0 as r—~1 such that M,(r, f) < exp[w(r) (1 —7)~*]. Therefore,
for all >0 and 0 <7< 1,

My(r,f) _ explo()i—r)"]
e = P *

Inl\

Let ¢,)0 (assume & < 2-¥+Y) and choose g,}1 such that w(r) <e, for
r > o, Choose a sequence of integers #;, n,.; > ny, such that

& 1/(f+1)
1—|— 2 O
Wy

.3 — Annales Polonici Mathematicli XXXV.2
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1/(8+1)
€k
(2.9) Ty = 1— (7) .

Then 7, > ¢, and
exp [w (Tn) (1— n)—.ﬂ] < exp [8}‘/(1+ﬂ) ,nﬂ/(1+ﬂ)] )

Furthermore, by the inequality 1 —# > ¢~?* which is valid for all & with
0 << .796,

Y(s+1\® .
()" = (1_ (%c_) ( ) > exp[_zg;al(ﬁ+1)nﬂl(ﬂ+1)].

Therefore,
Iaﬂl < exp [38}0/(5""1) ‘np’(ﬂ'l'l)] )

from which the result follows with 4, = 3¢/, n, < n < nyy,y .

(b) = (c). Suppose |a,| < exp[4,n”P*V], where {1,} is a positive
sequence decreaging to zero. Then, it is an easy consequence that the
series

D) la,lexp[ — onf/E+0]

n=0
converges for all ¢ > 0.
. : -
(¢) = (@). Consider I(c) = fexp[—e(1—1)""] M (r, f)dr. Thon
]

o0 1
(2.10) I(e) < Y1anl [ rmexp[ —o(1—r)""]dr.
n=0 0.
Defino
, ¢ \ME+D 0 \M(B+1)
(2.11) rom 1 (-7;) o =12 (W) ,

/

Then for 7, <7< 7,
r"exp [ —o(1—7)"P] < exp [ — (1 + 277) /(A +1) 5 flA+1)]

s

For r<r,
¢ \ye+1n\"
T1iexp[—0(,1_7.)—ﬁ] < 7.111 < (1 .-_2 (_) )
' n
L exp[— 9cl/(B+1) nﬂ/(ﬂﬂ)] < expf[— cM(A+1) %ﬁ/(ﬁ-}-])]’
and for » > 1),

1™exp[ —c(L—7)"1 < exp [ — M) pflB+D),
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Therefore, for all », 0 < r < 1,
?-nexp [ —¢ (1 - .r)-'ﬂ] < ex_p [ — cll(ﬂ'i‘l) nﬁl(ﬁ+1)]’

and. consequently, by (2.10),
00 .
(2.12) I(c) < Z |, | exp [ — GBI pAIB+D]

which is finite for all ¢ > 0. Therefore by Theorem 2.1 (d), f € F, which
proves the result.

Remark 2. The method of proof used in this theorem is similar to
that used by N. Yanagihara in Theorems 1 and 2 of [7] for § = 1. The
key difference is in the definition of the sequences 7,, 7, and 7, given
by (2.9) and (2.11) respectively.

3. Fs as a Fréchet algebra. As in [7), for fe F,, >0, we define
for each ¢> 0

. 1
(3.1) NIfHlse = [expl—o(—1)""1 My(r, f)dr,
0
and
(32) Iflp,e = D la,lexp[—on+D],
nm=0

Clearly both {|i[ |ils,cle>0 20d {I} Il ,,}m, define a family of (semi) norms
on F,, with respect to which F, is a locally convex topologlcal vector
space. The following proposition shows that the topology given by the
two families of seminorms is egqmnivalent.

PROPOSITION 3.1. For each ¢ > 0, there exists a constant A = A(B, o)
depending only on f and ¢, such that

3.3) 1Fllse < Iflpas  1fllge < AT g0,

¢ \Y(E+1)
with ¢; = ¢/®Y) and ¢y = (1—2) .

Proof. By (2.12), ||Iflllse < Ifllse, With ¢, = ¢/®+). Ag in the proof
of Theorem 2 of [4], we set
1
w(6) = fexp[—/I(lwr)'ﬁ]f(a'e”)dr, A>0.
. )

Then |u(6)| < ||If]lls and

_f lu (6)} 46 = Z |a,|? (f expt—l(l_y)—ﬂ]rndv')z.

n=0
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With 7, and 7, as defined in (2.11),

1
[expl—2@—n*1mdr> [ expl—A(L~r)1r"dr
o ”

T

\Y

PRRVCESY
"

for n sufficiently large. Therefore

o0
£l E D |a,l* exp [ — 122+ E+1],

n=0

But

3 2
£ 1fEe = (2 |a, | exp [ — cnﬂ/(ﬂﬂ)])

n=0

< (i’ I_anlz oxp [ — mﬂ/(ﬁ+1)3) (S’ oxp [ — mﬁ/mﬂ)]) )

n=0 ne={

A+1
Hence, if we set 1 = (%) , there exists a constant A,’:depending only
on S and ¢ such thqt

Ifllge < Al g,

Remark 3. If in definition (3.1), one had used M,(r, f) instead of
M (r,f) to define a family of seminorms P, by

1
Pyo(f) = [exp[—e(l—n)"PIM,(r, fdr, ¢>0,

r
then Py () < |11£111,, and by using the inequality M (r, f) < _z +T X

147 .
X M,(r, f), where g = ;- , one can show that for every ¢ > 0, there

exists ¢, depending on ¢ and a constant A depending only on A and ¢
such that '

1f1Hae < APpgq (f)-

TEEOREM 3.2. For all p > 0, Fg with the topology given by the (sem:)
norms (3.1) or (3.2) is a countably normed Iréchet algebra with

(3.4) 17918,e < 1F 115, 191lg,e 5

where o’ = 2™, f, g € Iy, Purthermore, if f € Iy, then f,—f in the topology
of Fy, where for 0 <r <1, f,(2) = f(ra).
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Pro of The proof that F, is a countably normed Fréchet space is
similar to the proof of Theorem 3 in [7] and consequently is omitted.
Likewise for the result that f,—f as r—1 in the topology of F,. Continuity
of multiplication will follow from inequality (3.4) which we now prove.

Suppose f(2) = > a,2"” and g(2) = > 'b,2" For A> 0

(3.5) ”f”ﬁl“.‘]”,ez=(Z|anlexp[ Anﬁ’(ﬁ+1)])(2|bn;exp[ ,mﬁf(ﬂﬂ)])

n=0

= 2 (Z @l |B,.—;] €XD [—}.{jﬁ/(f’+1)+(n_j)ﬁ/(ﬁﬂ))].

n=0 j=0
By the inequality (a? -+ b?)12? < 20-2VP (g 1), valid for 0 <p <1, a, b3 0,
GAEED gy, — )PIEHY)  QUAHE) PIA+Y)

Therefore by (3.5)

0

n
||f||ﬁ,a||g||ﬁ,1 = 2 (2 A Ibn_jl)ex_p[_,_mﬁl(ﬁﬂ)]

nes jm=0

with ¢ = 22"0+A from which (3.4) follows. Hence F, is a Fréchet algebra
for all 8> 0.

Using the same method of proof as in [7], Theorem 5, one obtains
the following.

TaeoreEM 3.3. If y is a continuous linear functional on Fgz B> 0,
then there emists a sequence {b,} of complex numbers with
(3.6) by = O(exp[ —mnf+M))

for some 5> 0 such that
(3.7) y(f) = D) ayby,
n=0

where f(z) = > a,2" € Fy, with convergence being absolute. Conversely, if
{b,} is a sequence of complew numbers satisfying (3.6), then (3.7) defines
a continuous linear functional on Iy.

4. The Hardy-Orlicz space (LogtH)%, a> 1. As in [3], [4], for each
strongly convex function ¢ on (—oo, o) we define the Hardy—Orlicz
space H, as the space of all f € H(D) for which

an

1
Sup —— g (log™ [f(re")|)dt < oo
0

0<r<l

Recall that a convex function ¢ on (— oo, o) is strongly convex if ¢ is
non-negative, non-decreasing, and ¢(t)/t->o0 as t—oco. It is well known
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(see [3]) that H, < N* for all strongly convex ¢ and that
= (U {H,|p strongly convex}.

TFor 0 < p < oo, the space H, with ¢(f) = ¢” coincides with the usual
Hardy space H?. If for each o> 1 we define ¢,(f) on (—oo, 00) by ¢,(1)
= t* for { > 0, and equal to zero for # < 0, we obtain the spaces (Log™ H)".

Let T denote the boundary of D and for 1 < p < oo, we denote by L?
the space of measurable functions f on T for which |f|” is integrable,
with the norm given by

2r

1 p Up
(1) 171y =[5 [ 150par]
0
For a function f e N, we will denote by f* the function on 7 given by
f*(e") = limf(re*), which exists a.e. on T.
7=rl

The fo]lowmg results for functions in (Log* H)* will be needed.

PrOPOSITION 4.1. Suppose fe N*. Then fe(LogtH)®, a> 1, if and
only if log* |f*| e I If this is the case, then

(4.2 log* [f(&IT" < 5 [ P (e, 6*)llog* 1" (6*)1T"ds,
T 0

and

2n .
(4.3) [log {1+ 1f(2))]° < ;—n f P(z, ¢*) [log(1+|f* (¢)1)]"at,

_izi2

where P(z, %) = 18 the Poisson kernel. Furthermore,

|6il_z|2
(4.4). hm—-f [Log 1+ [f(re)])]? dt=—-—f |log (1 + I7* (¢)1) " ..

Proof. For functions fe N+, the result that fe(LogtH), a> 1,
if and only if (log™|f*|)*e ' and inequality (4.2) are true for any
strongly convex function ¢ and the proofs may be found in [3], [4].

By the inequality log(1+ |#|) < log 2 +log™ |»|; it follows that

2
osuplf [log {1+ |f(re")])]*dt < oo.

Therefore, since log(l+|f|) is subharmonic, (4.3) and (4.4) follow by
Theorem 2 of [4]. '

For f, g € (LogTH)*, « > 1, define
(4.5) 0a(fy 9) = Mog(L+[f*— g™l
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where || |, is given by 4.1 and f*, g* denote the boundary values of f and g
respectively. By (4.4),

2n Ja

1
2.(f,9) = 1im[2l f [10g(1+|f(7'6“)—-g(re“)[)]’dt] .

r—1 -—T?O
The above definition of g, has been motivated by the metric ¢ on N+

1 aTC
given by o(f,g) = . f log(1+4|f*—g*|)dt, which was introduced by
. 0

N. Yanagihara in [8] in his study of the space N,

By the inequality log(l+|o+y|) <log(l+ |2|)+log(1+y]) and
Minkowski’s inequality it follows that g, satisfies the triangle inequality
and by (4.3) ¢.(f, 0) = 0 if and only if f(2) = 0 for all ze D. Hence g,
defines a translation invariant metric' on (Log*H)*. Furthermore, if f,
g € (Log™ H)", then, since log™|fg| < log™|f|+log* |g|, fg.€ (Log* H)", ie.,
(Log* H)* is an algebra. In fact, wo obtain the following.

THEOREM 4.2. The space (Log™ H)?, a > 1, with the topology given by
the meirio g, is am F-algebra, that is, a topological vector space whose topology
is given by a complete, translation invariant metric in which muliiplication
is continuous. Furthermore, if f e (Logt H)%, then
(4.6) liﬂllea(fﬂf) =0

s

where f,(2) = f(rz), 0 <r < 1.

Proof. Olearly (Log*™ H)" is a vector space. If {f,} is a Oauchy se-
quence in (Logt H)? then by (4.3) f,(#) converges uniformly on compact
subsets of D to an analytic function f(z). Furthermore, since {f,} is a
Cauchy sequence {g.(f,, 0)} is bounded, say by 0. Therefore, for each 7,
0<r<l,

nN-»00

2r -
21_7:f flog{1-+I7(re®)lj|*dt = lim [ [log(1-+ Ifa(re")"dt < O
0 0

from which it follows that f e (Logt H)®. Similarly, for each r, 0 < r < 1,
1 27
o | Dogl1+ 17" — (et ot
0 )

< tim [ [10g(1+1£ur6") —fu(re")| [0t < i e, )T

m—oo m—o9
Therefore by (4.4),
0u(fry f) < lim g, (fry fm)

m—>00
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which shows that f,—f with respect to g,. Note, in the above we have
, 1 27
used the fact that [log(1-+f])]" is subharmonic and hence —— [ flog(1+
0

+1f(ré")])]*d¢ is a non-decreasing function of 7.
We now proceed to show that multiplication is continuous. Suppose

fn"’f: =9 Tar s |y 9 € (LOg+H)a Since
(faln—19) = (Ffu—1) (90— 9) +(fo. —f0) + (9f—9f),

and since log(l+ |zy|) <log(l+ |z)+log(1+1yl), by the triangle in-
equality,

' .fngn?fg) Qa fn)f)+9rz'(gn7g)+9a(fgn7fg)+9a(gfn’gf)'
Therefo1e, it suffices to show that if f,,— f, then gf,— g¢f for all g e (Log™* H)".
Since

Rog (L + 1f3)) —1og (1 + [f*)lla < log(L+ £ —F* Nl

fr—f* in measure and consequently log(l+ |g*fr—g* f converges to
zero in measure. Furthermore, since

[log(1+ 19" fn — ¢*f*NT* < 2°{[log (1 + lg" )]+ [log (1 + | fn —f*) T},
by a standard argument (e.g., proof of Theorem 1 in [5]), hm ||log(1+

+ 16X~ g* f*)l. = 0. Henee (Log*H)" is a topological a.lgebra
Suppose f e (Log*H)*. By Theorem 4 of [4],

2n

i ¢ UAYR _
lim o [log™ |f(re") —f*(e*)|1°dt = 0.

r=>1
Also, since f(re")—>f*(e¥) a.e. and

[log (1.4 £ (re™) — * (6")I)]* < 2°{[log 21" + [log* | (re") — * (¢*) I},

a straight forward argument using Egorov’s theorem shows that lim g, (f,, f)
= 0, which proves the result. e

We now make fthe coxmecmon between the spaces (Logt H)*, a > 1,
and F,.

TEEOREM 4.3.

(a) (Log*H)", a>1, is a dense subspace of Fy,.

(b) The topology in F,,, defined by the family of semimorms (3.1) or
(3.2) is weaker than the topology in (Log™H)" given by the metric (4.5).

(¢} Given a> 1, for each f > a there exists a function f, € (Log*H)"
such that

Tim (1— )" log* M. (7, f) > O,

r—1

i.e., (Log™ H)" 4is not contained in F,, for any > a.
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"Proof. (a) Suppose f € (Logt H), a > 1. By (4.2) [log™ [f(2)|]* < F(2)’
where F(z) is a non-negative harmonic function and is given by the Poisson
integral of the integrable function [log™®|f*|]". Using the fact that the
Poisson kernel is an approximate identity, a straightforward argument
(e.g., proof of Theorem 1 in [9], or the Lemma in [6]) shows that Iim (1 —#) X
X M (r, ) = 0. Thercfore, 1

ljnl(l_"‘)llalOg.i-Moo('r,f) =0,

r—>1

and hence (Log*H)" < Fy,. If fe Fy,, then for each r, 0 <7 <1, f,,
given by f.(2) = f(rz), is in (Log* H)* and converges to f in the topology
of By, ie. (LogTH)* is dense in Fy,.

(b) Suppose {f,} < (Log* H)* and f,—>0 in the topology of (Log* H),
given by the metric g,. Then by (4.3), f,,— 0 uniformly on compact subsets
of U, and by (4.2),

2 l/a
Mot f) < em (1) elin 0)].
\1—r
Let ¢ > 0 be given and let ¢ > 0 be arbitrary. Choose g, 0 < ¢ < 1, such

4hat
1
f exp [ —
(]

Also, choose an integer N such that for all n> N, 2" (f,,0) < ¢/2 and

)l A
(1—7) ]dr<2.

wlm

[ expl—o@ =Nt u(r, £1)dr < =
0

Then for n > N,

0

g 1
||Ifn|||1/a,c<fexp[—c(l—r)“”“]Mm(r,fn)dr+fexp[__;’_(l_,.)—ua]dr

+€
— 4+ — = &.
<7773

Therefore, since &> 0 was arbitrary, lm|||f,/lye, = 0. Since this is true

n=->00

for all ¢ > 0, f,—f in the topology of F,;, given by the (semi) norms (3.1).
Hence the topology of F,, restricted to (Log* H)* iy weaker than the
topology of (Log* H)" given by the metric (4.5)

(¢) Fix an a« > 1. For each f > a, define

o = [22)"]
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o/ 1+2
ancl -

o . 114z
Since” [log™ |f, ()T < l'l_—?
fo € (Liog™ H)*. Write

l—zeHD for all p<1i,

142 142 — : T
12 “’1_z é 4 lp(2)] < TR
Then
1+4+2\YF |14z 1
=Re|-———] =|—] cO8—@(z
1 (2) (1—z) 13 599( )
and hence u(z)> 0. Furthermoie, for all 2, 2| <r<1,

14r\YA
u(z)kg (1 _T-)

with equality at z = r. Therefore,

1 g\ VB
'log+Moo(’r)fp) = ma,xu(z) =( _I-T)
|21 << 1—v»

r—1

contained in #,, for any f > a.
COROLLARY 4.4,

-]

(a) If f(2) = Y a,2" e (LogtH)", then a, = O (exp[o(n'/C+tM)]).

n=>0

(b) If {b,} is & sequence of complex numbers with b, = O (exp[— 5 n!E+])
Jor some n > 0, then

(4.7) y(f) =D a,b,

with f(2) = ' a,2" defines a continmous linear functional on (Log*™ H)", the
series converging absolutely.

Remark 4. In [7], [8], N. Yanagihara has shown that if y is & con-
tinuous linear functional on N*, then there exists a sequence {b,} of
complex numbers with b, = O(exp[ —»Vn]) for some > 0 such that

oo

y(f) = Za’nbm

n=0

where f(2) = 2 a,2" e N*. Using classical methods (e.g. [1], p. 115) one
can show that if ¢ is a continuous linear functional on (Log™ H)?, then

(4‘8) y(f) = ].HII. ZOO: anbnrn!

r=>1 =0
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where f(2) = > a,2" e (Log™ H)® and b, = y(2"). Fu_rthermore, it is also
possible to show that the function %(2) given by h(e) = 2‘ b,2" i3 ana-

_ n=0
lytic in D and continuous on D. However, we have been unable at this

point to show that b, = O(exp[—yn"/t*+9]) for some % > 0, i.e., that y
is continnous on F,.

We conclude this section by giving some other properties of the

spaces (LogtH)® For any a, f, 1 <a< f < co and for all p > 0, the
following holds:

H? c (Log*HY < (Log*H)"< N*

and the containment is proper. The fact that H? = (LogtH)? for all
p>0 and all 8> 0 is a consequence of the following inequality:

1
10g+9:<;;m”, z=>1, r>0.
The following theorem characterizes the invertible elements in.

(Log* H)®

THEOREM 4.4. A function fe(LogtH)?, a> 1, 45 invertible if and
only if f(2) = expg(z), where g(z) € H".

Proof. Suppose f(2) = expg(2), g € H* Then |log|f(2)|| < Ig(#)| and
_ 1 ]
consequently both f and F e (Logt H)".

Conversely, suppose f e (Log* H)® is invertible. Since (Log*H)* = N,
fisinvertible in N+ and hence is an outer function in N+, i.e., f(z) = expg(2),
where ' '

1 6“+z
g(2) = '2_ 1 g[f dt: [1], p. 2b.
. 2m et
Sl
Since both f and ?e(Log““H)“, by Proposition 4.1, (log™|f*|)* and

(log* |1/f*|)° are integrable. But log* [L/f*| = log™ [f*| = max{0, —log|f*!}.
Therefore, |log|f*|| € L*. Let

u(?) = Reg(9) — 5 f Ie“ loglf (1)) dt.

Since |log |f*||* is integrable and « > 1, by the M. Riesz theorem [1], D. 54,
g(#) € H°, which proves the result.

5. The Bergman algebra 4 (D). We denote by 4% (D) the space of
analytic functions f for which log*|f(¢)| is integrable with respect to
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1 . . .
the area measure dA (2) = — dxdy over the disec D. If f(z) is not identically
' T

zero, then since log|f| is subharmonic, log|f| is integrable with respect
to the area measure d4 if and only if log™ |f| is integrable. For f, ¢ € 4% (D),
define

(5.1) af,9) = [ log(L+15(s)—g(2)l)ad(2).
121 <1
Clearly d(f, g) < oo for all f, g € #* (D) and defines a translation invariant
metric on AF (D).
The following proposition will be needed.
ProrosITION B.1. Let u be a non-negative subharmonic function on D
which is integrable with respect to the area measure dA ; then for all z € D,

1— |22
(5.2) u(e) < Df u(é) (IT—ZET) 4 (€)
and
142\
5:3) oo < (1) Junasie

Proof. For any subharmonic function % which is integrable with
respect to area measure dA4,

(5.4) (0) < f f (ré)rdrd0 = f (E)AA(E).

Let ze D be arbitrary and define y: D—D by y(&) = (2— &) /(1 —Z¢&).
Then u(2) = woy~*(0) and woy~* is subharmonic. Since

Juoy(£ad(g) = [u(&)ly'(£)IdA(¢)
D

D
and
1—12)* \* (1+Iz| )2
5.5 e =—— ) < .
(55) e = () < (1)
woy~! is integrable on D and by (5.4-), and the above, (5.2) and (5.3)
follow.

CoroLLARY 5.2. If fe & (D), then

212 |
Il—ZEI"‘) 4@

(5.6) log* |f(2)] < f log* If(£ (
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Cr

and

(5. log (1-+1706)) < (T 1) a7, 0.

‘Using (5.7) and standard techniques one obtains the following ana-
logue of Theorem 4.2,

THEOREM 5.3. At (D) with the topology given by the metric d i3 an

F-algebra. Furthermore, if fe A/t (D), then Limd(f,,f) = 0.
r=>1

THEOREM b.4.

(a) & T(D) is a dense subspace of F,.

(b) The topology in F,, defined by the family of (semi) morms (3.1)
or (3.2) is weaker than the topology in A+ (D) given by the metric (5.1).

(6) For each B <2, there evisis fo e A+ (D) such that

lim (1 —7)log* M, (r, fp) > 0,

r—>1
i.6., /' T(D) is not contained in F, for any B < 2.

Proof. (a) Let fe #+(D) and let £> 0 be given. Since log™|f| is
integrable on D, there exists &> 0 such that

[log*|flad <&
E

for all measurable subsets £ of D with A(#) < 6. For each r, 0 < r <1,

let D, = {#] |2| < r}. Choose R sufficiently close to 1 such that A (D —Dg)
< 4. Hence by (5.5) and (5.6), for all w e D,

1—|w|2\? 1 — w2 \2
10g+|f(w)l<Dflog+|f(z)|(l—lt|;]?llz) dA + f 10g+|f(z)|( lw] ) A
R

1 —we|?
D-Dp

1 — w]? )2 f 46
<|—="" ) [ log*|fldd 4+ —— .
<@z ) e AT
R
Therefore, for all , 0 <r <1,

1—r2 \? . 4e
lOg"'Mm(T,f) S (m) d(f, 0) + (1—1‘)2 .

Oonsequently, ]iTn(l—r)zlog*‘Mm(r, f) < 4e, from which it follows that

r—1
N FT(D)<=F,. If feF,, then f,e #*(D) for all 7, 0 <r<1, and f,—f
in the topology of F,. Therefore 4 *(D) is a dense subspace of I,.
(b) Suppose f, e & (D) and f,—~0 in #* (D). Then by (5.7), f,—0
uniformly on compact subsets of D and by (5.3)

M (r, fo) < exp[4(1 —1)"2d(fy, 0)]
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Let e > 0 be given and let ¢ > 0 be arbitrary. As in the proof of Theorem 4.3
(b), choose g, 0 < ¢ < 1, such that

1

f exp [—-%(1—-1‘)‘2] dr < %

e
and choose an integer N such ‘bha,t f01 all » >N, 4d(f,, 0) < ¢/2 and

e

f oxp[ —e(L—1)"2] Mo (r, f,)dr < %

Then for all # > N I falllz,e < e Therefore fu=>0 in I’z
For the proof of (¢) we need the following lemma.

LeMMA 5.5. For all a <2, f(2) = (L—2)"g is inlegrable on D with
respect to the area measure.

Proof. Let 0 < p <1 be a{'bitra.ry and let D, = {2| |2| < ¢}. Then

e 2
' 1 1
flf'dA = ;6{ 6[ mrd”rdﬁ

DE’
1—- 2 al2
_* f (1—p2)=e f [—_l(l—ri“’)l“] dorar.

Sitice 4a <1,

1 in 1_1‘2 aj2 1 in 1—7‘2
— do < f o = 1.
2n of [|1-.m‘°12] = on ; 11 —re®? a0 =1

Therefore,

2.

—a

f|f|dA f29 ) g <

D,

from which the result follpws.
" Proof of (c). Suppose 1< f< 2. Let fy(2) = exp(1+z) By the
]emme., foe AT (D) and as in Theorem 4.3, log*M_(, fo) = (i_l—_-,—) .

_ 1—7
Therefore, lim(1—7)flog* M (r,fs) =2°. For- 0<f<l, flz)=

1""" P - Bloo+
exp . € A 7(D) and lm (1 —»)"log* M (+, f) = + co. Oonsequently,
- r—1 '

for each B < 2, there ex_lsts fs € #F (D) such that hm( —1)Plogt Mo (7, fo)
> 0.
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COROLLARY 5.6. If f(2) = ) a,2" e #+(D), then a, = 0(exp[o(n*?)])

and n=0

o
2 |@,|exp[ —en**] < oo

n=0
for all ¢ > 0.

Remark 5. In analogy with the Hardy-Orlicz spaces (Log™H)?,
one might also consider for each ¢ > 1 the space of functions for which
(log™ |f1)* is integrable with Tespect to area measure. Let (Log™H (D))"
denote the space of fe H (D) for which

f(log*‘ If1)?dA < oo.

. D
Then by (5.2)

. 1=z N
(5.8) [log™ |f(2)i] <Df [log* |f(&)] (|1—-z§|2) a4 (¢),

and by the same method of proof as Theorem 5.4 (a)
(5.9) lm (1 —7)¥log* M, (r, f) = 0.

r—1

THEOREM B5.7. For all # <1, Fy< ¥+ (D).
Proof. Suppose f € Fy, 0 < f < 1. Then there exists w(r) |0 as r—1
such that
w(r)
(1—n)"

log* Moo(r, f) <

Therefore, for all ¢ < 1,

F 20 (0
Jog*ir@iade@ < [ 0 < 320,
D, 0

where D, = {#| |2] < ¢}. Hence [log™|f|dd < oo and consequently
fe#*(D) ? |

Remark 7. For § > 2, using Theorem 2.2 it is easy to construct
an example of a function f € F, but f ¢ F,, and hence F; is not contained
in &+ (D) for any g > 2. In view of Theorem 5.7, it would be interesting
to know if for any values of 8, 1< <2, Fy < & (D).
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