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Approximation of exterior conformal mappings*

by W. F. Moss (Atlanta, Georgia)

Abstract. We denote by D (or &) a bounded domain in RE?! which contains the

origin and whose boundary Dis a closed, rectifiable, Jordan curve. Let D¢ denote
the exterior of D and let w = F'(¢) denote the unique function which iz holomorphic

in D¢, one-fo-one and continuous on D¢, maps .D® onto {|w| > »}, a_nd gatisfies
F(2)
2

= 1.

F(o0) =00, lim
00

The quantity » is called the outer conformal radius of D®. In the following we consider
the problem of approximating ¥ (¢), F’(¢) and v. These approximations are useful for
finding approximate solutions to a number of physical problems (see e. g [4]). In

particular, we find upper and lower bounds for », hence also for the transfinite chameter
and capacity of D, since these quantities are equal to » [1], Chapter 2.

1. Preliminaries. The material of this section is a slight modification

of results reported in Goluzin [3], Chapters IX and X (see also [2], Kapi-

tel IIT).
Let w = f(#) denote the unique function which is holomorphic in G,

one- 1:0 one and continuous on @, maps G onto {lw| < B}, and satisties

f(0) =0, f(0) =1.
R is ca.]led the conformal radius of @. Let z = g(w) denote the inverse
of f(z). Because Qisa closed, rectlﬁable, Jordan curve, it follows that g (w)
is continuous for |w| < R and is absolutely continuous on the circle [w| = R
Furthermore,
(1.1) sup f |g'(re*®)|d6 < oo.

I<r<R}

Now (1.1) implies that there exists % e I,([0, 2)) such that

lim g'(w) = h(6)
w-»Retd

for almost all 8, where w approaches Re”® along any non-tangential path.

* This paper was written while the author was a student at the University of
Delaware, Newark, Delaware,
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We will denote %(6) by g’ (Re”®) and call this function the non-tangential
boundary values of ¢’ (w). It also follows that

g—g— (Re®®) = Rie*’ g’ (Reé™)

for almost all 6, and that the length s(6’, 0”') of the arc z = g(Ré"), 6’ <
6 < 6", is given by

e'!
86, 0") = [ |g’ (Re™)|df.
ol

Now let
0
s(6) = [ g’ (Re™)|d6.

0

Then the length L of G is given by
i
[ 1g' (Re™) 6.
0

Let z = z(s) denote the parameterization of @ in terms of are length.
Furthermore, let s denote Lebesgue measure on [0, L).

If H (2) is holomorphic in @, the. integral

2r
f|H(z)l2ds o rf IH (g (re™)) V' (re™)|2d 0,
a, . ¢

*

where C, = g (lw| = r), is ‘2 monotone increasing function of ». We say
that H (z) is in class L, (@) if this integral is bounded for 0 < » < R. Now @

has a tangent for almost all 0 < s < L and if H (¢) 'Ais in class L._,(G.), there
exists h e L,([0, L)) such that

im H(z) = h(s)

e—a(a)eC

for almogt all s, where z approaches z(s) @ along any non-tangential
path. We will denote &(s) by H(2(s)) and call this function the non-tan-
gential boundary values of H (2).

If we introduce the inner product

L
(ﬁ,H)Lz(@)i]iga_ fﬂ(z)H(z) ds = [ H(2(s))H 2(s)) ds,

0
c,
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)

then L, (6") becomes a Hilbert space. For gimplicity of notation we write

fH(z(s))H(z(s)ds = f A(z) H(z) ds.

G

Throughout Section 1, (+, ) = (+, ")z, and I = (-, )ﬁz(a)

It is useful to have a condition on G which will ensure that the sot

of polynomials is dense in LQ(G). This i3 the subject of the following the-
orem:

TrEEOREM 1.1. The seét of polynomials is dense im Lg(é) if and only
if the function log|g'(w)|, which is harmonic in |w|< R, can be rep-
resented by its Poisson integral, i.e., '

Rt —r?
R2+92—2 Rrcos(f— rp)

(L2) loglg'(re)] = 5 f log g’ (Re')|

If (1.2) holds, @ is said to satisfy condition (8), after Smirnov.

There exists a domain & with ¢ a closed, rectifiable, J. ordan ourve
such that G does not satisfy condition (S). Tf G is & domain with G a closed
rectifiable, Jordan curve, then any one of the following is sufficient for @
to satisfy condition (S):

(a) @ is convex, or starlike with respect to a point of @,

(b) @ is piccewise smooth, and the smooth arcs are joined with interior
angles = 0 (i.e., no cusps are allowed),

(e} there exists M > 0 such that for all 0 << ;< 8, < L

Now let & = {F € L,(@): F(0) = 1}. Then we have the following
extremal characterization for Vf'(z).

TEEOREM 1.2. (Julia). The function Hy(z) = Vf (2) and only this
Jfunction minimizes the integral

f |H (2)|2ds
@
over the class L. This minimum is equal to 2nR.

The function H,(2) is also completely characterized by the following
property.
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LevmmA 1.1. The function H,(2) is orthogonal to each fzmctwn I(z)
in class Lz(G) with K (0) = 0, t.e.,

(1.3) (Hy, K) = [Hy(2)E(2)ds = 0.
&

Next, we present the Ritz method for approximation of H,(z). Let &,
denote the set of polynomials P(2) of degree less than or equal to m with
P(0) =1.

PROPOSITION 1.1. For each m > 1, there emists a polynomial P, (z)
in class Bm which uniquely minimizes

[1P(2)|2ds

¢
over 8, . Purthermore, P e, Pp,(2) 18 orthogonal to each polynomwl Q (2) of degree
less than or equal to m with @(0) = 0, i.e.,

{1.4) (Py@) = [Pn(2)Q(2)ds =0,
' &

and P,,(z) i8 completely chdmcterfized by property (1.4).

. The coefficients of P,(¢) =1+4a¢,2+ ... +a,2" are character-
ized by the fact that

[(Dad)Fs =0, a=1,k=1,..,m.
& =0

Let

(L5) Ap(@) = [&dFds, i,k =0,1,...,m
é

Then the coefficients of P,,(2) must satisfy the linear system

[\As

(1.6) tk(G)“i = “'Aok(G)’ k=1,...,m

(-

7,=

Hence (1.6) must have a unique solution.
It follows from Lemma 1.1 that if P(2) is in class 2, then |[H,—P|?
= ||P|2— ||H,|/? so that P, (2) has the additional minimum property that

f |Hy(2) —P(2)]*ds

is minimal in L, for P(2) = P, (2).
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Since Bm is & proper subset of 2, ,,, it follows that [|[Hy P,l is de-
creasing. If @ satisfios condition (8), then it follows from Theorem 1.1
that [[Hy—2P,.ll =0 as m - oco.

Now let {@,(2)};=, denote the unique orthonormal sequence of poly-
nomials with positive leading coefficient obtained by applying the Gram-—
Schmidt orthogonalization procedure to {#*};2., with respect to the inner

product of L,(@). Then it follows that

Z%w%w
(L.7) P, () ==
S (g0

im0

and
m
IPliz=( 3 1Q:(0)12)
=0 .
The. ,(2) have the adlvantage that they are detelmmed algebra,lca,ﬂy in

terms of the Aik(G) defined in (1.5). Hence no lineax system need be solved
{0 determine them [2], p. 132-133.
Next, we consider the approximation of f(z). First, we need

Lemma 1.2. If H(z) is in class Lz(é), then for 2 € @,

[H(&)a

<1 [IH(e)lds.
@

Using Lemma 1.2, it can be shown that
THEHEOREM 1.3. If P (2) is in class Q and

) = sz(f)dE,
then ’
(1.8)  max|f()—P() < V2nE|Fo—P|+}IFo—P?
’ — 2nR[E |P|pf2r—~ 11"+ n R(EIPIP/2r —11.

2. The class Lz(l')‘*’). Let z = G(W) denote the inverse of 7 (#) and
let C, =@ (Jw| = 7). If §(=) is holomorphic in D® and has an expansion
at co of the form '

F(2) = ap+a_ 27 +a_,e"2+ ...,
then the integral

1 2 . - 18 7 {aaify]2
70[ 1§ (2)[2ds H.Of 1§ (G (r6™)) V& (reé™) a6
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is 2 monotone decreasing function of . We say that % (2) is in class L (i)‘).
if this integral is bounded for co<<7< 7. Now let ¢ =1I(2) =<' and

let D* = I(D®). Then it can be shown that §(g) is in class Ly(D*) it and

only if G (o) = F(o™?) is in class L,(D*). It follows from this that (z)
has non-tangential boundary values 3(z(s)) for almost all 0 < s< L,
that {f;(,, (s)) is in class L, ([0, L)); and that

lim [ |§(2)|2ds = f & (2(s),[*ds.

P>y 0

If we introduce the ihner product

| L
(§) 6) =lim [§ z)(5 (2)ds = [ §(2(9)® (2(s)) ds,

=y Cy

then L, (i)") becomes a Hilbert spa,c':e'. Moreover, it follows from Theorem 1.1

that the clags of polynomials in 27! are dense in L,(D% if and only if D*
satisfies condition (8). Again, we will use the notation

fi’; f%“cﬁ_

Throughout Sections 3 and 4 (-, ) = (-, *)p,pe and [l = (-, )Epe.

3. The Ritz method of approximating VF'(z). Tho proofs of the
results of this section are similar to the proofs of the results of Section 1
which can be found in [2], Chapters IX and X.

Let 9 denote the class of functions §(2) in L, (D°) which have an
expzmaion at oo of the form

F#) =1+a_ye™+a_,z73+ ...

Then VF’(2) has the following extremal characterization.

TEEOREM 3.1. The function Fo(2) = VEF'(z (2) and only this function
minimizes the integral

[ 1B (2)2ds
D
over the class M.
The function §,(#) is also completely characterized by the following
property.
ProposiTioN 3.1. The function F,(2) is orthogonal to every fumction
® (2) in Ly(D°) which has an expansion at oo of the form

G(2) = a_sz +a_2+ ...,
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¢.6.,

(3.1) (%) 6) = [Fole)B(e)ds = 0.
o

Now, let I, be the class of elements of M of the form
1ta_27 a2 4 ... +a_,27".

THEOREM 3.2. Ior each n > 2, there exists a function P, (2) in class m,
which uniquely minimizes

[ 1B ()2 ds
D

over M,. Moreover, B,,(2) is orthogonal to each funotion Q(z) of the form

Q) =a_z + ... +a_,27",

4.6.,

(3.3) (B D) = [Pu(2)Q(e)ds =0,
D

and B, is completely characterized by this property.

The coefficients of P,(2) =1+4a_,27*+ ... +a_,2™" are character-
ized by the fact that

n .
fZaiz’iz"‘ds =0, a=1,a_,=0, k=2,...,n.

D i=0

Lefti _ L
(3.4) Ag(DY) = [o7'aFas, i,k =0,1,...,m.
b

Then the coefficients of P, (z) must satisfy the linear system
n - -
(3.8) D Ap(DYa_; = —Ag(D?), k=2,...,m,
=2
so that (3.5) must have a unique solution.

Because of Proposition 3.1, for an arbitrary function P (2) in class I,

we have (Fo, P) = (Fo» P—To) + (Foy To) = (o, Fo)y and hence [IF, —P*
= [B(12— |[Foll®>. Thus, P,.(2) has the additional extremal property that

[ 1§(2) =B (2)12ds
D

is minimized over M, for P(z) = P, (2).
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Since M, is a proper subset of M, ., [IF—P,l is decreasing. Ifz')*
satisfies condition (8), then the.polynomials in 2~ are dense in L, (D)
and it follows that ||F, —P,lIl =0 a8 » — oo a8 we now show.

Since {o(o~ ") is in class L,(D*) so is the function [F,(o~)—1]/e2.
Since 0 € D, there exists r, > 0 such that {2| < 7} = D. Let e > 0 be given.
Then according to Theorem 1.1, there exists a polynomial P(p) such that

-1 -1 \
f-—w@ )71 p(g)|2as< 2.
. 0
Di

Hence

2ds < &7,

[ 5 |Ble™ = 1+ ePlo)

) eof*
D‘
Setting P(2) = 1+2"*P(¢~'), we have

7 [ 1Bo(#) =B (2)[2ds < [ 1812 Fo(e) =P () 2ds < e
D D

Let N = N (¢) be the degree of 1+ p2P(p). Then for all » = ¥ (&),
1T —Baull < [1Fo —Paveeyl < 1Fo— Pl < &

~ Next, let {Qy(2)}i=; denote the orthonormal sequence of functions
of the form k2

Q) = aqptae™ 4+ os Fa_py2t, a_, >0,
obtained by applying the Gram—Schmidt orthogonalization procedure

to 1,27%, 273, ... with respect to the inner product of L, (i)"). Then, it
follows that

an Q; (00)Q; ()

Tee=0

(3-6) s'Bn(z) = ‘76:2
D 1Qu(0)|?

k=0
Te#2

and

n

1Ball = { 3 190 (o0)12)

k=0
Tek2

The 2,(?) have the‘advanta;ge that they are determined algebraically

in terms of the 4, (D defined by (3.4). Hence, no linear system need be
solved to determine them.

4. Approximation of F(z). The function F(z) has an expansion at oo
of the form ’

F(z) =2+cy+eo_y2” e a7+ ...
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It follows from Lemma 1.2 that

THEOREM 4.1. If P (2) is in class M and
z—1

ple) =2— [ [P —1]/2dL,

then
max |F(z) —oo—p (@) < V2w [Fo — Pl + 11T — Bl
DG
Let us consider the problem of approximating ¢,. Let & = ()
denote the unique function which is holomorphic in D*, one-to-one and
continnous on D*, maps D* onto {|&| < »~'}, and satisfies

p(0)' =0, '(0)=1.
Then

F(z) =

p(eh)
Furthermore, (o) has an expansion in a neighborhood of the orfgin of
the form

p(e) = e—e*+bs0* +bs0°+ ...

By sefiting @ = D", the results of Section 1 can be used to approximaie ¢,
and to find upper bounds for v~

Because Vap’(g) has the expansion Vy'(p) =L—coo+ ... In a neigh-
borhood of the origin, for P(o) =1+a,0+ ... in L,(D*), we have

— ¢, —a1=-———~ f Vv (&) —P(6))12ae,

=

ll

where we have used the fact that D* must contain {|o| < 1/4v?}, which
follows from the proof of the 1/4 theorem. Hence

164* —
(42 la— (o) < 5= f Vv (O —P(&)|1a¢
|E|ﬂﬁ
16* 1/2
| f V@ -] "ag- L2
88 1/
< .'/;_ﬂ _ ¥ —‘P”Lz(f)"‘)

_ 843
Vor

[IPIZ, 5 — 2w v~ T
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Putting (4.1) and (4.2) together and setting P(z) = P,(2) and P(z)
= P,,(#) we obtain

(4.3) max|F (2) = (— @ +7,(2))] < 279 [y [B,l2/2 7 — 112 +

De
5/2

3
oy [ B 22— 1]+ V”

Suppose now that D= {¢ = At) : 0 <<t 1} Then

|:"’H-Pmlb‘;,, (D*) /271: ]_]112

Ap(D%) = [ A1) 27" () 14 ()] s
1]
and.
i I 1

1
1Jc('D:ll =f M’(t)ldt z+1,k+1(De)'
0

‘We must find solutions to the systems

(4.4) M Ap(Day = —Ay(DY), * =2,...,m,
1=2
and
(4.5) M A (D98 = =411 (DY, T =1,2,...,m,

1=1

or use (1.7) and (3.6). Note that if we choose m = n —1, then (4.5) can be
rewritten as

(4.6) Z-Ajl(-bc)a’j—l = —A4 11(—.De)9 L=2,...,n,

J=2

and (4.4) and (4.6) have the same coefficient matrices.

Remark. In practical applications of inequality (1.8), upper bounds
for R~' are required. These can be obtained by applying the results of
Sections 2 and 3 with D replaced by G*.

5. An example. Let @ be the square fp=wt+iy: 2|<1, ly <1}
Because of symmetry, J,6(61 A,c,(G) and,

1

A5 =2(L+7 M) Re [ (@+i)f (i) do,
¢ -1

from which it follows thaf
0, k—j # 41,

1
(6.1) -Ajk(G Sf #* + 1) Re (@ +4)~ tdm, 1= 0, 41, ...
0
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Now let

' /4

agr =f cosX fcoslods.
0

Noting that Am,(GE) = 8, a change of variable in the integral appearing
in (B6.1) yields

Aypald) " 1
— o T O gy . gyl
A (G) '
The following recurrence formulas are helpful in evaluating axz;:
KE—1+2 Yoy &1 _
(5.2) og= Eo1 ax+1,z-1+*(—K—_|_—l— sin(l—1)™, K % —1,
(VE)‘K_I[ Ir [

(6.3) ag_11+- e cOB L T Er1 sin 1

(K +1)2—12
= TH(ELL) G4l

Applying Section 1 to & we find that P, .(2) = Py(?),1 =0,1,2,...,
r =1,2,3 and for m = 8 we have (4,,(G) = 4;,)

K+0, 1

— Aoy A+ Ag Ay
@, = — 1803870919
' Ad.gAna—'-A:a ,
— Ay Agy A A
@y = ulfontAuly —.0043608125;

-A-44'A'BB - Ain

and the corresponding upper bound for R is given by

1P (2)] N o Ao [ 2a,4,, Za;a-Aoa
- L,(@) = o 1+ 'Aoo + Ao, =+
2a,05 A 44 aiAu a5 A gy ]
: +— = 1.079627901.
Ao Ao Ago

Applying Sections 2 and 3 to G* we again find that B, ,.(2) = Py(e),
l1=0,1,2,...,7r=1,2,3 and for n = 8 we have (4,(6¢"%) = 4;_, ;_,(@)
= Aj—-l,k—l)

— Ay At A, Ay
A, = : . =.,1077016034
' ‘AaaA'n“‘-Ag'r ’
— Ay, A7,—1 +-Aa,—1-A_£
AggAg— A,

— —.0174660527;

a_y =

6 — Annales Polonici Mathematici XXXV,1
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-and the corresponding uper bound for R~ is given by

1B (2)1l Lz(é*e) _ A_y [1+ 2“—4.443,—1 +

27 27 A5
2a_gds i | 2040 444, a4y dinA'n]
+ it R AR =.9279807598.
A,y Af1,—1 A1 A_;

This yields a lower bound for R of 1.07760865. Finally, setting P (z) = P,(?)
in Theorem 1.3 we have an approximation for f(z) for the square. The
right-hand side of (1.8) has the value .3000054679.
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