ANNALES
POLONICI MATHEMATICI
XXXVI (1979)

Non-linear stationary parabolic boundary value problems
in an infinite cylinder

by VLADIMiIR DURIKOVIO (Bratislava)

Abstract. This paper deals with the system of p quasi-linear differential equa-
tions

(1) Dyu— Y Ay@)Diu = F(z,t, Dyu)
1) =2b i

in the eylinder Q, = 2 x <0, ) (0 < |y| € 2b— 1) with data

(2) Uli—o =0, xe,

and

(3) Bq(x, Dy)ulr, =0

(I'o = 32 %<0, o)), where %, is a linear differential operator of order less or equal
than 2b—1 for ¢ =1, ..., bp. Using a priori estimations of the Green funection, the
oxistence theorem for problem (1), (2), (3) is established. The result is obtained in
a locally convex topological space of sufficiently smooth Hoélder functions.

1. Introduction. In the widely worked classic and non-classical theory
of parabolic differential equations (see for instance [3]-[6]), various
mixed problems have been studied on the finite time-cylinder @ = 2 x
x {0, T, where 2 is a domain of the Euclidean space R, and T is a fixed
positive number. In paper [1] an initial-boundary value problem for the
system

(i) Du— Z Ag(x, t)DEu = F(x, t)u

Iki=2b
with a non-linear differential operator #(z, t) of order < 2b—1 was con-
sidered on @. In this case, owing to the boundedness of the cylinder @,
the growth of the operator F(z,t) may be very strong.

The topic of the present paper is the existence of solution of a station-
ary initial-boundary value problem for an equation of type (i) on the
infinite eylinder £ x (0, o0). This question is studied in the complete
topological space of locally bounded and locally Holder continuous func-
tions on 2 X (0, o0). The conditions for solvability of the problem in
question are limiting the growth of F(z, t) much more than the conditions
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in [1]. However, they show the dependence of the growth of ¥ by the
selection of the time cylinder.

By the method described below we may solve the non-linear Cauchy
problem for equation (i) on the unbounded sets R, x (0, T) or R,, x {0, oo)
in the class of locally Hoélder continuous functions.

2. The formulation of problem. First of all we introduce notions and
notations to be used throughout this paper.

a. The symbol Q denotes a bounded domain of the real m-dimensionat
Euelidean space R,,m > 2, with the boundary 902 and the diameter
diam 2. For 0 < T < oo we define the bounded ecylindrical domain
Qr = 2x{0,T) with the lateral surface I'y =32 x<0,T), and for
T = oo we put @, = 2 x (0, o0) with I', = 92 x {0, o).

For any # = (@4, ..., #,) € R,, and any multiindex or multiexponent

m

k = (ky, ..., ky), where k,; are non-negative integer, we write |z| = ( Y a})"?,
m i=1

k| =‘_Zl,‘k¢, and z* =aj1... okm and D = D1 ... Dim = %! /a1 ... apm.

If k, is a non-negative integer, then DY denotes the differential operator
% |otko,

Further, for any integer r, t(r) means Card{k = (k,y, ..., k,): |k| = r}
2b-1

8 p .
and s = D' t(r) for b>1. The Cartesian product QX [] J] {— oo < uj

r=0 i=1 j=1

< oo} for p > 1 will be denoted by H.

b. Let (#,, <) and (,,, <) denote the partially ordered set of all
real (p X 1)-vector functions u(z) = (ul(w), ceey up(m)) and the set of all
real (p X p)-matrix functions A (x) = (a;(2))P;,, respectively, with the
range of definition in R,, and with the natural ordering.

By J and O we denote the (p x 1)-unit vector and the zero vector.
E, means the (p X p)-matrix whose all elements are equal to 1 and H
is the unit matrix. (%, v) is the scalar product of the vector functions «
and v of #,. Finally, we write |u()* = (juy(@)]%, ..., [u,(#)]") and
|4 (2)]* = (la;(x)|")f;=, for any a € R,.

¢. Now we shall define some classes of vector and matrix functions.

A vector function u € (%, 4n,) <) mapping 2, X2, c R, XR,,
into R, (m,, m,, p > 1) is said to be Hdélder continuous with respect to »
on Q, with the exponent o (0 < p < 1) and uniformly with respect to 2
on 0, if and only if there is a constant L = L(u) > 0 such that for any
pair of points z, ¥y € 2, and every 1 e 2, the rclation

lu(z, A) —u(y, A)| < Llz—y|°

holds. The set of all such vector functions will be denoted by H,(z, £;
A, 2,). From the above definition it is obvious that if 2, is a bounded set
and 0< o< <1, then Hy(w, 2,54, 2,) « Hy(z, 2,; 4, 2).
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Let ©, be a domain in R, . If u € Hy(, 4,; 4, £2,) for any subset 4,
of ©, such that 4, = Q,, then the vector function % is called locally
Holder continuous with respect to x on 2, with the exponent p and uni-
formly with respect to 4 € 2,. The constant L depends of 4,. The set of all
such vector functions will be denoted by H,,, (%, £,; 4, 2,). If 2, is a do-
main of R,, and u € H,(z, 2,; 1, 4,) for any set 4, such that 4, = Q,,
then u is called Holder continuous with respect to 2 on Q, with the expo-
nent ¢ and locally uniformly with respect to 4 on 2,. The constant I
depends on A4,. The set of all such vector functions is denoted by
HY(z, 2,54, Q,). If Q, and 2, are domains and ueH,(z, Ay; 2, 4,)
for any 4, and 4, such as above, then « is said to be locally Hdlder con-
tinuous with respect to  on 2, with the exponent ¢ and locally uniformly
with respect to A on £2,. The constant L depends on 4, and A4,.

For an arbitrary integer 1> 0 and a domain 2 < R, the Banach
space of all vector functions % € (%,,, <) defined on Q into R, such that
the derivatives D¥u up to the order ! (including 1) are continuous and
bounded on 2 will be denoted by C'(RQ). The norm in this space is defined
by

1
lulha = max {3 'sup|Diuy(a)l}.
J=Lieesd {20 ji=i @

If 0 < a< 1, then C'**(Q) denotes the subspace of all vector funec-

tions u € C*(R) whose the derivatives of the l-th order satisfy the Holder

condition on 2 with the exponent a. In this case the norm is defined as
the sum

lllh,o + max {2 sup lDiu,-(w)—D’;u,-(y)lllw—yl"}-
i=l,...,p |k|=1 > ve?

We say that the boundary 02 belongs to the class '+ iff to each
£ € 002 there is d > 0 such that the part of the boundary 92 contained in
the ball G = {zx e R,: [r—{| < d} may be explicitly expressed by an
equation z,, = ¢(®y,...y%,_,) In an orthonormal coordinate system
(02, ... %,_,x,) in such a way that dircction of the axis 0z, coincides
with that of the inner normal to 92 at the point £ and the scalar function g
belongs to C'*°(@,), where Gy = {2’ = (X1, ..., Tp_,) ERp_y: 2| < d}.

Now we can formulate the stationary initial-boundary wvalue prob-
lem in Q..

Consider the system of p > 1 differential equations of 2b-th order
(b > 1) with p unknown functions

(1) (@, D,y D)u = Du— ' Ay(a)Dku
|k|=2b

=F(@,t, ..., Diu,...); (%,1) €Qu,
where y = (¥4, ... ¥,») 18 @ multiindex such that 0 < |p| < 2b—1. The
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solution of (1) is required to fulfil the initial condition

(2) o =0, =z,

and the boundary conditions

(3) Bo(@, Dul, = 3 (BP, Drw)|, =0
kl<rq

for 7,<2—1 and g¢=1,...,bp-4,(') = (a/(-))5;=; is a matrix
function and B@(-) = (§'(-), ..., bf?(*)) is a vector function on 2 and
F=(fi....f,) on H,.

Problem (1), (2), (3) just formulated will be solved in the following
class of Holder continuous functions:

Consider the non-decreasing parametric function fz, mapping the
interval {0, oo) into (0, oo) with the properties

i
(I) f3,0(0) > [ 2 6™ dz
0

for te {0, o0) and B> 0 and 0 < ¢< 1 and

(1I) f8,.(0)>0
Further, for a real function » on R, ,; and for 0 < a << 1 we put

V(@ 0))e,. = 0(2y ) w0(y, O] [z —y|~*
and
0(2y ))gy = [0(2, ) —v(2, ¢')| ]t —1'|7°.

Then for b>1 and 0 < a<1 we define the linear space
C2{EnEe 1+ (Q ) of the vector functions u(z, 1) = (uy(2, 1), ..., u,(2, 1))
by ‘the inequality

2b—1
*®, 1,V dt —
(4) Ilgs?3,, = max (> ngp [IDku;(2, )| f55(0)]+
=1l D =0 |kl=i Yoo
+ D sup (D (a, 1)) 5L 0]+
ki=20—1 (&:1),(1,)eQ 0
z#Y
2b-1
R

+ 7 3 sup (D (@, 1) ran ymea S35 (B — U DfEL (Y]] < oo,
i=0 k=i (zv')(f;é‘t')EQoo

where the parameters x», 4 and » belong to the interval (0,1) and t*
= max(t, t').

Remark 1. If we take QT, 0 < T< oo instead of @, in (4), then
the norms ju|fi>2%%, and [|U[§?,,, from [1] (p. 38) are mutually equiv-
alent.



Slationary parabolic boundary value problems 143

Remark 2. a. We immediately see that if u e C2, jEnCo 1o (g )
then DiuweHY®(z, Q;t, (0, c0)) for |kl =2b—1 and DEy e
Hyoe 06— 14+a—iiyzn(ty <0, )5z, Q) for |k} =0,1,...,2b—1.

b. The derivatives D"u for [k] = 2b—1 can be contmuously proceeded
to R, x<0,T> for any T €(0, oc) and then, using the mean value
theorem and the relation

m

(5) ‘[fmz |m1| Zl i'
i=1 i=1
forz e R,,and K, € (0, (1/1/2)’"‘1), one obtains: Diu e HY*(x, 2;1,{0, o))
for |k =0,1,...,2b—2.
c. By M we shall denote the set of all matrix functions belonging
to (#,,, <) whose rows and columns are vector functions of M.

3. Some assumptions and statements. The operators & and %, and
the boundary 92 in problem (1), (2), (3) are required to satisfy the fol-
lowing assumptions:

AssuMPTION (A). System (1) ts uniformly parabolic in the sense of
I. G. Petrovskij, i.e., there is a constant & > 0 (independent of x) such that
the roots a,(x, &) of the polynomial

L(z; 1§, a) = det& (2; i€, a) = det(ya—i® D ali (@) &)
ikI=2b
(i = V—1 and 0.; s the Kronecker symbol) satisfy the inequality Rea,(x, §)
< —081E) for x € Q and £E€R,,.

ASSUMPTION (B). The operator &, is connected with system (1) by the
“uniform supplementary” condition: Let x be a point of 02 and let »(x)
= (1,(@), ..., v, (T)) be the unit vector of the inner normal to 02 at the point x
and let {(x ) be a vector lying in the tangent plane to 052 at x. Then for any
z€dR and for a complex number a with the properties Rea > — 6,)¢|®
and a2+ |5? >0 (0< 6, < 6, 8, is an absolute constant) and for every
vector £(x), the rows of the matrix

(i X @@ +w@F)2y, £z, i+, ),

g=1,j=1
1k|= =Tq

where & = LZ™', are linearly independent vector functions of v with respect
bp

to the module of the polynomial M*(x;8,7,a) = || (v—1}(z;¢,a));
=1

75 for ¢ =1, ..., bp are the roots of the polynomial L(;; i(C+1v), a) (in 7)
with positive tvmaginary parts.

ASSUMPTION (D, ,). Letl > 0 be an integer and let 0 < a < 1. The (p X p)-
matriz coefficients A, (x) of (1) belong to C*+°(Q) for |k| — 2b and B (x)

3 — Annales Polonici Mathematici XXXVI.2



144 V. Durikovid

€0t (90Q) for |k|<r,<2—1 and ¢ =1,...,bp. The bound-
ary 0Q belongs o the class C'20+e,

The estimations of the Green matrix of the operator % and its de-
rivatives on the infinite cylinder @, are established by

THEOREM 1 (Eidelman and IvasiSen [2]). Let assumptions (A), (B)
and (D, ) be fulfilled. Then there exists the Green matrixz function G (x, t; &, 7)
€ My +1) of problem (1), (2), (3) (with FF =0). For 0 <t<ty<t< o0
and z,y, € R, (r =1/(2b—1)) we have '

(6) |IDpDIG(w,1; 7))
< O( ) (m+2bko+lk|)/2bexp {A (t _ T) —c Iw £|2br/ )1‘}1;}1|

if 20k, -+ k| < 2b+1;

(7) |D:‘°D’_,:G(.’L‘,t; &, T)-Df“‘DﬁG(%t; &, 7))
< Clo—y[*(t— )~ H+ D ox (4 (1 7) — o |a* — £ [(t— 7)) B,

if 2bk,+ |kl = 2b+1 and |z*—¢&) = min(jz—£), ly— £));
(8) |DMDEG(w,1; &, T)— DfoDEG(x, ty; &, 7))

< O(t t){2b(l ko)‘f‘l |k|+a)/2b( ) (’m+2b+l+a)l2b %
x exp{A(t—7)—clz— £t —7)} B,

if 1< 2bky+|k|<2b+1. A,C,c are positive constants independent of
x, Y, 1,1 and &, 7.

Remark 3. In our considerations we shall often use instead of esti-
mation (6) its modified form

(6°) | Dk DEG(x, t; &, 7)) < C(t— 1) ¥ [o — &|2n—(m+ 2kt 1k
X [|Z — |2 [(t — 7) |+ 2bko-+1kI 200120

X exp{—clz— & [(t—7)} el B,
<K@t—7)"*lz— £|2bu (m+2bkg+1kl) g A(t— r)E1

for 0<r<it< oo and z,(€R,, &+ and p<(m+2bk,+ |k|)/2b,
where K is a positive constant independent of z, ¢, & and z. If we have
|z — £[*®/(t—7) > & > 0, then this estimation holds for any u e (— o0, o).

Remark 4. If we consider the finite interval (0, T>, T > 0, instead
of (0, o), then estimations (6), (7) and (8) reduce to the estimations
of Theorem 2 in [1].

An obvious consequence of Remark 3 and Theorem 3 of [1] is

THEOREM 2. Let assumplions (A), (B), (D,,,) be satisfied and let & ¢
C*(Qp)nHY(x, 251,40, o0)) be a (p x1)-vector function bounded in the
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norm |-l op for any cylinder QT, T € (0, o). Then the vector function
i
w(z, 1) = [dv [G(a, t; &) D¢, 7) A
0 Q

18 a solution of thelinear equation £ (x; D,, D,)u = @(z,t) on Q,, satisfying
conditions (2) and (3).

This last theorem enables us to investigate the solution of the non-
linear problem (1), (2), (3) in the unbounded cylinder @_ by the Tichonov
fixed point

THEOREM 3 (Tichonov [7]). Let (P, t) be a complete locally convex
linear topological space and let S be a bounded closed and conver subset of P.
Let A be a conlinuous mapping defined on 8 into itself such that the closure

of AN is compact in (P, 7). Then the equation Nu = u has at least one
solution in 8.

In the following text the symbol L will always denote positive con-
stants.

4. The existence of a solution. To derive the fundamental theorem

we introduce some properties of the space P(Q.) = Coy 5200, 1™(Q,,)

and the Green function G and the integro-differential operator
¢
9 Uz, tyu = [dv [G(x,4; & 1) F[&,7,..., Diu(k, 7), ... 1dE.
0 Q

It is obvious that the space P(Q,) with the norm defined in (4) does
not form a Banach space. The sequence of functionals {c,};.., defined by

B,x%,u, o
on () = [wlf2itry , mo=1,2,...,

defines a countable monotone family of seminorms on P(Q,) satisfying
the axiom of separation, that is, for any u, € P(Q.), uy # O there is n,
such that o, (u,) # 0. The linear space P(Q,), topologized by the family
of seminorms {o,},., in the usual way, the sets

NO,n,e) ={ueP(Q,): o,(u)y<e}, n=1,2,..., e>0,

forming a local neighbourhood baze at zero is a locally eonvex linear
topological Hausdorff space. Denote it by (P(Q,), r), where 7 is the topo-
logy just defined.

LeEMMA 1. The space (P(Q,,), t) is complete.

Proof. Since the topology = is defined by the countable family of
seminorm {o,}%.,, it is sufficient to show that the space (P(Q.), 7) is
sequentially complete for p = 1. Let {u,(x,t)};~, be a fundamental se-
quence of real functions of (P(Q,), ), that is, w,—u, e N(0,n,¢) for
any I, s > so(n, ) (s, i8 2 fixed positive integer) and any neighbourhood



146 V. Durikovié

N(O,n,¢). Hence
[DEwy (2, t) — DEuy (2, )] < efp . (8) < ef 5. (n)

for |k] =0,1,...,2b—1 on any finite cylinder @,. Consequently there
is a funetion w e (™ '(Q,) such that lim Dfu(z,t) — Dfu(z,t) at

§—00
every point (z,t) €@, for |k] =0,1,...,2b—1. Letting s > oo in the
relations
| DEuy(, t)|f1;,,(t )<L for k=0,1,...,2b—1,
| Dk, (, 1) — OIfe.(t) < Llz—y)* for k] =2b—1
and
| Dk ug (@, t) — Dyug(@, t')|f5, (1t —t'f55 ("

K Lig—¢ (@0 tra kD2t for k| =0,1,...,2b—1,
we get u e P(Q,). From the inequality o,(u;,—u,) < e we easily obtain
u,—u € N(O,n, Le) for all s> sy(n,¢), and this guarantees the con-
vergence of the sequence {u,(z,?)}, to u(x,t) in the topology =.

LeMMA 2. Let (x,t), (y,t), (z,t"),t<<t be points of Q, and let
k| =0,1,...,2b—1 and B € (0, 1). If hypotheses (A), (B) and (D,) hold,
then

(10) I,.(@,1) = fdr lekG (@, 1; &, 7)|dE < Lf 4 (1)
for 0<x<< (m-+1k|)/2b (x<1) and

t
(1) Lu(z,9,0) =fdr [ D56 (@, t; £, 7) — DEG(y, t; &, 7)|dé

2
< Lz — yﬁfA JOg(lz—y)E Llw—ylﬁfd,y(t)El

Jor pe(0,1) such that (Jk|+1)/2b < p < (m+1K))/2b if 0 |k]<2b—2
and (2b—148)/2b < u if |k| = 2b—1, where g(z) = 2!~ PHOE-DIEI/E-—D]
(The expression [«] in the exponent denotes the integer for which [#] <
< [#]+1.)

If conditions (A), (B) and (D,,_,. ,) are satisfied, then

{ .
(12) L(z,t,0) = [de [IDEG (2, t5 &, 7) — DEG(, Vs £, 7)| A€+
0 Q

.
+f dz le’;G(m,t'; £, 7)|d¢

< L' — )(zb 14— |k|)lzbfA (' — t)fA LYWt —t) B,
< (t' )(2b 14+8— lkl)/obf t _t fA' E
for (4b—14B)/4b < v < 1, where h(z) = #0720 F1=AN £21 5y,
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Proof. Estimation (10) follows directly by (6’). For 0 < [k| < 2b—2
inequality (11) ean be determined from (6°) with use of the mean value
theorem. Indeed, there is &7 = (Y1, ooy Yso1y iy Figry eeey Tn) €ERy (¥ =
(Y15 «+-y Yp)) such that

IDI::G(Q” 5 &, T)_DZG(yy t; 6, 7)| < 2 lmi-yi”DZ(i)G(w:s t; &, 1),
im1

where k(i) = (ky, ..., k;_y, ki +1, k0, ..., k,) and ; lies between ux;
and y; and |x—y|> |z; —z|. Hence, in view of (5), we obtain for
(1] +1)/2b < p < (m+ |E])/20 (p<1)

L@, 9,t) < Llw~yify.(f) max [ |of —gon-(mrkON e p,,

T=l..,m

which proves (11).

Let now [k| = 2b—1. Divide the domain £ into two subset S,
={feQ: x—§& > 2lz—y|}and S, = 2 —8§,. From the inequality |§—x|
> 2|z —y| we get [x— &) < 2|2} — €|, whence

I (z,y,t) < Lf, ,(8) {2m+2b 2x flm Yl o — E[2or-tm+2t) g 4
+ [ [l — gRoammemh) gy gpbe—(mi-Digel g
S,

Both integrals converge for (2b—1+8)/2b <p <1 and so (11) is true
for |k| = 2b—1, too.

To prove the third estimation, we put 8, = {£ € Q: [§—az| > [t'—|"*}
and 8§, = 2—8,. By the mean value theorem we find 7 e (¢, t’) such that

for k| =0,1,...,2b—1and (2b—1+8)/2b< (4b—1+p)/4b<»< 1 and
0< 1< |K|/2b

t
I, (@, t, 1) fdrf|D"Ga:t £, 7)— DG (x, t'; &, 7)|dE+

0 S3
¢
+ [ ar fIDkG (@, 85 &, 7 Idé-i—fdr f|D’“G 2, b5 &, 7)|dE+
¢ 0
y
+ [ dv [IDkG (@, 15 &)1
0 A
¢
< L{(t’—t)(t’—t)‘zb"‘%_'k”/“’f(?—-:)"gﬁfz—’) dr +
0

(t' _ t)(zbl—llcl)lzb fA,}.(t’ . t) + (t' . t)(%"_'k”m’f_d,,(t) +

_i_
(¢ — )Ry () B
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Since v< v < 1, we easily see that (t'—1)""f, ,(t'—1) < f . (t'—1).
Hence and by the monotonicity of f, , one obtains

I (@, t, ) S L(t' =) 1k02b g (1) E,.

Finally, relation (12) follows from the boundedness of the function

t'—t
(tr_t)(zbv-—zb+1—ﬁ)/2b(f 2" ed? dz)_l
0

for (1, t') € (0, o0) X (0, oo).

LEMMA 3. Let conditions (A), (B), (Dy_,,.) be fulfilled and let the
vector function F' be continuous and bounded in the norm |- |, He' Then there
8 a real number R >0 such that W(z,t)P(Q.) = Sz = {u € P(Q):
llullf{,Al"Jr’g‘g < R}. (The parameters x» u and » are defined as in
Lemma 2.)

Proof. Let u € P(Qy) and [|Fl; < L. Using (9) and Lemma 2 for
B = a we have for (z,t),(y,1?), (z,t') €Q, and t<

|DEN(, tyu| < LI, ,, (v, 1)d < pLf, ,()J
and

|DEU (, t)u — DEW (2, ¢')u| < LI, i (2, t, ¥')J
< pL(t’ —pyeo-tra- ks (8" —t)f 4, (¢)d
for k| =0,1,...,2b—1 and

le‘H (z, t)u — Dk%(yv tyu| < LIy (2, y,t)d < pLlz— —Y1°fa,u(0)

for |k| =2b—1. Thus it is sufficient to take R > pL{2s+1t(2b—1)}.
Now we may formulate the existence theorem.
THEOREM 4. Let conditions (A), (B), (Dy,_1..) be satisfied and let the
right-hand side F of (1) be a continuous vector function bounded in the norm
Il 7,0y hore B = Qe [ [1{~RIuul0) < 45 < B0} © Hao (R i

i=1 j=I
the constant occurring in Lemma 3.) Further, let the Holder condition

13) |[F(z,t,...,u", ... )—F(y,t,...,07,...)]|

2b—1

<law—yr+ > 3 ¢ w—vJ

i=0 |yl=t
be fulfilled for B,8,€(0,1) and (z,t,...,u", ...}, (¥, ..., 0", ...)
e H, where g*(t) = (g (t), ..., ¢3(t)) and g} (t) > 0, qg(t)>0forj=1,...,p
and |y| =0,1,...,2b—1 are bounded and inlegrable real functions on
0, T> for every T > 0. Then problem (1), (2), (3) has at least one solution u
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belonging to C2, JhaCh1+M®(Q ) for which [ulf§yiad < Rey where
Ry> R. Here the parameter x<<1 is such that 0<< x<<(m+|k|)/2b
for |k =0,1,...,2b—1 and uwe(0,1) is such that (|k|+1)/2b< u
< (m+1k))/2b for k| =0,1,...,2b—2 and u> (20—1-+p)/2b for |k
=2b—1 and (4b—-1+8)/4b<v< 1.

Proof. According to Lemma 1, (05, /5550 T2 (Qy), 7) is a complete
locally convex linear topological Hausdorff space. The ball S5 18
a bounded closed and convex set in the topology r and the operator
A(z, t) given by (9) maps Sg into itself (see Lemma 3). In virtue of (13)
and Remark 2b, for any v € 85 the vector function F (x,t) = F[z,t,

. Div(x, t),...] satisfies the inequality

|Fy(xy 1) — Fy(y, t)|

2b—2
<faio—yP+ Y Zi’ 1) I (1) |2 — y P +
=0 |y|=ij=1
y4
+ 3 N gOE L0 -y,
I71=2b—-1j=1

where L (t) > 0is a bounded function on every interval {0, T for T € (0, oo).
Consequently F, e H>(z, 2;1, {0, o)), where ¢ = min(8, §,,af,) < 1.
Moreover, F, e (°(Q,), and so problem (1), (2), (3) and the operator
equation A(z, t)u = w are mutually equivalent on Sg.

The existence of a solution of W(z,t)u = » will be proved by the
Tichonov fixed point theorem.

First of all we establish the continuity of the operator A(x, ¢).

Let {u,(w,?)}s>, be a sequence of elements u,(wx,?) = (uf(z,1?),...
.., (2, 1)) of Sk such that u, — u, in the topology ;ue(x,t) = (uj(2, ), ...
eooy Up(€, 1)) € 8. Then to any neighbourhood N(O,n, ¢) €t there is
a positive integer s,(n, ¢) such that for all s > s, the relation u,— u,
€ N(O, n, €) holds. Hence

(14) | DGty (2, ) — Dgoto(®, 1)| < fa(n)ed

for (»,t) €@, and |k| =0,1,...,2b—1. From hypothesis (13) we get for
(z,0), (¥,1), (z,V) €Q, and k| = 2b—1

|DEN(z, t)u, — DA (@, t)uo — DXUA(y, t)u, + DEA(y, t)u,|
<12,k(w’y’t)0(n)J

and for k| =0,1,...,2b—1

DA, t)u, — DA (x, tyuel < I, 4(@, )C(n)d



150 V. Durikovis

and
| DX (2, t)u, — DEN(w, t)uo— D¥UA(2, V') u, + DEW(2, ') uy|

S I, (2, 8, 1) C(n) J,
2b-1

where C(n) =sup ) '(q"(t), | D} ug(&,7) — Dlug(&, 7)|°7). Using Lemma

Qp =0 |yi=3
2 for § = a and estimation (14) we have
A (z, t)u, —W(z, ) uo”{g{';‘f&t)on < L(n)s,

ie., Az, t)u, —A(z, t)u, € N(O,n, L(n)e) for s> sy(n, ¢). The constant
L(n) > 0 depends only of n and so the operator (z, ) is continuous
in the topology .

To prove the compactness of A(v, t) Sy in v we use the well-known
lemma of Dunford (see [6]).

Put v, (, ) = (o}(x, 1), ..., v5(z, 1)) e Az, t)Sp = Sgfor s =1,2,...
Then there exists a sequence of elements u,(z,t) = (uj(z, 1), ..., w5 (x, 1))
€ 8g such that v, = A(z, t)u, for s =1,2,... Since |v,Ifi* 7400, <R,
the sequence of derivatives {D¥o}(xz,?)}, is uniformly bounded on @,
for any » =1,2,... and j=1,...,p and |k|] =0,1,...,2b—1. On
account of the assumption ||F|, 7 < L for k| =0,1,...,2b—1 we have

|D!::va.(w7 t) _-D:'vs(y7 t,)l < |D’::QI(931 t)us—D’;‘l[(y, t) usl +
+ | DRy, t)u,— DA(y, V) 4yl < L(Ly (2, y, 1) + Iy, t, 1)1
Thus Lemma 2 guarantees the equicontinuity of the sequence
{D%v (x, 1)} ,. Then there is a subsequence {05, (2, O}Z1 = {W(w, hug }i2,
of the sequence {v,(x,)};2, and vy(z, t) = (v}(z, ?), ..., vy (x, t)) such that
D5 v, — Divgllo,q, 0 asl— oo for n =1,2,...and |k| =0,1,...,2b—1.
Consequently the sequence {Di‘vs[(w, t)}2, converges to Dfv,(z,t) at
every point (z,t) € Q.
Letting, for fixed (z,t), (y,1), (z,t') €Q,, I > oo in the inequalities
1DZv0(2, 1) — Doy, 1)
< |Diwo(, 1) —D'z‘”a,(w, O+ L@, y, 0J + I-D,;:'vsz(y’ t) — Div,(y, 1)l
for |k| = 2b—1and
\Dzo0(2, )] < |Dgvg(@, t) — Doy (@, )| + LI, i (x, 1) T
| Dy (x, 1) —D:'vo(x’ )|
< |Dgvy(, 1) —D;‘:'Dsl(w, )+ LI (2, t, V') + |D]::'vs,(“"7 t'y — Diny(, )|

for |kl =0,1,...,20—1, we immediately obtain that v, belongs to

O canaba1+ait(@ ). It remains to show the convergence of the sequence

{ve (w, 1)}52, to v(x, t) in the topology =.
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Denote by 8%, the completion of the set U(x, )8y in the norm

2b—1
lelp10, = max {3 Y sup | Dz, 01}
i=Le.sp =0 (k=1
for n =1, 2, ... The sequence {SR,,,},L=l possesses the following properties:
(a) vye Sy, for any n =1, 2,

(b) The non-void intersection S = ﬂ Sh. is a subset of

O fdoebsttelb(g ). Indeed, for v(z, 1) = (vy( :v t) v,(%, t)) € 8}, there
is a sequence {w,(z,1?)};—, = A(x,t)S; such that ||w — |l —1,0, >0 28
s — oo for any n = 1,2, ... Thus Dfw, converges to D¥v at every point
(z, t)e Q. Hence, using the same considerations as above for v,, we obtain
that v e C {4500 Y (Q,) (= S%).
(¢) By Lemma 2 for v e 8%
lim | D}v; (2, 1) — DZo;(y, )| f1u(8) lw—y|~°

-y

uniformly with respect to ¢ € (0, o) for |k| = 2b—1 and

lm | Dfv; (2, 1) — Dio; (@, ¢)If2), (¢ —0)fa), (#) > (¢ —) =@ +em ki — ¢

>t —
uniformly with respect to € 2 for |k =0,1,...,2b—1andj =1,..., p.

In view of (¢), to each ¢>0 and n =1,2,... we find d(e,n) >0
such that for every j =1,...,pand l =1,2,... and (x,1t), (z,?) €Q,,
t<t,
(Dol (e, t) — Diod(z, ), afa0(t) < &

if k] =2b—1and 0< |[z—y|<< é and

<D:”f'(m, t) _-D:’;”;?(‘”a 1)) 2b—1+a—k1)/2b,¢ fz,lv(t’ —-t)f;},,(t') <e€
it k| =0,1,...,20—1 and 0< ¢ —1< 6.
From the relation: |,,— vouf,,,_lo —~0 as l— oo, follows the

existence of a positive integer 1,(e, n) such that for l> lo(n ) and |z —y|
> 0 we have on @,

<D’::Iv;:l(m’ t) -Dk (w t >azfA ,u(t
<f2,(0)6* max { sup |Divji(x,?)—Dioj(z, t)|+
i=L...,p (z,l)eQ, .
+( sup \DEvSt(y, t) — Dol (y, )} < &
Y,b)ell,,
if k] =2b—1. For t'—t> 6

(Dkvji(x, t)—Dk V325 DD e—1raiyzv.f 2 (' — 2}

<f 0) 6~ (- 1+a~IkN/2 max { sup |DE vl(x, t) D" °(m 1)+
j=lLe..p (z.0)eQy
+ sup |Dioft(w,t)—Divj(x, t')}< e
(I,t’)EQn
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if [k| =0,1,...,2b—1. Finally,
llog, — Dollff2n5%23,,
2b—1

< max {2 ZsuplD’;v;’(w,t)—D’;vg(w,t)lfz,..(t)+
J=le...p i=0 |k|=i @n

+ Z max[ sup (D’z‘@;z(m,t)—p’;q;g(m, )a,f25(1);
Ik|=2b—1 %’e’?é‘ﬂ‘,}ﬁ?z'

sup <(Diofi(@, t) — Dioj(2, 1))a,f2)u(t)]+

CLgn
2b—-1
+Z Zmax[ sup (D’,‘vgt(m, t)—D’;vg(w, £)) (@b—14a—ki)izoe X
i=0 [kl=1 (@.t).(z,)eQy,
o<t —i<d
X fa.(t' =2, ¥);
sup  (Divji(z, t) — Do} (@, 1)) ab—1+atmiyzo,ef an (V —t)fj_.(t')]
(3'?"'(—3";)0501;

< &[fq}(0)s+2(2b—1) + 3]
for I > ly(n, ¢) and arbitrary n = 1,2, ... Hence

Vg, — 0 € N(O,n, e[f2(0)s+1(2b—1)+8]) for 1> lyn, ¢),
which concludes the proof of the theorem.
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