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Asymptotically expansible solutions of the Helmholtz
equation *

by K. BOCHENEK (Warszawa)

We consider in this paper complex functions of real variables u(x, k)
defined for a k greater than a certain %, and an x belonging to a certain
two- or three-dimensional domain D satisfying the equation

(1) V2u+k*u = 0
with an asymptotic expansion in the form

! A=
(ik)

78

(2) U~ 6L x)

)

b

y=0

where L(x) and 4,(x), v =0, 1, ... are complex functions of real variables
defined for x ¢ D. For real L(x), expansions of this kind have been applied
to a great number of problems [1].

Our present knowledge concerning the family of solutions admitting
asymptotic expansions (2) is still unsatisfactory. From among recent
works on this subject I will mention a very interesting one, [2], concerning
expansions of a similar type.

The main result of the present paper consist in constructing a class
of solutions admitting asymptotic expansions in question.

If we substitute in a formal manner expansion (2) in Eq. (1), then,
by comparing the coefficients of the successive powers of ik, we obtain
the following sequence of equations:

(3) (VL2 =1,
(4) OVL-VA,+ VLA, = —V24,,, »=0,1,...

where A_; should be assumed to be zero. For real L, Eqs (4) reduce along
the line of the field VI to ordinary differential equations

(5) 24,4+ VLA, = —V24,_,, v»=0,1,..

* This paper was presented at the Symposium on Electromagnetic Theory, held
in June 15-20, 1959 at the University of Toronto.
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This is one of the fundamental advantages of these and other similar
asymptotic expansions [1]-[5].

A formal proceding, as mentioned above, will be justified if we
assume that expression (2) is an asymptotic expansion of the function «,
and, moreover, that an expression obtained by computing term by term
the Laplacean of expression (2) and ordering the formal sum thus obtained
according to the powers of ik is an asymptotic expansion of V2u. Indeed,
the function appearing on the left side of Eq. (1) vanishes identically,
and thus its coefficients of asymptotic expansion also vanish.

We will now formulate conditions sufficient for the differentiability
term by term of asymptotic expansion of type (2). We say that the
function u(=x, k) has asymptotic expansion in the domain D if for every
x ¢ D and for every integer N > 0 we have:

N-1

(6) E(ik)zv (e-ikLu_Z (;c')') =Ay.

p=0

As to the domain D, we assume that in the case of two dimensions—
it does not contain points of a certain circle with a radius greater than
zero, and that in the case of three dimensions it does not contain points
of a sphere with a radius also greater than zero. In the centre of such
a circle or sphere we shall choose the origin of the system of coordinates.
The positional vector x will be determined by means of its polar or sphe-
rical coordinates.

The following theorem holds:

If:

1. for each k greater than a certain k, the function u(x,k) is an analytic
function of coordinates in the domain D (i.e. it can be represented im the
neighbourhood of every point x e D as a sum of Taylor series in the co-
ordinates),

2. for each x e D and for each integer N = 0 transition to the limit (6)
is uniform in a certain complex neighbourhood of the point x — that is in
a neighbourhood formed by admitting complex values of coordinates (the
function u is extended to cover such a mneighbourhood by means of Taylor
series),

3. the function L(x) is an analylic function of coordinates in D,
then:

1. the functions A, x),v = 0,1, ... are analytic functions of coordinates
in D,

2. by differentiating term by term the sum (2) with respect to the co-
ordinates an arbilrary number of times, and by ordering the expressions
obtained with respect to the powers of ik, we obtain asymptotic expansion
of a corresponding derivative of the fumction u(x, k).
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In order to prove our theorem, let us observe that the function
(7) v(x, k) = e~thly

is for k¥ >k, an analytic function of coordinates in D. Furthermore,
owing to the uniformity of the limit (6), all functions 4,(x), » =0,1, ...,

are analytic and
N

—1
N e R B
8) lim (ik) (dnv—z (ik)’) @Ay, N—0,1,..,

ve=0

where d" denotes an arbitrary derivative of the order n with respect to
the coordinates of x. Thus not only the function v» has an asymptotic
expansion

5 4
(9) o~ 2
&~ (ik)
but the derivative d"v has an expansion
)
(10) av > T2
= (ik)

as well, obtained from (9) by means of term by term differentiation.
If we take into account (7), we find that derivatives of the function u
have asymptotic expansions which can be computed in a manner in-
dicated in the theorem.

We will now define the function

(11) u(x, k) =¥ [ a(a)[B(a)]* exp (ikv(a) - z)da
L)

= & [ a(a)[B(a)]* exp (ikrcos (8 — a)}da,
L

where 7 and ¢ are polar coordinates of x, the vector v(a) has the polar
co-ordinates: 1, a, the integration contour, depending on point =, is
presented in Fig. 1 (see p. 57) and the functions a(a) and B(a) satisfy the
following conditions:

1. they are entire functions,

2. they are periodic with the period 2r,

3. there exist such numbers A and % < } that, given sufficiently
great |a|, the following inequalities hold:

(12) la(a)] < exp(Aed), |B(a)| < exp(ndell),
where d denotes the distance of the domain D from the origin of the

coordinates (the domain D satisfying identical condition as in the pre-
ceding theorem).

4%
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Given these assumptions, and & being an integer greater than a certain
k,, u is an analytic function of x defined in a unique manner in D and
satisfying the Eq. (1) (1).

In order to prove the above theorem let us consider the function
u, of two complex variables, » and ¥, defined for » and # in a complex
neighbourhood respectively of r,, &#,, where r, and ¥, denote the co-
ordinates of a certain point x, e D:

(13) (7, 9, k) = k”zf a(a) B¥(a)exp (ikr cos (9 — a)) da
2,

the integration contour .2, in the above formula is fixed and the same
as the contour .2 for the point x, in formula (11).

In virtue of inequalities (12) integral (13) is uniformly convergent
in a certain (complex) neighbourhood of r,, ¥4, for % sufficiently great.
Thus, it is an analytic function. The function u, satisfies Eq. (1), as may
be proved by differentiation under the integral sign. In a certain real
neighbourhood of the point x, ¢ D the function %, defined by formula (13)
is identical with the function # defined by formula (11) since the integrals
along the contours .2, and 2 are equal in virtue of inequalities (12) and
the well-known Cauchy Theorem. It is evident that the function u for
the integral % is single-valued.

Fairly large classes of functions a(a) and B(a) satisfy conditions (12).
These conditions are satisfied in particular by functions with a finite
order of increment.

Let us now consider a particular case when the function B(a) =1
and let us expand the function a(a) into a series (uniformly convergent
in every bounded domain):

(14) ala) = D aneine.

Substituting this series in formula (11) we arrive at:
“+o0

12 oy _
(15) w(@, k) = — ’"?Z ani"H (kr) 6™ .

-—00

The above function is uniquely defined not only for integral values
of k as in the general case, but also for every & greater than a certain k,.
The function # defined by formula (15) has an asymptotic expansion of
type (2), whence the function L(x) =r (this can be proved by means
of the well-known expansions of Hankel functions). The expansion under

(!) The function u satisfies also the radiation condition, as may be proved by
finding its asymptotic expression for || —>oco.
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discussion can be differentiated term by term, as follows from the general
theorem given below. As a solution of the Helmholtz equation, expression
(15) is a general one. That is every solution regular outside a sphere
and satisfying the radiation condition can be represented by (15). This
expression has been obtained as a particular case of formula (11) for
B{a) = 1. The question arises whether formula (11) is not unnecessarily
complicated. This, indeed, is the case when one definite value of the
parameter k is considered. We will, however, avail ourselves of formula (11)
in investigating asymptotic properties when %k is variable or, strictly
speaking, when k—oc.

With assumptions so far made the functions u(x, k) defined by
formula (11) will generally have no asymptotic expansions of the type
discussed, defined in D. Additional assumptions which we make in order
to ensure the existence of an asymptotic expansion of the function %
will apply principally to the function B(a). It will be helpful to introduce
a function b(a) such that
(16) B(a) = eb@,

Then we can rewrite formula (11) in the following form:

17 u(x, k) = ¥ [ a(a)exp (ik[v(a) - x +b(a)]) da
L
— 1" [ a(a)exp (ik[rcos(§ — a) +b(a)]) da .
£

The domain D will now be defined more precisely. Namely, let it
consist of points lying outside the curve defined by the equation r = f(8),
where f(#) is a positive continuous function with the period 2x. We
also assume that the curve C is convex.

The assumptions made in defining the function # by means of
formula (11) are still valid. They concern the function b(e) in virtue
of (16). As a conclusion of [5] we shall now obtain the following theorem.

If we assume additionally that:

1. the fumction b(a) for real values of the argument is also real,

2. its derivative for real o satisfies the inequality:

(18) —fa+7/2) < ¥'(e) < f(a—mn/2),

3. there exists a nmumber A, such that b'’(a) satisfies for real a the
inequality:
(19) —v"(a) xc—b"(a) 22> 0,

where x¢ 18 the point (defined in a unique manner) of intersection of the
curve C with the semi-axis defined: by the conditions

(20) v'(a)-x+b(a)=0,
(21) |®—a| < w/2,
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then conditions (20) and (21) define the implicit real function a = ay(x),
which s single-valued and analytic in D, and the following inequality is
satisfied in D:

(22) —v"(ag) x—b"(ag) = 4, > 0.

It follows from the above theorem that for x ¢ D there exists, on
a horizontal section of the path 2, precisely one zero point of the function
v’(a)- x+b'(a) — the saddle point — and that it is a single zero.

We will now determine the function

(23) L(x) = v(ap) *x+b(a) .

It is a real function, analytic in D and satisfying Eq. (3) (2).

Let us now consider a certain point x,e¢ D with coordinates 7,
and 4,. In a sufficiently small neighbourhood of this point the function
can be expressed by means of formula (13). We shall now bring this
formula to the form
(24) e "y =k [ a(a) ™ P da,

£
where the function y can be defined by means of two equivalent formulas,
(25) wyp=rcos(d—a)+b(a)—L

=b(a)—b(ay)—b'(a)sin(a— ag)—[b"(ay) + A][1—cos(a— ay)] ,
where
A=—v"(ap) - x—b"(a,) .

For arbitrary complex, r,9# from a sufficiently small neighbourhood of
7o, ¥y, the expansion of the function y at the point a, into the Taylor
series with respect to a begins with a square term.

We will now determine a certain path S leading through the point
a, on the complex plane a satisfying the equation

(26) Rey = 0

and the condition that from a, the Imy should increase. This is the path
of the steepest ascent of Imy and of the steepest descent of the function
|e?*|. We consider the function

(27) 0, = k" [ a(e)e™ da.
S

As regards the path S there are two possibilities: either it ends in infinity
or at a singular point of the function &(a). Considered from the standpoint

(*) This is the simplest and the most important case of radiated fields; the case
of complex a, corresponds, when ImZ > 0 for sufficiently great |z|, to evanescent fields.
The inequality ImL < 0 is not interesting from the physical point of view.
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of greatest importance to us, two particular cases deserve special mention:
when the path § ends in infinity and approaches the path £, in such
a manner that expressions (24) and (27) are equal in a certain neighbourhood
of 7y, ¥ and — the other case — when the path § ends at a singular
point of the function d(«¢) lying in finity, but it can be supplemented
by the path §, (or by several such paths) emerging from that singular
point, such that Eq. (26) holds, Imy remains positive, and the path £,
can be replaced by S+ 8;. In either case it can be expected that, instead
of asymptotically expanding expression (24), we can expand expression
(27), obtaining the same result.
By introducing a new variable of integration:

(28) t = (a—ay) i(a—f%yz

we can transform the last expression to a form convenient for calculation:

4o
(29) v =®" [ ala(t,r, )t r,8)e dt.

—00

-

Eq. (28) defines an implicit function a(t,r,#) which is analytic at the
point t =0, r =17,, ¥ =7,.

Bearing in mind the situation outlined above, we shall prove the
following theorem.

If, in addition to the assumptions so far made concerning the functions
a(a) and b(a), we assume also that for each pair of numbers ry, &, constitut-
ing the coordinates of the point x,¢€D there exist a complex neighbourhood
E and a finite number k, such that:

1. there exists a finite number

(30) M= sup | [ a(a)a’e~*"di|,

A =
2. for natural N and natural &
(31) e y—v, =o(k"), k—oo

uniformly with respect to r and §.

Then the function u defined by formula (17) has an asymplotic expansion
in the form of (2) in the entire domatin D. The functions: L(r,#) and A,(r, ),
v =0,1, ... are analytic functions of the coordinates; this exrpansion admits
the term by term differentiation. The successive functions A, are respectively
defined by the successive even coefficients of the Maclaurin expansion with
respect to t of the function a(a)a’ appearing in formula (29).
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For the proof it will be more convenient to introduce an even function

(32) 2/ (t) = ala()]a’(t) +ala(—t)]a’(—1) .

We will expand this function into the Maclaurin series with respect to ¢.
It should be mentioned here that, by slightly modifying the Lagrange
method of expansion, we can effectively obtain the coefficients of our
series, namsly

(33)

1 o2y { [.,; (a-— ao)z](2v+1)/2

foo = o)1 3 " “(a)L P =0

=ag

By choosing sufficiently small § we obtain

o N
(34) e Mu—2k” [ Ny, at
0

y=0
4 ] N
— o(k™N) + 2B [ R NI ) 2NV gy 1 ok [ 61 (1) 3 o] at,
0 é y=0

where % is contained between zero and unity.
We shall define the functions A,(r,d#), » =0,1,... as follows:

o0

(3b) (6k)™"4, = 2f2,k‘/2 ‘ e = fo,

2 (2v—1)(2v—3) ... 1
2'%"

“and introduce the function

z N
(36)  Fnlo,r,9) =2 [ " [1)= D ft®]dt, N=0,1,..

y=0

From (34) we obtain the following evaluation (to obtain the evaluation
of the last term we use integration by parts):

N
| —ikL % Av
K (6 *lgy — ,\ ——-)

(37) < (ik)'

<o(l)+ A;N LM RPN

where My and My are constants independent either of k or of r and &,
namely:

2N +1)(2N-1)...1
.MN = ﬁl/2 ( + );N+1 ) 02'}26 |f(2N+2)(t)] ’
+(38)
My =" sup |Fy|.

x>0
(r,0)eE,
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Such numbers exist if we choose a sufficiently small complex neighbourhood
E, C E of the point 7y, #. The transition to the limit (6) is thus uniform
and it follows from this fact that our theorem holds.

The assumptions made for this last theorem are not especially con-
venient. It can be expected that an investigation of the behaviour of
the path 8§ according to the choice of
the function b(a) would enable us to Jm o
simplify these assumptions. However, in
the case discussed above, when B(a) =1
and the corresponding expression is given
by (15), the verification of the assump-
tions for the last theorem presents no V-
difficulties. A drawing of the path S for
this case is given in Fig. 1.

The coefficients of the asymptotic
expansion can be computed -effectively Fig. 1
by means of Eqgs (25), (33), (35). We

~I 7

12
find for instance that A, = (—22—;—‘) a(a,). Since V2L = A1, we also find

directly that A4, satisfies Eq. (5).

I wish to express my sincere thanks to Professors T. Wazewski
and J. Mikusinski for the opportunity of discussing the problem presented
here at the seminar conducted by them and to Professors J. Szarski
and A. Pli§ for their helpful criticism.
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