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On some linear eigenvalue problems
for strongly elliptic systems
with an indefinite weight matrix function

by Jan BocHenek (Krakow)

Abstract. In this paper a linear eigenvalue problem for a system of differential equations
with an indefinite matrix function is considered. The main result of the paper is contained in
Theorem 3. In Section 3 some properties of eigenfunctions which correspond to principal
eigenvalue of consideration system are given.

Introduction. In this paper we investigate the linear eigenvalue problem
for a system of differential equations of the form

(1 YU =APU in Q,
where
No¢ ou
) G = — —_— P
(2) LU i.jz=1 o, [A,, 5ij+ QU

is a strongly uniformly elliptic differential expression of second order having
real-valued symmetric nxn matrices A;; = A; (i,j=1,..., N) of class C!
and P, Q continuous in Q. Here Q is a bounded domain in R (N > 1) with
smooth boundary 0Q.
We shall also consider a boundary condition
dU
(3) — —KU=0 or U=0 on 09,
dv
where K is a symmetric matrix which is continuous and positive definite on
dQ: dU/dv is the transversal derivative of U with respect to system (1), te,
@ dU % y ou ( )
—= —=—cos(n, Xx;),
dv ij=1 Y ox; !
n being the internal normal to &Q.
In the case where P in equation (1) is the positive definite matrix in the
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closure Q of the domain @, the problem (1), (3) was investigate in papers [1],
[2] and [5].

We are interested here in the situation where the matrix P in equation
(1) is indefinite in Q. The purpose of this paper is to transfer some results of
paper [4] to the case of system (1). The main result of paper [4] which we
are interested is following.

Let us consider the problem

N aZu N
5 - a;; + a,-— +agu = rmu In £,
©) ,._jz:ll Y 0x; Ox; ,Z’, Yoy, Y

u=0 on ¢Q,

where the differential expression on the left-hand side of (5) is a strongly
uniformly elliptic of second order with real-valued coefficient functions a;;
=a;, a, ao =0 belonging to C*(Q) (0<0 < 1), meC(Q) a given (real-
valued) function, A €R the eigenvalue parameter.

If the weight function m may change sign in Q and if m(x,) > 0 for some
Xo €€, then (5) admits a principal eigenvalue 4,(m) > 0 characterized by
being unique positive eigenvalue having a positive eigenfunction.

Let us observe that the above result, proved by Hess and Kato in paper
[4]. can be expressed in the following form.

If the weight function m may change sign in Q and if m(x,) > O for some
X €€, then (5) admits a principal eigenvalue 4, (m) > 0 characterized by that
each eigenfunction corresponding to Z,(m) has the same properties as the
first eigenfunction of the problem (5) in the case where the weight function m
is positive in the whole Q.

The result of Hess-Kato from paper [4], in the last version, may be
transferred on the system of differential equations. In this paper we shall
make it for the problem (1), (3). The method used here is conceptually
different than the method of paper [4]. A weak point of this method is that
it requires the assumption that the expression (2) is symmetric.

1. Let H:=1%(Q2) be a Hilbert space of the vector functions U
=(uy, ..., u,), where y; €L,(Q), i =1, ..., n. Let L be a self-adjoint operator
on H, which is a Fridrichs expansion of the operator defined by the
expression ¥ in domain D,. Here D, < [%(Q) is the set of the vector
functions which satisfy the boundary condition (3). Let V: H - H be the
multiplication operator by the matrix function P. We define U eD, to be a
solution of the problem (1), (3) for the parameter A€R provided U solves

(6) LU =VU.
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Let us consider, apart from (6), the following eigenvalue problem with a
parameter t €R:

(7 (L—tV)U = uU,

where L and V are the operators defined above and ueR is an eigenvalue
parameter.

We define eigenvalues and eigenfunctions of the problem (7) in the

following way (variationally): the [irst eigenvalue p, = u, (1) of the problem
(7) for fhixed reR is

) 1y (6):=min (LD, &)=t (VD, &): deD,, ||#]| =1,

and the first eigenfunction U, is a function & at which minimum (8) is
attained.

Since for each reR, the operator L—tV is self-adjoint and bounded
below in H, the problem (7) has the smallest eigenvalue y, (1) and associated
eigenfunction U, €D, . In paper [1] we proved that the function U, satisfies
equation (7) with u = pu, (1).

In the sequel we shall need the following result.

THEOREM 1. For every t €R the problem (7) has the first eigenvalue p,
= 14, (t) such that the function t — u, (t) is continuous for t € R and is differen-
tiable for t eR except at most countably many points, and

(9) .ull (’) = “'(VUH Ur)

Proof (see [3]). Let teR be a fixed number and let heR, h # 0. For
every vector function ¢ €D, we have the equality

(10) (LO, ®)—(t+h)(VP, &)= (LD, @)—t(VD, P)—h(VD, D).
Putting in (10) & = U,,,, by (8) we get
py(t+h) = (LU, 40, Uiy ) =t (VU 44 Ui ) =h (VU 4 Uy ).

From this, again by (8), we have

Hy ([+h) Z 1 (r)—h(VUx+h’ Ul+h)
or

(11) (=1 t+D) < h(VU, 4, Uy
Analogously from (10) we get
(12) py () —p (t+h) 2 h(VU, U).

Since the operator V' is bounded on H, from (11) and (12) we have

(13) [ty (£ +h)y— gy (D] < (V| A
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From (13) follows the continuity of the function t — yu, (t) for reR.
Let us observe that owing to inequalities (11) and (12) we get

(14) ~h(VUn Ups) S a4+ B —py () < —h(VU,, U,).
Let # in inequality (14) be a positive number; then

py (6 +h)— ey (1)
h

“5) —(VUr+ha Ur+h) < < _(VUn Ur)

If h <0, then

py (t+h)— py (1)
h

From inequality (14) follows in particular that the function t =(VU,, U)) is
increasing for r eR. By monotonicity it is continuous except at most count-
ably many points. Therefore, by (15) and (16) we get the assertion of The-
orem |I.

Since the function r =(VU,, U)) is increasing for ¢t eR, from (9) we get
the following corollary.

(16) _(VUn U() < < _(VU(+h’ Ul+h)'

CororLary 1. The function t — u|(t) is decreasing for teR.
Lemva 1. I (1) = 00 then iy (t,) = py (0).

Proof. The assumption yj (t,) = 0 follows by (9), because (VUt,, Ut,)
= 0. On the other hand. using this equality, we have

w (1) = (LUL,, Ut,)—t,(VU1,, Ut,) = (LUt,, Ut,)

So (1) = 1, (0). This yields Lemma 1.
Using Theorem 1| and Lemma 1, we shall prove the following theorem.

THEOREM 2. Suppose that the matrix P(x,) is positive definite for some
Xo€8Q. Then the problem (7) admits the only one t =tq > 0 such that u,(t,)
= 0.

Proof. Since L is a positively defined operator, by (8) we have

(17 #(0) > 0.

By continuity of the matrix function P in Q, there exist ¢ > 0 and § > 0 such
that B,(xo) € Q and (V®,, Po) = 8(|P,l|* for all xeB,(x,), where B,
= B,(xo) denotes the open ball in RY with center x, and radius o,
D,eCq"(Q2), &y =0 in Q\B,, ¢, # 0. Here C5"(Q) is the space of vector
functions @ = (P, ..., ?,), H,€CF(Q), i=1, ..., n. Since (L®,, Py) >0 and
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(V®,, Do) > 6||Poll>, we may choose such a large ¢t =, > 0 that
(LBy, Po)—t, (V®,, By) < 0.

From this by (8) we get

(18) 1, {r,) <0.

By continuity of the function r —, (1) from (17) and (18) follows the
existence of a t, €(0, t;) such that g, (ro) =0. Let 1, be such that u, (1) >0
for re(0, to). Since the function r — ) (t) is decreasing, we have u(t,—0)
< 0. From this by Lemma | we get uj(ro+0) <O0. This inequality implies
that the function t — yu, (t) is decreasing in interval (r,, +oc) and so yu, (1) <0
for t >t,. Therefore the point t,€(0,t,) is the only point such that
U, (ty) = 0. Theorem 2 is proved.

CoroLLARY 2. If the matrix P in equation (1) is indefinite in Q, i.e., there
exist two points Xo., X, €Q such that the matrix P(xq) is positive definite and
P(x,) is negative definite, then there exist two numbers ty > 0 and t, <O such
that p, (to) = py (t,) = 0. Moreover, u, (1) > 0 for te(t,, to) and p,(t) <0 for
te(—oo, t,)u(ry, +0).

THEOREM 3. Under the assumptions of Theorem 2, the problem (1). (3)
admits a positive principal eigenvalue i, characterized by being the unique
positive eigenvulue having an eigenfunction which is the [irst eigenfunction of
the problem (7). Moreover, if A€R is an eigenvalue of (1), (3) and 4+ > 0, then
A=A

Proof. Let t, > 0 be a number such that u, (to) = 0, where u, (1) is the
first eigenvalue of problem (7). Let U,eD, be an eigenfunction of the
problem (7) associated with eigenvalue u, (t;) = 0. From this we have

Since U, €D;, equality (19) implies that U, satisfies equation (1) with 4 =t,,
and the boundary condition (3). This means that r, is an eigenvalue of
problem (1), (3) with the eigenfunction U,. Suppose now that 1 =41, >0 is
the eigenvalue of the problem (1), (3) and let U, be an associated eigenfunc-
tion. Since Uy,eC?(Q) nC'(Q) and U, satisfies the boundary condition (3),
we have UyeD,. From this it follows that

LUO_}‘OVUO = O

This equality may be written in the form
(20) LUO_;"O VUO = 0 Uo.

Equality (20) states that U, is an eigenfunction of the problem (7) with ¢
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= Ao, Which corresponds to the eigenvalue p, = po(4o) = 0. If 4y # ¢, then
o (t) # py (1) for t = 0. On the other hand, y (¢) is the smallest eigenvalue of
the problem (7). Therefore we get i, (r) > 1, (t) for every t = 0. From this we
infer that A, > t,. Writing 4, :=t,, we have the hypothesis of Theorem 3.

CoroLLARY 3. Under the assumptions of Corollary 2, the problem (1), (3),
admits two principal eigenvalues A, > O and 7 _, <0 and this problem has no
eigenvalue A€R with ._| </ < 4y.

THeoreM 4. If the matrix P is non-positive (non-negative) in Q, then the
problem (1), (3), has no positive (negative) principal eigenvalue.

Proof. We consider the case where the matrix P is non-positive in Q.
The case when the matrix P is non-negative is analogous. Suppose that there
exists A, = 0 which is principal eigenvalue of the problem (1), (3). As we
know, the number 4,€R is the principal eigenvalue of the problem (1), (3) if
and only if u, (4,) = 0, where y, (1) is the first eigenvalue of the problem (7).
On the other hand, by (9) and by assumption we have i (t) > 0 for every
t€R. From this follows that ¢ — u, (f) is the increasing function on R. Since
u; (0) >0, we get p,(r) >0 for + > 0. We arrive at a contradiction.

2. In this section we consider the following equation (cf. [4])
(21) LU = A(V-35)U,

where L and V are the operators [rom equation (6) and sel:=(—o, 5),

§:=supiinf(VE, &): eR"; [£| = 1]. By the definition of the number 5, we
xe 2

have that for every s €l the matrix (P—sE) is positive definite in some x, €Q
and the matrix (P—3E) is non-positive in Q; here E is the unit matrix. The
purpose of this section is to determine the dependence of the positive
principal eigenvalue of the problem (21) on the parameter sel. In this
purpose let us consider apart from (21) the following eigenvalue problem
with two parameters

(22) LU —t(V—5)U = pU,

where t€R, se€l, and peR is the eigenvalue parameter.

THeEOREM 5. The function s — 4, (s) is continuous for se€l, where A,(s) is
the principal positive eigenvalue of the problem (21).

Proof. First we prove that the function (t, s) = ¢, (¢, s) is continuous for
teR, sel, where p,(t, s) is the first eigenvalue of the problem (22). Reason-
ing analogously as in the proof of Theorem 1. we get the inequality

(23) h(V=s)U, U)—(t+hk < p(t, s)—u, (t+h, s+k)
< h((V=3) Uy, Uyg)—(t + hyk,
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where U, and U are the first eigenfunctions of the problem (22) associated
with the eigenvalues y, (f, s) and u, (t + h, s+ k), respectively, such that ||U||
=||U|| =1, s, (s+k)el. From (23) follows the continuity of the function
(ts S) U (t’ S)-

As we know the principal eigenvalue of the problem (21), 4, (s) for s€l,
is defined by equality u,(4,(s),s)=0. Let (to, So) R xI be such that
1y (to, So) = 0. Since du,/dt (g, So) # 0, due to Lemma 1, from the theorem
on implicit function we get the continuity of the function s — 4, (s) in some
surrounding of the point s, €. Since s, is an arbitrary point of the interval
I, we obtain the hypothesis of Theorem 5.

THEOREM 6. The function s = 2,(s) is increasing in interval I and 4, (s)
— 4o das s 7 S.

Proof. Let us remark that for every fixed ¢t > 0 the function s — y, (t, s)
is increasing in interval I. Since the positive principal eigenvalue 4,(s) is
defined by p, (4, (s), s) = 0, it follows that the function s — 4, (s) is increasing
in I. By monotonicity the limit 4,(s) exists, as s »§5. Suppose 0 <1
c=lim4,(s) < +oc.

s 78

From the assumptions on the operator L follows that L™' exists and
L' is compact operator on H. By compactness of the operator L™ ' in H
(see [4], proof of Lemma 4) follows the existence of a function U, ||U|| =1
such that

U=iL""(V-35U.

This equality may be written in the form

(24) LU—-Z(V=-5U =0.

However, (P—5E) is non-positive matrix in Q, and (24) contradics The-
orem 4.

3. In this section we shall give some properties of the eigenfunctions
which correspond to principal eigenvalue of the problem (1), (3). To this
purpose we make some assumptions concerning the coefficients of the
problem (1), (3). Suppose that A4;;:=a;E, Q:=qE, P:=mM, K:=KkE,
where a;; =a; (i,j=1,..., N) are real-valued functions of class C'(Q),
g, m, keC(Q), k>0, and M is a symmetric positive definite n xn matrix
with a real constant elements (see [2]).

Under these assumptions the problem (1), (3) takes the form

g Ou I :
(25) - &j(aij#)+qlt = /.mlz1 Quth in Q
i X =

ij=1

ki Annales Polonici Math. S0
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with boundary condition

(26) Wy ju =0 or u

o p =0 onad2, p=1,...,n,

r

where

du,

N au
= = Y a;—-‘cos(n, x), M=o,

i,j=1 xj

Since by definition the matrix M is symmetric and positive definite,
there exists an orthogonal transformation

(27) W=2ZU

such that ZMZ ':=M = {6,0,}, where ¢,>0 (p=1,....,n. We sce
easily that the transformation (27) reduces the system (25) to a system of n
independent equations and the boundary condition (26) to »n independent
conditions; it can be written in the form

ow, .
(28) - Z ( aij = >+qw = Amg,w, in Q,
ij= 1
dw,
(29) W—kwp=0 or w,=0 ondQ(p=1,...,n.

The problem (28), (29) can be treated as n independent problems which
coincide with the problem considered in papers [4] and [3]. Using the
results of these papers, we have the following result for the problem (28), (29).

THEOREM 7. Suppose that the weight function m may change sign in Q and
that m(xo) > 0 for some x,€Q. Then the problem (25), (26) admits n eigen-
values 4y, (p=1,...,n) such that the corresponding eigenfunctions U,
(p=1,...,n do not vanish in the domain (.

Proof. Let us denote by 4,, (p =1, ..., n) the principal positive eigen-
value of the problem (28), (29) and the corresponding positive in 2 eigenfunc-
tion by w,, (p =1, ..., n). The existence of these eigenvalues and eigenfunc-
tions follows from papers [4] and [3]. On the other hand, to the eigenvalue
41, there corresponds a vector eigenfunction W, ,:=(0, ..., w;,, ..., 0) with
all components except the pth equal to zero. Under transformation (27), to
the function W,, there corresponds the function U,, = Z"'W,,. We easily
see that the function U,, may be written in the form U,, = 4,w,,, where 4,
denotes the vector whose components are elements of the pth row of matrix
Z~'. Theorem 7 is proved.

Remark. 1. In the case of the problem (25), (26) the positive principal
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eigenvalue of this problem is in the sense of Theorem 3 defined by
)vl L= l‘l‘lin(lll, ey Aln)

where 4,, (p=1, ..., n) are defined in Theorem 7.

Remark 2. As we know (cf. [4]), the positive principal eigenvalue of
one equation of second order, if it exists of course, is the eigenvalue with
geometric and algebraic multiplicity one. Whereas in the case of a system of
equations the multiplicity of positive principal eigenvalue in general is greater
than one. Indeed, it sufices that in system (27) is 9, = ... = g, > 0, then the
multiplicity of 4; is at least n.
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