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The cosine equation method for the eigenproblem
of bounded normal operators in Hilbert space

by M. ALTMAN (Warszawa)

1. Some special cases of the cosine equation method are investigated
in papers [1] and [2]. This method is actually an iterative method of
finding eigenvalues and eigenvectors of linear operators in Hilbert space.
The general idea of the method consists in reducing the problem to
finding zero elements of a non-linear functional. In papers [1] and [2]
we considered the real case of a symmetric matrix or a self-adjoint
linear bounded operator, respectively. This paper contains a generaliza-
tion of the method mentioned above. This generalization gives an ite-
rative method of finding eigenvalues and eigenvectors of a bounded
normal operator in a real or complex Hilbert space. If the operator in
question is self-adjoint, then the generalized method coincides with the
method presented in [1] and [2]. The proof of the convergence is similar
to that given in [2]. The method, of course, can be also applied to the
eigenproblem of a normal matrix. Besides, a generalization of the me-
thod is also given by introducing a parameter.

Let A be a linear (i.e. additive and homogeneous) operator with
domain and range in a real or complex Hilbert space H. We shall as-
sume operator 4 to be bounded and normal, i.e.

A*A = A4,

where A* is the adjoint of A.

The problem is to find eigenvalues 4 and eigenvectors # of H satis-
fying the following equation

(1) Ar —=ir, x#0.
It follows from (1) that

_ (Az, )
 (x,@)

(2) A(@)
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Hence, we get the following equation
Az =A(x)x, x#0

instead of equation (1).
The last equation can be written in the form

Az —A(z)al* =0,
or, equivalently,

(3) F(z) = =[Pl AzlP—|(Az, ) =0, @ +#0.

As in [2] we see that our eigenproblem is equivalent to that of finding
the solutions of equation (3). This equation means that the modul of
the cosine of the angel between the eigenvector # and its image Az is
equal to 1. For this reason equation (3) is called the cosine equation for
operator A. Hence, the eigenproblem of the operator A is equivalent
to that of finding the solutions of the cosine equation for operator A.
We shall give an iterative method of solving equation (3). Let x, be
the given initial approximate solution of equation (3). Then the appro-
ximate solution z, of (3) is determined by the following formula

F(x,
(4) mﬂ+1=wﬂ—mgyn’ n=1’2,...’

where F(z,) is defined by relation (3) in which z should be replaced
by #,, and where

(5) y»n = ".Amnllzwn—l-"wn”zA*Awn h (Aah;, wn)A*wn— (Aw'n,, wn)Awn .

We shall now establish some relations needed in the sequel. First
of all let us remark by a simple calculation that the vector y, defined
by (5) can be written in the following form

6)  Yn = |lmal? (A*— (e 2n) ) (4 (Eete) I) Int

llzalf? [l2al?

(An, ) )
A - ra— I n
+"( lole )"

rmnv

where I denotes the identity mapping.
Let us put
(Az, z)
l| |

(7) B, =A4A— I.

Then we get instead of (6), dropping the index =,
(8) Yy = |2l[*Bz Bz +||Bz |z .

We have, by (7)
(9) F(z) = ||2[P| Bz 2| .
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Hence, it follows in virtue of (8) that

(10) (9, #) = 2F (x) .
It is easy to verify that
(11) B, A =AB,.
Since operator A is normal we get also
(12) BiA = AB3.
Hence, we obtain, by (9), (11) and (12), the following inequalities
(13) |(4y, )| <2|4|[F(z) and [(4d=,y)| <2/A|F(2).

We can now prove the following

THEOREM. Let x, be an arbitrary element of H such that the following
condilion i3 motl satisfied

7 F2($t)
S lyde
Let x, be defined by process (4). Then the sequence of mumbers
{ (Azy, wﬂ-) \
lal®
converges to a number A and the following condition is satisfied
(Azp, 22)
—
|2 "
Remark. If in addition operator A is completely continuous then
A i3 an eigenvalue of A. The sequence of z, converges strongly to an

eigenvector z* corresponding to A, provided that , is not orthogonal
to the subspace of eigenvectors corresponding to 4.

Proof. We shall show the convergence of the sequence of numbers
|l@af?. Tt results from (4) and (10) that

(14) lall® ==

Axy — -0, a8 mnm—>oo.

1 Fz(wn)
4 Tyl

Hence, it follows that the sequence of ||x,|* is decreasing and bounded
and, consequently, convergent. Relation (15) implies

(15) 1041l = lloez]* —

Fz F2(;)
4 ll?l 2

Hence, it follows the convergence of the geries

(16) @1 = ll2oll® —

S F2(a;)

a7 ik
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Relation (16) implies that z, >0 as n—>oo if and only if condition
(14) is satisfied.

We shall now prove the convergence of the sequence of numbers
(Azn, x,). We have by (4)

F(2)

= gy A B

(A0nss, nsr) = (4o
Hence, we get
(18)  (A®ni1) Tos1)— (A2, 1)

— F2(n) [(Aym Yn) 2 (AYny Tn) + (A2, Yn)
yalP L lyal? F (2n) '

We shall show that the expression in square brackets in (18) is bounded.
In fact, we have

F ()
2yl ”) ‘

(19) “A"y;—;lf’”)' <|4] for n=0,1,2,..
Further, it follows from (13) that
|(AYn,y Tn)l

In the same way we get the following inequality

|(A%n, Yn)|
21 — < .
(21) Ty <2l
We have, by (8),
lill® = llw(i¢|| Bz Bz l[* + 3|ll*l| Bz l|* -

Hence, it follows, by (7), (9) and (10), that if ||ly,|* vanishes, then =z, is
an eigenvector of operator 4. Thus, it follows from (19)-(21) that the
expression in square brackets in (18) is bounded. In virtue of (18) the
convergence of the series (17) implies the same for the following series

2 (AZn i1y Tny1) — (AZn, @p) = Hm (Azi, 2) — (A2, 5o) -
n=0 ' k-0

Thus, the convergence of the sequence of numbers (Azs, z,) has been
proved.

Since element z, is so chosen that condition (14) is not satisfied,
the sequence of |xy|? has a limit which is different from zero. Hence,
it follows that the sequence

(An, wn)}
[l
converges to a limit, say 4.
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It is easy to see that the sequence of |ly,/?> is bounded. Hence,
it follows from (15) that
F(x,) >0 a8 n—>oc,
or, equivalently,
_ (AZn, )

[l2ll®

If ©,4+, = 0, then multiplying (4) by v» we get F(z,) = 0, in virtue
of (10), i.e. #, is an eigenvector.

Suppose now in addition that the operator 4 is completely con-
tinuous. Then there exists a subsequence of {z,} strongly convergent
to an eigenvector z* corresponding to the eigenvalue A. It is easy to
see that if 1 is a simple eigenvalue of 4, then the sequence of z, con-
verges strongly to the eigenvector z*. One can prove that also in gen-
eral case, if the eigenvalue A is not simple, then the sequence of z,
converges also to an eigenvector corresponding to A, provided that x, is
not orthogonal to the subspace of eigenvectors corresponding to A.

Axp xp,—>0 as n—>00.

2. We shall now introduce a parameter a in the process defined
by (4). Thus, we get the following formula instead of (4)
llal | An|*— (A2, 2a) P
2w Yo

where y, is determined by relation (5). Then we obtain the following
relation instead of (15)

(22) Tpnt1 = Tp— @

F2(w,)
lyall®

where F(z,) is defined by (3). Hence, it follows that for 0 < a < 8 the
sequence of ||z, is convergent and so is the series (17).

The same argument as in Section 1 is also applicable here pro-
vided that the number } in relation (14) will be replaced by 2a(1— }a).
The theorem of Section 1 ean be proved without change for the process
defined by (22).

Let us remark that |[©,4.]* is minimized for a = 4.

|Zn+1ll? = ||l — 2a (1 — §a)
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