ANNALES
POLONICI MATHEMATICI
XXVIII (1973)

On the continuous solutions
of a non-linear functional equation of the first order

by Karol BAroN (Kafowice)

Abstract. Some theorems about the existence, uniquencss and properties of the
continuous solution of the functional cquation

plx) = I(z, o[f(2)]),
where @ is the mnknown funetion, are given, under the hypothesis of the existence
of semicontinuous solutions of the funectional inequalities

p(x) < h(z, p[f(2)])
and

bz, p[f(2)]) < @().

In the present paper we are concerned with the existence, uniqueness
and some properties of the continuous solutions of the functional equation

(1) (@) = b{z, @[f(2)]),

where ¢ is the unknown function.
We assume that

(i) The real function f is defined and continunous in an interval I
and, for a &¢I, it fulfils the inequalities

fle)—¢
O<—-——-—-m_£

(ii) % is a real function defined and continuous in a set 2 — R? con-
taining the point (£, n), where % is a solution of the equation

(2) n = h(&n).

Moreover, in a neighbourhood of (£, 7) h fulfils a Lipschitz condition
with respect to the second variable

<1 for wxel,o #¢&;

Ih(wy yl)_h(wa '.’/2)] < y(ﬂ')) |('/1—2/2|: (m1 yi)e UH.Q; 1 = 17 22

‘where
U=U,xU,, U,=1{zeR: |zx—¢&<c}, U,={yeR: ly—nI<d}

and ¢, d are positive numbers.
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For a subinterval J of I we denote by @(J) the class of all real func-
tions ¢ defined on J and fulfilling the condition ¢ [f(%)]e 2, for #eJ, where
0, denotes the x-section of £:

Q, ={yeR: (z,y)e L},

(cf. [2], p. 68).
Our next assumptions read as follows:
(iii) The functional inequality

(3) ¢(z) < h(w: ‘P[f(w)])a

has in the class @(I) a lower semicontinuous solution ¢;, whereas the
inequality

(4) h(z, o Lf(2)]) < p(@),

has in this class an upper semicontinuous solution g, . Furthermore ¢j (z)
< ¢, (@) for zel;

(iv) For every fixed z<I the set £, is an interval, h(f(z), 24y) = 2,
and % is an increasing function with respect to the second variable in the

interval I(z) = <gi [f(®)], ¢z [f(#)]).
Put

n~—1
(5) G,@) =[] v[fi®)], »n=12,..

i=0
We have the following

THEOREM 1. Suppose that hypotheses (i)—(iv) are fulfilled. If equa-
tion (2) has in the interval I(£) ewactly one solution n and the sequence
{G,} defined by (5) is bounded in a vicinity of the point &:

(6) Gu(2) < M(z), @eIn{E—-08,E+8, 2#E n=12,...,

then equation (1) has exactly one solution pe@(I) continuous at the point &
and such that p(§) = n. This solution is a continuous function, fulfils the
condition

(7) 7@ <p@) <@ (z), e,
and 18 given by the formula

(8) ¢@) = ilm P (),

where
Pns1(@) = h{2, o, [f(2)]), n =0,1,2,...

and g, 8 an arbitrary function belonging to D(I), conlinuous at the point &,
and such that @,(&) = n.
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Proof. Let @, be the class of all lower semicontinuous functions ¢
belonging to @(I,) and fulfilling the condition

(9) 7 (@) <)< grl(e); zely,

where I, = U;N{é— 0, £+ 0>NI; and similarly, let &@, be the class of
all upper semicontinuous funections ¢ belonging to @(I,) and fulfilling
condition (9). Put

(10)  @o(@) = @i (@),  Pinial(®) = bz, @ [f(2)]),
zely; i =1,2; 2 =0,1,2, ...

It follows from the continuity of the functions f and % and from hypo-
theses (i), (iii) and (iv) that

(11) PinePy, =12;n=01,2,...
and
(12)  @1,0(@) < @1, 041(®);  Po 010 (2) < @ (@), @ely;n=0,1,2,...

Hence the sequences {p;,}, ¢ = 1,2, are convergent. Let

(13) gi(z) = limg; ,(x), @xely;i=1,2.
On account of (11), (12) and (13)

(14) ¢{E¢i, 'i = 1, 2-

Moreover, by (10) and (13) we have

(15) oi(@) = h(w, gs[f(@)]), welp; i =1,2.

Putting # = £ in (15) and making use of the facts that f({) = { and
that # is the unique solution of equatlon (2) in I ( &), we obtain

(16) @:(€) =n, =1,2
‘We shall show that

(17) limsupg,(z) <%, liminfg,(z)>17
T

z~»¢

Indeed, write limsupgp, (z) = a,. Evidently a,¢I(&). There exists a sequence
T

{z,}, 2, eI,, such that lim x, = ¢ and lim ¢,(x,) = a,. From the sequence
n—»00 . n—>00

{p.[f(2,)]} we can choose a convergent subsequence {p[f(z,,)]}. Since

lim f(z, ) = £ we have hm «pl[f(w,,k)] = b < a,, beI(&). Hence and from

k—o00

(15) we obtain a, = h(f, ) h(& ap). Let a,,, =N(& a,),n =0,1,2,.
The sequence {a,} is increasing and hounded from above (aneI ( E),
n=0,1,2,...), and so it is convergent. Its limit belongs to I(&) and
fulfils equation (2) and hence it must be equal to . By the monotonicity
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of {a,} we have a,<#. Similarly we can prove the second inequality
in (17). Thus in view of (14), (16) and (17) we have the continuity of ¢;,
for 4 = 1, 2, at the point £. A similar arguinent as in proof of Theorem 1
in [1] shows that

o) = pa(x), wel,, @ # &.

Hence and from (16) ¢; = ¢, = ¢. By (14) pe®P, NP, turns out to be
a continuous solution of equation (1) in Z,. This solution can be uniquely
extended onto the whole interval I and the extension ¢ is continuous ([2],
p. 70, Theorem 3.2). We shall show that ¢ fulfils (7). For the indirect
proof suppose that there is an #,¢I such that the condition

P1 () < () < ?’; (o)

is not fulfilled. Since lim f*(x,) = £, there is a non-negative integer #
n—oo

such that the condition
?’t [™(z)] < 9’[fn(wo)] Pa [fn(mu)]

is not fulfilled, whereas the condition

e [T (@) 1< o [ (@)1 < @i [ (2,)]

is fulfilled. Hence, and from hypotheses (iii) and (iv) we obtain

7 [ (@)1 < B (fﬂ (%0)y 1 [f"H(ﬂ’o)]) h(fn(“’o): 9’[fl+1(wo)])
< h(fn('”n); ‘Pz fM-1 (%) ]) 2 [f"(mo)]

This together with (1) contradicts our assumption. Recalling the proofs
of Theorems 2 and 1in [1] and the fact that ¢(£) = ¢,(§) =# for n =
0,1,2,..., we get formula (8) and the required uniqueness, respectively.

" The next two theorems say something about the properties of the
solutions obtained.

THEEOREM 2. Suppose that the hypotheses of Theorem 1 are fulfilled.
If f is increasing and h is increasing with respect to each variable in the
set U {{w} X I(2): zel} and, moreover, ¢} or gy is increasing, then the solution
obtained in Theorem 1 is an increasing function. .

THEOREM 3. Suppose that the hypotheses of Theorem 1 are fulfilled.
If f is increasing and conver and h 18 increasing with respect to each variable
and conver m the set U[{m}xI (2): wel }, whereas @ is increasing and
convex and @'y i8 decreasing and concave, then the solution oblained in Theorem 1
18 am increasing and convexr function.

In fact, in the case of Theorem 2, for every » =0,1,2,...,¢ , de-
fined by (10) is an increasing function or for every m =0,1,2,..., Fan
defined by (10) is an increasing funection. In the case of Theorem 3, for
every n =0,1,2,...,¢,, is an increasing and convex function. Fur-
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thermore, the extension of an increasing solution is increasing and the
extension of an increasing and convex solution is increasing and convex
(ct. [4]). |

Now we shall show that the above theorems imply the following
results.

THEOREM 4. Let hypotheses (i), (ii) and condition (6) be fufilled and
suppose that 2 is an open set (). If, for every fized x « Uy, h is an increasing
function with respect 1o the second variable in U, and

(18) (&) —ni<ly—nl, yeUs, ¥y #n,

then in a neighbourhood of & there exists a unique solution ¢ of equation (1)
which is continuous at & and such that ¢ (&) = n. This solution is a con-
tinuwous function. .

THEOREM 5. Suppose that the hypotheses of Theorem 4 are fulfilled.
If f is increasing [and convex] in I and h is increasing with respect to each
variable [and convex] in UNQ, then the solution obtained in Theorem 4 is
an inecreasing [and convex] function. ’

Indeed, it follows from (18) and from the continuity of . that there
exist positive numbers ¢, d; such that Iy U,NI, I;x{n—dy;n+dy>
c UnQ and |h(z,y)—nl < d, for (2,y)el,X<{n—dy, n+d,>, where I,
= (&, E+ ¢y if £ is the left endpoint of the interval I, Iy = {(£—¢,, é+ ¢
if & is an interior point of I, and I, = {§—¢q, &) if £ is the right endpoint
of I. Hence, the functions ¢j, ¢ = 1, 2, defined by

(x) =n—dy, g2(@) =n+dy; el

are continuous solutions of inequalities (3) and (4), respectively, and 7
is the unique solution of equation (2) in the interval {(n—dy, n+do>.
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(*) Instead of this assumption we nay require that Q should contain a rectangle @
(possibly closed) such that (&, 7)eQ and (z, h(x, ¥))eQ for (z, y)eQ (of. [3]).



