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On the uniqueness of solutions and the convergence
of successive approximations in the Darboux problem
under the conditions of the Krasnosielski and Krein type

by B. PArLczewskl (Gdansk)

In this paper we want to show that the conditions of the (K-K)
type, which were quoted in note [5] for the Darboux problem, guarantee
not only the uniqueness of solutions of this problem but also the con-
vergence of successive approximations, which has been observed suc-
cessively by J. Luxemburg in his paper [4] and F. Brauer in papers [1]
and [2] with respect to equations and system of ordinary differential
equations under (K-K) conditions as well as under more general con-
ditions. It is also worth mentioning that in the case of the Darboux
problem, in which we are interested, with conditions of the Nagumo
type—a theorem on the convergence of successive approximations has
been ineluded in J. P. Shanahan’s paper [6].

1. Let D denote the rectangle 0 < v <a, 0 <y <b. We denote
here by C*(D) a set of functions o(z, ¥) defined on D and continuous with
0z, ¥y and V. Moreover, we assume the functions o(z) and =(y) of class (?
satisfying the condition ¢(0) = 7(0) to be respectively defined on (0, a)
and {0, b). Let the function f(z, v, u) be defined on the set E = D x
X {— oo < u < + oo}. We shall be interested in the Darboux problem
and so we are looking for the function u(z, y) in class C*(D) satisfying
on D the equation

(1)
and the conditions
(2) u(z,0) =o(x), u(0,y)=r(y)

respectively for 0 <z <a, and 0 <y <b.
The Darboux problem is equivalent to solving the integral equation

u
oxoy

=f(z,y,u)

Ty
(3) w(@,y) = oo, )+ [ [ (¢, 7, u(t, 7)) dtdr,

where g4z, y) = o(z) +-(y)—a(0).
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Proceeding by the usual method we shall define a sequence.of suc-
cessive approximations for equation (3)

Ty
(4) Uns1(@, Y) = 9o, Y)+ [ [ 1(t) 7, ualt, 7)) dtdx
_ 00

for n=0,1,2, ..., where uyz,y) e C(D).

It will be our aim now to prove that the uniqueness conditions of
the (K-K) type for equation (1) are also satisfactory for the convergence
of the sequence of successive approximations (4).

Before we proceed to do that we shall prove the following:

LEMMA 1. If the function v(z,y) >0 continuous on D fulfil there
the system of the integral inequalities

o(@,9) < [[ Cr(t, v)atdr,
(5) 090
——l

0

T
o

v(t, r)dtdr ,

where C, k, a are posilive constants and
(6) 0<a<l1l, kl—apr<l1,
then v(z,y) =0 on D.
Proof (cf. [3]). Let the function »(z,y)> 0 satisfy system (5)
and let M = sgpv(m, ). As in paper [5], we shall prove that the function

v(z, y) must then satisfy the estimation

1 1

(7) 0<o(®,y) <O~ (ay)i— for (v,9)eD.

Let us consider now the function Q(s) = Q(z, y) defined as follows:

{(wy)"”‘v(w, y) for (z,y)eDT,
0

9 = for (z,y)el,

where I" is a broken line consisting of intervals (0, a) on the z-axis
and of intervals <0, b) on the y-axis.
From (7) it follows that
1 1~Vk(1-a)
0 <Q(8) < Cee(ay) -

with respect to condition (6), whence 1—}%k-(1—a)>0, gives

Iim  @(s) = 0. Thus the function ¢(s) defined above is continuous
Dj1's S—»Se€I"

on D. We state that @(s) = 0 on D. If it were not so, there would exist
a point 3 = (&, n) e D{I” where Q(5) > 0 and Q(3) = sup@Q(s).
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It follows from (5) that
&9

Q) = En ™ o(e, m < )" [ [ Lot vt

£ .
(e [ [ (VR (VB Que, mydeae
00

¢ M .
<@@E) " [ Vi | el - Qa),

0 0

which is impossible. This ends the proof of the lemma.

Note 1. It follows from lemma 1 that if the function v(z,y) > 0
continuous on D satisfies the integral inequality of the form

Ty
(8) v(@,y) < [[ B(t, 7, 0(t, 7)) dtdr, (z,9)eD),

0
where

(8) h(x,y,u)=min [Cw' ,;Z"—yu] , OC,a,k—as in lemma 1,

then v(z,y) =0 on D.

Note 2. With respect to note 1 we immediately obtain the following
theorem on the uniqueness of solutions for the Darboux problem for
equation (1) (cf. [5]).

THEOREM 1. If the function f(z,y,u) defined and continuous on
the set E satisfies the condition

(9) f(@,y, w)—Hz,y, %) < hiz,y, lu—1ul|)

for (z,y) e DIT, %, % e(— oo, + oo), where h(z,y,u) is defined by for-
mula (8’), then the Darboux problem has no more than onme solution in
class C*(D).

And so if u(z,y) and %u(wz,y) are two solutions of equation
(1) satisfying conditions (2), then putting o(z,y) = |lu(z, y)—u(z, y)|
and taking into consideration (3) and (9) and note 1 we obtain
v(z,y) =0.

Note 3. Referring to the above theorem on uniqueness we can
observe on a simple example that in (6) condition: k(1 —a)* <1 cannot
be weakened. The following example will show that with k(1 —a)*>1
uniqueness does not take place.
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Thus, assuming (cf. [3])

0 for —oco<u<0,

% o1

a2 . -.’,Dl/_)l—u
fro,y, 0=y °<“<(k ’

(ﬂi’)“" for u>(m—,§’)““, k>0, O0O<a<l,

we obtain a continuous and bounded function on E, where D = {0,1) X
x {0,1>. It can easily be checked that a function so defined satisfies
the conditions

@9, w)~ e, y, D) < otu—7]
and

I @, y, w)—1=, ¥, u)| < lu—2uf*.
And thus, if ¥(1 —a)> <1 then the Darboux problem for equation (1)
with f = f* and conditions (2) has no more than one solution; if con-

ditions (2) are null, then #(x, ¥) = 0 is the only solution. It is also obvious
that if k(1 —a)?>1 then the function

1
wy(@, y) = ki-a - (zy)VE

also satisfies equation (1) with f = /* and null conditions (2). In such
a case we have at least two solutions, u(z,¥) = 0 and w(z, y).

2. Consequently we can now prove a theorem on the convergence
of successive approximations defined by formula (4).

THEOREM 2. If the function f(z,y,u) 48 defined, conlinuous and
bounded on E and satisfies condition (9) then the sequence of successive
approximations (4) is convergent only to one solution of the Darboux problem
for equation (1).

Proof. Note that with conditions imposed on function f(x,y, u)
when

M= SlFlplf(my ¥y u)|

we obtain for the funection

Ty
vu@, ) =p(@, 9)+ [[1(t, 7, wit,v)dtdr, p,ueC(D)
00
the estimation

100(51 g)—”u(“v; y)i < w,,(l:? “‘"‘”l + ly_?/[) +M(a|?7_y| -i-b|i"—.’l}[)
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where
wy(t) = sup lp(x, 7)—v(z, y)|

@y, (@v)eD
(=] +ly—yl <¢
for the arbitrary funection u(z, y) e C(D).
Besides we have

vu(@, y)i < max p(@, y)| +Mab =1.

From the above it follows that the sequence of functions {us(xz, y)} de-
fined by formula (4) is a sequence of equicontinuous and uniformly
bounded functions. We shall prove that this sequence is uinformly con-
vergent.

For that reason let us assume
(10) 0n(@, y) = sup |Unim(@, Y)— ua(x, ¥)I (n=0,1,2,..),

1<m<oo

(11) 4(x, y) = lim supdu(x, y) .

It can easily be checked that the sequence of functions {d.(x, y)} forms
a sequence of equicontinuous and uniformly bounded functions, and
thus 4(z, y) is a continuous function on D. On the basis of (4), (9), (10)
and (11) we obtain

Untm+1(2, Y) — Unia(Z, ¥)| < ' f [f(ta Ty Un+mlty T)) _f(t! T, ua(l, T)”dtdfl

o0

Ty

ff lf(t’ Ty Unsm(ly t)) —'f(tr T, Ua(l, T))Idtd‘l.’
e0

gf h(t’ Ty l“n+m(t17)_“n(ta")l)dtd7

00

Ty
< f h(t, ©, ou(t, 7)) dtdr .
00
Hence it follows that

busr(, ¥) < ff h(t, 7, 0(l, 7)) dtde  for n=0,1,2,..

and
Ty
d(x, y) = lim supd, +1(z, ¥) < f h(t, 7, limsup du(¢, t))dtdr
n—>00 00 n—>00

zvV

=f h(t,r,&(t,r))dtdt.
60
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Consequently, the function dé(z, y) > 0, being continuous, gatisfies the
integral inequality (8), which with respect to note 1 implies the relation
d(z,y) = 0. The last fact with respect to (11) and the equicontinuity
of the sequence of functions {d(z, ¥)} enables us to make the statement
that sequence {da(z,y)} is uniformly convergent to zero. As follows
from (10) we have the right to state that the sequence {u,(z, )} is also
uniformly convergent and, putting % (x,y) = lim u,(x,y), we easily
n—>o0

conclude that (4) implies
zy
w(@, y) = pol@, ¥) + [ [ 1{t, 7, uit, v)dtdr
00

by which we end the proof of theorem 2.

Note 4. We shall show on an example that also in case of theorem
2 the condition y = k(1 —a)® <1 cannot be weakened, even if with
y > 1 there exists a solution of the Darboux problem.

In fact (cf. also the example in [4]) putting for (z,y)e D and
% e (— oo, + 00)

(Ek—y)l_u for —oco<u<o0,
a 1
[*@,y,u) = (w—y)l_u——k-u for O0<u< (ﬁvﬂ)l_a y
k xy k
1
0 for u>(‘%y)l-°,k>0,0<a<1

we may easily conclude that the function f** defined in this way is con-
tinuous, bounded and satisfies the conditions

R
i@, y, u)—f**@, ¥, )l < zy

if**(@,y, w)—f**z,y,%)| < lu—7ul", £k>0,0<a<l.

Let us now consider for equation (1) with f = f** and null con-
ditions (2) the successive approximations (4) where u,(z,y) =0 on D.
Simple calculations lead to the following results:

1° if 0 <y <1, then

1 n
i\ .
'u(ﬁ)(w,y)=(%)l é (—1)7 for n=1,2,..
=1

and
i

. - l1—a
wz, y) = lim W@, y) = y(1+7) (w"g) ;
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2° if y > 1, then
1
—1\* 1—a
uﬁf’(m,y)z#y(w—g)l for n=0,1,2,..

We consequently prove by direct calculation that
uly = f**(z,y, w2, y)) with each y>0,

while, for y > 1, u(x, y) does not satisfy equation (1) with f = f** for
any n; moreover, the sequence of successive approximations {u,.’(a:, Y)}
is non-convergent.

Referring to theorem 2 it seems worth noticing that the above men-
tioned results may be transfered to the case of a more general equation
of the same type (1).

Let us consider the equation

5m+2U

(1’) =F(3? U) ’

OLOLy -.. OB 11
where F' = (f1, ...y fr)y U = (U1y «eey Ur)y 8 = (Zyy ooy Tms1)y M = 0, while the
functions fi{%gy .oy Tmy1y Ury Usy ooy Ur) = fi(8, U) of m+2-4+ variables
are defined on the set G = Dp X {— o0 <<y, .oy Up < + o0}, Dp = {82
0<<ry<a;,0;,>0,¢=0,..,m+1}.

Besides, let us consider the sets DY = D, ~ Hy, where H, — {s:

m+1
o = 0} and By = U 1)3:’, and let us assume that on B, the vector func-
k=0

tion ¥(s) = (¥y(s), ..., ¥is)), sufficiently regular on each Dj; (k = 0,1, ...
...y m+1), has been defined.
We are now able to formulate the Darboux problem for equation (1°).
We shall try to find a vector function U (s) regular on D,,, satisfying
equation (1’) and the condition

(2%) U(s)=¥(s) for seB,

It can easily be proved that such a problem for equation (1’) with con-
dition (2’) is equivalent to solving the integral equation

I m1

(3") U(s) = ‘If(s)-f—f j F(t, U@)dt,
where
T(s) = WP(0, Byy ey Bmis) + oo+ P (Tgy erey By 0) —
—¥(0,0, 2, ..., Tmt1) — ... — P(Tay oey Tms1, 0, 0) +

4.+ (—1)"" (0, ...,0)

Consequently we denote through |V|| an arbitrary homogenuous norm
for the vector V = {v,, ..., 7,}.
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Now we shall quote

TBEOREM 3. If a vector function F (s, U) which ts defined, continuous
and bounded on @ also satisfies the conditoon

(9") IF(s, U)—F(s, O < h(s, [U-T)),
where -
h(s, %) = min [C-uﬂ,—k—-u] with C,k>0,0<a<1
Loeee 41
and
(13) Kl1—a)®** <1,

then the Darbouz problem for equation (1) has a wunique regular solution
whioh may be obtain by the method of successive approximations:

Zm+1

Te
Unial$) =)+ [ . [ Ft, Ua(®)dt (n=0,1,2,...),
0

0

where Uy(s) is an arbitrary vector function, conlinuous on D,,.

We omit the proof of this theorem because it proceeds similarly
to the proof of theorem 2.
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