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On monotonic solutions of a recurrence relation

'by A. SmwaJpor (Katowice)

Let {2} and {I',} be given sequences of real numbers such that
A # 0 for every s and the limit
(1) lim 2, = 2

n—roc
1

exists and is different from zero. (This assumption is valid throughout
the paper and will not be repeated.) We shall study the recurrence re-
lation

(2) Tp1 = Anwn"f‘Fn ’

where {z,} is an unknown sequence.

The subject of the present paper is the existence and uniqueness
of monotonie,:or ultimately monotonic (i.e. monotonic for sufficiently
large n) sequences fulfilling (2). Our results are a direct generalization of
the results of ID. Brydak and J. Kordylewski [1], who have dealt with
the case 1, = const. (The cases where 1, = +1 or A, = —1 are related
to the problems treated in [2], [3], [4], [5].) Also the methods of proofs
does not differ from that employed in [1]. '

In § 3 the results obtained are applied to the problem of monotonic
solutions of a linear functional equation.

In the sequence we shall use a shorter notation

»
ar=1TTx.
i=g

§ 1. THEOREM 1. If 2 << 0 and

i)
(3) lim 1;’11=0,
N->00 Ao

then exists at most one ultimalely monotonic sequence {x,}, satisfying re-
lation (2). If it actually does exist, then the series
00
F n+k

k=0
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converges for every m and the sequence {x,} is given by the formula

(5) T = — x,
n - A,,:-In

Proof. From relation (2) the formula

n4-m—2
(6) Tnim = T A0 4 Y P AT A F

i=n
for n=0,1,2,..,m=1,2,.. follows by induction. Since A < 0, there
exists n, such that i, < 0 for every =» = #n,. Let us suppose that there
exists a sequence {w,} increasing for n = n, > n, and satisfying (2). Thus
we have for n > n; and arbitrary p > 1

Ani apTn+op +11n+2p = Tni2p+1 2= Tuy2py

whence, since 4,4, < 0,
1’ n+"p
Tpyop < l‘n.+ oy 1

Now we make use of (6), setting m = 2p. Thus

n+2p—2 7
n+2p—1 n+ap-1 - +2
Tptop = .’I),,,A,,, s -+ Z FiAH_lj + Iﬂn+2p—1 < 1_1"_._1’
i=n }-n+2'p
whence
w+2p—1 F F
\1 2 '

(7) Py < — LA mEE o~ for every m = m,.

A:; (1 - )*n+2p) A:LH-ZD—

1=n
Similary, starting from the relation

Anropt1Tnyoptt 0 2 2pt1 = Tniopte = Ty jop i for every n > Ny

we get the inequality

n+2p

(8) = — Ff D
(1 '111-1 o 1) A’IH 27)

1=n

for every w = n,.

It follows from (7) and (8) that

n4-2p -1
(9) _'—In+2p|1 _F,”o,, 2+ ]_Fi_ - [n-l 2p
nt2p nt2p = P -2
(1~ Antept1) An A4 AL (1 Ay ygp) AZTET

i=n

for every n = n, .
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From (3) we obtain

.
Fosop 1 -

. F
10 lim = AP M lim =2 9
1o poeo (1 An+2p)/1::+‘p 1-2"" po Ayt ’
. F1L+27J 1 n—1 7. Fn+2p
(11) om w1 m s =0,
and
. r F
llln _"-+21)+1 f— n—1 q: _"H.ﬂ.ﬂ P 0 .
(12) n—eo (1—An+2n+1)/1:+2p 1-2 Ao 111,22: A’o”gp
In virtue of (9), (10), (11) and (12)
n+2p—1 _F’
].i.n]. .’L‘,;+ 2 ‘_:)= O "
. Preec i=n Ay,
whence
o0
XIp = Fi
n— i
Tm=n A""'

which proves formula (5). The uniqueness of the sequence {x,} results
hence immediately.

THEOREM 2. If |A| > 1, then there may exist at most one sequence {x.},
satisfying relation (2) and fulfilling the condition
(13) lim sup |z, — 2| < oo

nN—->00

Proof. Let us take two sequences {x,} and {z,} fulfilling (13) and (2).

Then
lim sup |(@n1— Tn'41) — (@) — 2, )|

M0

< lim sup |2, +1— 25| + lim sup |21 — 2| < oo

n=+00 n—>00

Consequently the sequence {x,} such that =, = x,—a;, fulfils (13) and
moreover

(14) Tpni1 == Ann .

Formula (6) has now the form z, ., = 2y An*™ 1 We suppose that there
exists such an index N that aax % 0. Then we have

Lim sp |y, o — 2| = lim sup|dy —1| [2,] = lim sup|, —1]|eyl| AN

oo - »00 n—00
== limsup| A — 1| len|| AN | = + o0,
N-->00

which contradicts (13). Thus «, =0, n=0,1,.. Whence z, = x,,
n=20,1,2,.., which was to be proved.
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In the case where |Al < 1 every sequence of the form
mn = mo A’g’_l
fulfils relations (14) and (13), since

lim sup |, 41— | = lim sup|z,| | Ao~ [An—1]

n—>00 L n—-00

= lim sup|an— —1| & | 45" | | A5y "

Nn—»00

< limsup|As—1] |m|e® ™| A5* | = 0 .
n—+00
Here ¢ is chosen so that |A] < ¢ < 1, and 7, is such that |4,| < ¢ for every
n > mn,. Thus condition (13) does not guarantee the uniqueness of {z,}
in the case |i] < 1. ’

§ 2. TaeoREM 3. Suppose that

4] > limsup } [Fn]
Nn—>00

and one of the following four conditions is fulfilled:

(a) 2> 0, the sequenoe. {Fu} is ultimately increasing (decreasing) and
non-negative and the sequence {A,} is ultimately decreasing (increasing);

(b) A >0, the sequence {I'n} is ullimately increasing (decreasing) and
non-positive and the sequence {A,} s ultimately increasing (decreasing);

(e) A< 0, the sequence {un} is wultimately iawreasmg (decreasing) and
non-negative and the sequence {1} 18 ultimately decreasing (increasing);

(d) A< 0, the sequence {un} is ultimately increasing (decreasing) and
non-positive and the sequence {1} is ultimately decreasing (tnereasing);

where

dt
Un n+1 + Apsr I

Then formula (5) defines an wultimately decreasing (increasing) se-
quence satisfying relation (2). In cases (c¢), (d) &t is the unique ullimately
monotonic sequence satisfying (2).

Proof. Since

lim ¥ IA’”"| = 11m|1u+,,| = ||,

Je—r00
we have
k ——e f———_
lim sup Inlk = lim sup - ] | n+l.-|‘
k-»o00 Az Ttk Jo>o0 1/I An+k
2 lim bUIJI/ [Frinl = ! Jim sup V7 .
= A
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Hence and from the assumption we have

*/|F
lim sup 'l/ ik
ke—o00 -A'n.

whence in virtue of the Cauchy criterion it follows that series (4) con-
verges. Therefore formula (5) defines a sequence which evidently satisfies
relation (2). In cases (a), (b) the sequence {z,} is the sum of a sequence
of sequences such that every next is subsequence of previous. These
sequences are ultimately decreasing (increasing), hence {z,} is ultimately
decreasing (increasing). When A << 0 for n = 5, An < 0

<1,

F oo
1
- j ntk -Z’u+'31‘ _ 11 L nyoj+1
— ""'H‘_ n+aj An+ 2j+1
k=0 n

=] oo

\ "t 2j 41+ Anvajri Fn 2 N\ Uaay

: An+9,+1 4 / An +27+1 7

Similarly, in virtue of the latter equalities in cases (¢), (d) {x,} is ultimately
decreasing (increasing). Convergence of series (4) implies condition (3).
In cases (¢), (d) in virtue of Theorem 1 the sequence defined by (5) is
the unique ultimately monotonic sequence fulfilling (2). This completes
the proof.

COROLLARY. If 1< 0 and series (4) diverges, then there may exist
ultimately monotonic sequences satisfy ng (2) only if

Fy
An—l
0
Now we shall find a necessary and sufficient condition of the existence
of a monotonic sequence satisfying (2) in the case 1 < 0. To this purpose

we write
.__ﬂ "y
S at _ 11”1&_ Fyig
n Y ;‘ n
= Ay (Apr1—1) 4o

-=0,

and we put further

. dar at N
g, = sup Sg,,, o, = inf &,,,
p=1,2,.. n=1,2,...
~ dat af .
ay= sup Ny, oy = inf 8, ,.
P=1,2, .., p=1,4,...

+

THEoREM 4. Let us assume that A, < 0 for n=1,2,... 4 necessary
and sufficient condition that the sequence {wn} defined by the recurrence
relation (2) be increasing is that

(15) O, < Xy =5 g .
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Similarly, a necessary and sufficient condition that the sequence {x,)
defined by the recurrence relation (2) be decreasing is that

(16) O STy g
Proof. We shall prove only the first part of the Theorem, the proof

for decreasing sequences is quite analogical. If {z,} is an increasing se-
quence satisfying (2), then we have by (7) and (8) (n = 0)

(17 Bop < @y < Nopy for p=1,2,..,

whence (15) follows immediately. On the other hand let {x,} be a sequence
satistying (2), and let ns assume that inequalities (15) hold. Then inequa-
lities (17) hold too, and we have hy (6) (n = 0)

2p—1 2p- 2

2p g P37 - , 2p—1 ] 2 -1
Tapp1—tap = B AT+ D A 4 Foy— A8 — D) PR — Ty
=0

=0
2p—2

- mo()@p _1) Azp— + 2 I"i( A‘.’.’p —1 ) /133-{1 +1{12p —]-"'Z.p -1 ‘l‘-FZp-l ;tin
i=0

_|_ -

2p—2
.[{ P» .1 2p ]
& A AP (G —1) AT

= (Jep—1) 45" 1[%-{-

= (Aap-1—1) A" (#o— Sep—1) 2 0,

and similarly
Topre— Lapyt = (Aaps1—1) A" (s — 8ap) == 0

This means that the sequence {7y} is increasing, which was to be proved.

§ 3. The results obtained can be applied to establish some conditions
of the uniqueness and existence of solution of the functional equation

(18) plf ()] = g(O)e(t) +1() .

Here (1) is the unknown function, f(¢), g(t) and F'(t) are given functions
defined in an interval (a, b) and fulfilling the conditions: g¢(t) = 0 for
te(a,b), the limit lim g (¢ ) = Aexists and 1 # 0, a < f(t) <<t for t e (a, b)

t—a4-
and the function f(z) is strictly increasing in (a, b).

DEFINITION (cf. [2]). A function h(2) defined in the interval («, b)
is semiinereasing {f} in this intevval if A[f ()] = h(t) for t e (a, b). A tunc-
tion A (f) defined in the interval (a, b) is semidecreasing {f} in this interval
if Alf(2)) < h(t) for te(a,d). A function that is semiincreusing {f} or
semidecreasing {f} in (a, b) ix called semimonotonic {f} in (a, b).

By our assumptions about the function f, an increasing function
is semidecreasing {f}, and a decreasing function is semiincreasing {f}.
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Let us add to the previous assumptions for f,F, g yet one: the
function ¢ is semimonotonic {f} in (a,d), a < d < b.
Let us put

20 = [f" ), M= gl"0)], Fa= FU].

As an immediate consequence of Theorems 1, 2, 3, 4 we obhtain the
following
TuworREM 1'. Jf 1 < 0 and

lim n_F'T[f"(_t_)J_= 0 for te(ab),

. I g1

then there exists at mosi one solution of equation (18) in (a, b) semimono-
tonic {f} in (a,c)y, a < ¢ <b. If such solution exists, then it is given by
the formula '

> P
(19) p(t) = — -—k-———[f ) for  te(a,bd)

= Ilgrf'en
1=0

and series on the right-hand side of (19) converges.

THEOREM 2'. If |A| > 1, then equation (18) may have at most one so-
lution fulfilling the condition

(20) limsuplp[f" " '(0)] - p[f"()]l < 0o for te(a,b).

n—oo

THrOREM 3'. Suppose that

121 > limsup V [F[F(8)]]
n—od

Jor cvery t e (a,b) and that one of the following four conditions is fulfilled:

(i) 2> 0 and there exists b, a << b, < b such that the function F(t)
18 semiincreasing {f} (semidecreasing {f}),F(t) =0 and g(l) is semide-
creasing {f} (semiincreasing {f}) in (a, b); or

(i) A> 0 and there exists by, a < by < b such that the function I'(l)
18 semiincereasing {f} (semidecreasing {f}), F(#) < 0 and g(t) is semi-
inereasing {f} (semidecreasing {f}) in (a, b,); or

(ili) A << 0 and there exists by, a < by < b such thatl the function u(t)
is semiincreasing {f} (semidecreasing {f}), u(t) > 0 and g(t) ts semide-
creasing {f} (semiincreasing {f}) in (a, by); or

(iv) A< 0 and there exists by, a < by << b such that the function u{t)
is semitnereasing {f} (semidecreasing {f}), #(t) <= 0 and g(t) is semidecreas-
ang {f} (semiincreasing {f}) in (a, b,);
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where
u(t) = F[f )]+ g(O)F (1) ,

then the formula (19) define a function fulfilling of the equation (18) in
(a, b) semidecreasing {f} (semiincreasing {f}) in (a,c), a<c <b.

In cases (iii) and (iv) it is the unique solution semimonotonic {f}
of (18).

Let g(f) < 0. We put

b a4k +1
s & - S LU0 P ! ,
o [Totfe1 (gt m1-1) 1 glf')]

— daf ., oodr
a.(t) =" sup Sep(t), o.(t) = inf 8y(f),
p=1,2, ... P=1,2,...
- dt . ae )
oo(t) = sup Soepa(t), go(t) = Inf Sy (t) .
p=1,2,... P=1,2,.,

We obtain following
THEOREM 4'. Let g(t) < 0 in (a,bd) and f(b) < b. A necessary and

sufficient condition that the function @(t) fulfilling equation (18) be semi-
increasing {f} 1is

al) = () aolt)  m (f(B), B .

Similarly, a necessary and sufficient condition that the function @(t)
fulfilling equation (18) be semidecreasing {f} in (a,b) is that

o) < (1) < agu(t) in (f(D), ).
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