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Grothendieck and Witt groups
in the reduced theory of quadratic forms

by ANDRZEJ StADEK (Katowice)

Abstract. Let F be a formally real ficld. Denote by G (F) and Gy (F) the Grothen-
dieck group of quadratic forms over 1" and its torsion subgroup, respeetively. In this
paper we study the structure of the factor group G (F)/Gy(F). This reduced Grothen-
dieck group is a free Abelian group. The main results of the paper describe some sets
of gencrators for G(F)/G (F), which in many cases allow us to find a basis for the
group. Throughout the paper we use the language of the reduced theory of quadratic
forms. In the final part of the papcer we apply the results to determine completely
the structure of the reduced Grothendicck group G (F) (G (F) for all fields with |g (F)|
< 16, where g(F) is the factor group F*|T(F), T(F) being the subgroup of all totally
positive elemcnts of F.

All the results concerning Grothendieck groups have their counter-parts for Wit
groups and we also state and prove the results in that case.

Introduction. Let F' be a field and let G (F) denote the Grothendieck
group of quadratic forms over F. In [10] it is proved that there exists
a free Abelian group N (F) such that G(¥) = G(F)D N (F), where G,(F)
denotes the torsion subgroup of G(F).

In this paper we are mainly interested in determining the groups
N(F) in the above decomposition. If F' is a non-real ficld, then it is well
known that N () is infinite cyclic. Thus we will investigate here exclu-
sively the case of a formally real field F. In some special cases (e.g. of
pythagorean fields satysfying SAP, superpythagorean ficlds, fields with
at most 8 square classes) it is possible to find a basis for the group N (F)
but in general this has not been done yet. The main result of this paper
describes some sets of generators for N (F), which are smaller then those
exhibited in [9] and in many cases allow us to find a basis for N (F).

In discussing the structure of N (F) we use the axiomatic approach
to the reduced Grothendieck and Witt groups introduced by Marshall [5].

In the first section we collect the basic facts from the reduced theory
of quadratic forms. In the second section we define a partial ordering
in the group g of the set of quasi-orderings (X, g). The minimal elements
of g arc shown to supply some sets of generators for the Grothendieck and
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Witt groups of (X, g). These are studied in Section 3. In the final section
of the paper we apply the result of Seetion 3 to determine completely the
structure of reduced Grothendieck and Witt groups for all fields with
lg(F)] < 16, where g(F) is the factor group #*/T(F), T(F) being the
subgroup of all totally positive elements of F (or, equivalently, the sub-
group of all sums of squares).

1. Reduced theory of quadratic forms. In this scction we recall the
fundamental notions of the reduced theory of quadratic forms along the
lines of Marshall [5].

Let g be an elementary 2-group (i.e., a® =1 for each a e g) with
a distinguished element —1 and let X be any subset of the character
group x(g) = Hom(g, {1, —1}). A form over g of dimension » is a sequence

n
¢ = (ay,...,a,), where a,,...,a,eg. The integer o(p) = Do(a;) will
i=

be called the signature of ¢ with respect to ¢ € X, and detp = a,-... -a,
will be called the determinant of . In the set of forms over g we define the
following equivalence relation; forms ¢ and ¢ over g are said to be equi-
valent modulo X (¢ = w(mod X)) if and only if dimg = dimy and o(p)
= ¢(y) for all ¢ € X. Clearly, this is an equivalence relation; the equiva-
lence class of the form ¢ = (a,, ..., a,) will be denoted by {¢> = <(a,, ..., a,>.
We say that b e g is represented by the form ¢ = (a,, ..., a,) (or by the
class {(¢> = {(a,,...,a,>) modulo X if there exist b,,..., b, such that
¢ = (b, by oey 0,) (MOd X) ({g> = (b, by, .., b,0). Denote by Dy(<ph)
the sct of all elements of g represented by {¢> modulo X.

The set M (X, g) of equivalence classes of forms over g can be made
into a commutative semi-ring by defining the addition and multiplication
in the following way:

Qyy ey @p)+<byyeiiy 0> =<0y ooy @y by, 00y by,
Clyyeney @y X Cbyy ooty 0> = Kaybyy ooy aiby, ooy @by, .00y @b,

Using the family of sets X(a,¢) = {oex(g);0(a) =¢}, aeg, e = +1
as a subbase, we may topologize the character group x(g). The topological
space x(g) is Hausdorff, compact and totally disconnected. The sets
X (a, ) are both open and closed. If g is finite, then this topology is discrete.

The pair (X, g) will be called a set of quasi-orderings iff it satisfies
the following conditions:

0,: X is a closed subset of x(g),

0,: o(—1) = —1 for all ¢e X,

0;: () kero = {1},

oeX
0,: if {9, {ps> € M(X, g) and a € D ({p,> + {g,)), then there exist
a; € Dy ({p), © = 1,2, such that a € Dy(<a,, a,)).
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The main examples of sets of quasi-orderings are obtained in the
following way. Let F* be the multiplicative group of the field F and let
T(F) denote the sugbroup of ¥* consisting of all totally positive clements
of F. If we put g(F) = F*/T(F) and if X () is the set of orderings of F,
then for every ordering P e X (F) there exists exactly one character
crex(g(F)) such that kero = P[T(F). Thus, we may regard X (F) as
a subset of the character group y(¢(F)) and then the pair (X (F), g(F))
is a set of quasi-orderings (cf. [5]). The distinguished element —1 in g(F)
is in that case the coset (—1)-7(F') and since the field is assumed to be
formally real, we have 1 # —1 in g(F).

For any set-of quasi-orderings (X, g) the following statements hold
true:

(i) @ = b if and only if o(a) = o(b) for all ¢ € X.
(i) If ¢, p are forms over g and ¢ = p, then detyp = dety.

(iil) If {p) e M(X,g), then Dy({p>+ ... +{(>) = Dx(Kg))-
(iv) X is finite if and only if g is finite.

(v) If |g| = 2™ < oo, then n < |X| <27

(vi) Dx({1, a)) is a subgroup of g for each a e g.

The form (1, —1) is called the hyperbolic plane, and a form (¢)
€ M(X,g) which can be decomposed into the sum <{¢) = A, —1>+
+<{y)>,{y> e M(X, g), is called isotropic. If aeg and X(a) = {c € X;
o(a) = 1}, then there exists exactly one @€ y(g/Dx ({1, a>)) such that
o =goe¢, where ¢: g—>g/Dy ({1, a>) is the canonical homomorphism.
Denote X(a) = {a‘ ex(9/Dx(<1,a)));0€ X(a)}. Clearly, X(a) and X(a)
are of the same cardinality. Marshall [5] has proved that (X(a),
g/Dx (<1, a))) is a set of quasi-orderings. .

We denote by G (X, g) the Grothendieck ring of the semiring M (X, g).
Since in the additive semigroup M (X, g) the cancellation law holds,
M(X, g) is injectively embedded into G(X, g). The factor ring W(X, g)
= G (X, g)/H, where H denotes the principal ideal generated by the hyper-
bolic plane, is called the Wit ring of (X, g).

The dimension semiring homomorphism dim: M(X, g) > Z extends
uniquely to a ring homomorphism dim: G(X, g) - Z and the same holds
for the signature homomorphism. The kernel of dim will be denoted by
G.(X, g); we have the following direct sum decomposition of the Grothen-
dieck group: G(X, g) = Z{1>®G(X, 9g).

Let f: G(X, g) > W(X, ¢g) be the canonieal homomorphism and let
Wo(X, g) = flG,(X, g)). It is easy to sec that restricting f to Go(X, g)
we obtain an isomorphism of G,(X, ¢) onto W (X, g). The idecals G4(X, g)
and Wy(X,g) are additively gencrated by the sets {{(1>—<a>;a €g}
and {1, a); a € g} respectively.
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Now we are going to compare the Grothendieck ring G (F') of quadratic
forms over the field # and the Grothendieck ring G(X (F), g(F)) of the
set of quasi-orderings (X (F), g(¥)), discussed above. Let h: F* — g(F)
be the canonical homomorphism of groups. We put k(<a,,...,a,> —
—byy ooy b)) = <h(ay), ...y B(ay)> —Ch(by), ..., h(b,)) and we check
easily that h: G(F)—>@G(X(F),g(F)) is a well defined epimorphism.
Pfister’s Local-Global Principle asserts that ker A = G,(F) (see, for exam-
ple, [10]). It is known that for any field /' there exists a free abelian group
N(F) such that G(F) = G(F)DN(F) (cf. [9], p. 22). Hence k|yp:
N(F)—G(X(F), g(F)) is a group isomorphism. This fact motivates our
interest in the reduced theory of quadratic forms. It enables us to study
the Grothendieck and Witt groups modulo torsion subgroup in a natural
way. In the case of a pythagorean field F, we have G,(F) = 0 (cf. [8],
Proposition 1.19), so that the reduced theory coincides with the classical
theory of quadratic forms.

We shall say that (X, g) satisfies Strong Approximation Property (SAP)
iff every open and closed subset of X is of the form X (a) = {0 € X; 0(a) =1},
aecg. If |g| -= 2" < oo, then (X, g) satisfies SAD if and only if | X| = n.
For a field I, the sct of quasi-orderings (X (F), g(I")) satisfies SAP if and
only if the ficld F satisfies SAP in the meaning of [2]. If X consists of
all ¢ in y(g) such that ¢(—1) = —1, then (X, g) is a set of quasi-orderings,
and it will be called full. Clearly, if |g| = 2", then(X, g) is full < |X| = 2"~!
<Dy ({1, a>) = {1, a} for all a e ¢g—{1, —1}. For example, a set of quasi-
orderings (X (£, g(F)), where F is a superpythagorean field, is full.

2. Minimal and maximal elements of g. Assume that (X, ¢) is a set
of quasi-orderings. By 0,, the family H(X, g) consisting of scts X (a)
= {oe X;a(a) =1}, aeg, is a subbase of a certain topological space
which can be viewed as a subspace of the topological space x(g).

First we restate some known properties of H (X, g).

LemMA 2.1 (Craven [L]). The family H(X, g) with the symmetrical
difference is an elementary 2-group isomorphic with g. The mapping
a — X(—a) establishes an isomorphism between g and H (X, g).

This lemma follows easily from O, and O,.

DEerFINITION. For a, b in g, we say that a <b iff X(—a) = X(—0d).

By Lemma 2.1, the relation < is a partial ordering relation in g¢.
Clearly, 1< a< —1 for all aegyg.

DEFINITION. An element aeg—{1, —1} will be called minimal
(maxrimal) iff it is minimal (maximal) in the partially ordered setg — {1, —1}.

Denote: max(d) = {a e g; d < a, @ maximal}, min(d) = {aeg; a < d,
a minimal}, max(X, g) = max(1), min(X, g) = min(—1).
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Remarks 2.2. The following observations are easy consequences
of the axioms 0,-0,.

(i) @ <b +Dx(<1, a)) = Dx({1, b)),
(i) a<be b —a<ab<<b=a< —ab,
(iii) if a < b and ¢ < b, then ac < b,

(iv) @ is minimal < —a 18 maximal,
(v) if »<a, then
a, =13+, —a) =, =b>+Q, —ab),
A>—<ay = (K1) —=<b) + (1> —<ab}).

If X is finite, then

(vi) max(b) # O and min(d) # O for cvery beg—{1, —1},

(vii) eis minimal < |min(a)] =1« |max(—a)| =1<|Dx ({1, a))|=2.

ExamprEs. (i) If @ € g and [g: Dx (<1, —a))] = 2, then a is minimal;

(ii) A set of quasi-orderings (X, g) is full <min(X, ¢) = max(X, g)
=g—{1, —1}

Proof. (i) [¢g: Dx({1, —a))] =2<|X(—a)| =1 = a is minimal,

LEMMA 2.3. If X is finite, then A = {a € g; | X (—a)| € 2Z} is a subgroup
of g and the index [g: A} < 2.

Proof. For a € g, let the symbol % (a) denote 0 if |X(—a)] is even

and 1 if | X(—a)| is odd. The map u: ¢ - Z/2Z is group homomorphlsm
and keru = A. This completes the proof.

3. Sets of generators for Grothendieck and Witt groups. In order to
establish the connection between direct sum decompositions of Grothen-
dieck and Witt groups it is necessary to select in the Grothendieck group
a direct summand which contains the kernel of the canonical homomor-
phism f: G — W. In the classical case this has been done in [9] for formally
real fields and in [8] for non-real fields. We use here the generalized form
of Lemma 1.10 cf. [9].

LeEMMA 3.1. Let (X, g) be a set of quasi-orderings and let o € X. Then

Zi{1>, Z({1) —<—1)) are infinite cyclic groups and
G(X,9) =2250Z(A1>—<—1)) DGy,

where G, is the group additively generaied by all elements (1> — {a), a € kero.

Proof. It suffices to show that G,(X,g) = Z({1)—<{—1))PG,.
By Remarks 2.2(v), Go(X,9) =Z({1)>—{(—1))+6G,. Now, let n({l)
—(—1)) = In (1> —<a)) € Z(<1)—(—1))NG;. Then ¢ = ndl>+
+dn{a;y = ())n) {1>+n{—1> = y. Taking the value of the signature
map o on ¢ and y we obtain the equality n4-3'n, = 3'n,—n. Hence n = 0

and the proof is finished.
2 — Annales Polonici Mathematiel XXX VIII.1
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COROLLARY 3.2. Let G(X, g) be decomposed as in Lemma 3.1. Then
W(X,g) =Z{A)>Df(G,), where f is the canonical homomorphism G(X, g)
onto W (X, g). Moreover, G, and f(@,) are isomorphic.

Proof. It suffices to mnotice that Z{DPZ(A)—(—1)) =
ker fOZ (1).

The following theorem contains the basic general information about
the structure of the Grothendieck and Witt groups for the sets of quasi-
orderings.

THEOREM 3.3. Let (X, g) be a set of quasi-orderings. Then G(X, g)
and W(X, g) are free abelian groups. If X is finite, then rankG(X, g)
= 1+rankW(X, g) = |X|+1. Otherwise, rankG(X,g) = rankW (X, g)
= lgl.

Proof. By Corollary 3.2 it suffices to consider the group G (X, g).
Let Y denote the subgroup of ZX consisting of all bounded maps from X
into Z. By the theorem of Nébeling [6], Y is a free abelian group. Consider
the signature homomorphism o: G(X, g) > Z. Putting (¥(4))(0) = o(4),
A €Gy(X,g), we obtain an injection F: Go(X, g) - ¥. Hence G(X, g)
and also G(X, g) are free abelian groups.

At first, assume that X is finite. From the first part of the proof we
obtain the inequality: rankG,(X,g) <|X|. Let X = {¢,,...,0,} and
lg| = 2%+ If kero; = {1, a,} X ... X {1,a;} and 4; = (1) —<{a;)) X...
oo X (1> —<ay)), then F(4;)(oy) = 6,;2%. Thus, the set {4,,...,4,}
is independent, and rankG,(X, g) > |X|. Since G(X, g9) = Z{A)DG,(X, g),
we have rankG(X, g) = |[X|+1.

Now, assume that X is infinite. In this case G(X, g) is not finitely
generated and rank G (X, g) = |G(X, g)|. Since G(X, g) consists of differ-
ences of finite sequences of elements of g, we have |G(X, g)] = |g|. Hence
the result.

We have seen that the set {{1)—(a); a €g} generates the group
G,(X, g) but its cardinality is always greater than rank G,(X,g). In
subsequent theorems we shall find another set of generators for Go(X, g),
which is much smaller and in some cases forms a free basis for the group.
For this purpose we want each element (1) —<(a), @ € g, to be a sum of
the new generators.

LEMMA 3.4. Let (X, g) be a finite set of quasi-orderings and let d € g —
—{1}. Then

(i) inG(X, g)
Ay—<dy = D s@)(K1)>—<ay),

cemin(d)

(i) in W(X, g)

Ay~ = D s, —a,
asmin(d)
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where 6(a) = 0 or 6(a) = 1. For any a € min(d) there exists a represen-
tation of (1> —<{d> and of <1, —d> such that é(a) = 1.

Proof. (i) We procced by induction on k& = |min(d)|. First suppose
k = 1. Since, by Remarks 2.2(vii), min(d) = {d}, we get the result. Now
assume k¥ > 1 and a € min(d). By Remarks 2.2 we have

L) —=Ld) = (1) —<{ap) + (1) — ad))

and @ # min(de) < min(d)-—{a}.

To finish the proof, we apply the induction assumption to (1) — {da).

(ii) It follows from (i) because f({1>—<a)) =1, —a) (f: G(X, g)
— W(X, g) is the canonical homomorphism). The lemma is proved.

COROLLARY 3.5. If X is finite, then every element X (d) of the family
H(X, g) s a disjoint union of minimal elements of H(X, g).

Proof. This follows from Lemma 3.4. Let (1) —{—d) = D ({1)>—
—{—a;), where — a,; are some minimal elements of min( —d), i.e., X(a,)
are minimal elements of H (X, g). It suffices to notice that X (d) == {c € X;
o({(1>—(—dy) =2} Hence, X(d) =|JX(a;) and X(a;)nX(a)) =0
for ¢ # 3.

THEOREM 3.6. Let (X, g) be a finite set of quasi-orderings and let us
denote by (A) the group generated by the set A. If min(X, g) + O, then

()  Go(X,9) = ({KI>)—<a); a emin(X, g)})
= Z({1) = {—=D)D({1> — <(a>; a e min(X, g)nkeros}),
(i) WoX,g) = ({<1, “a'>;a'emin(xyg)})
=Z<1,1>® ({1, —a); a e min(X, g)nkerc}),

where ¢ is any element of X.

Proof. It suffices to prove (i). The additive group G4(X, g) is gen-
erated by all elements (1) — {d), where d € g. By Lemma 3.4 we obtain
Go(X, g) = ({{1>—<a); a emin(X, g)}). Consider the group G, generated
by all elements (1> — {d>, where d € kero. If d € kers, then min(d) < kero.
Hence, by Lemma 3.4(i), &, = ({{1) — <(a>; @ e min(X, g)nkero}). Apply-
ing Lemma 3.1, we get the result.

It is worth while noticing that min(X, g) =0 iff |g| <2 and then
@)X, ) = Z(1)—<—1)).

An interesting question arises: when do the sets of generators occurring
in Theorem 3.6 form free bases for G,(X, ¢g) and Wy (X, ¢g)? A partial
answer is furnished by the next theorem.

THEOREM 3.7. If (X, g) is a finite set of quasi-orderings with min (X, g)
# B, then the following statements are equivalent:
(i) 4 = {{1>—<a): aemin(X, g)} is a free basis for the group
Go(X, 9),
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(i) ¥ = {<1>—<ad;[g: Dx({1, —a))] =2} 4s a free basis for
@.(X, 9),

(iii) (X, g) satisfies SAP,

(iv) A = Y.

Proof. (i) = (ii1). Let X = {0y, ..., 0,} and A (o) = Ankero, where o
denotes the signature map with respect to ¢ € X. By Lemma 3.3 and
Theorem 3.6, we see. that |[A| = r and for every o; € X we have |4 (0;)|
= r—1. Hence for every o¢; € X there exists exactly one a; e min(X, g)
such that ¢;(a;) = (—1)%, i.e., X(-a;) = {0;}. Since X is finite, the
topology on X is discrete and every subset of X is open and closed. Clearly,
{00y --yo} =X(—a )V ... VX(—ay) = X(—a,; ... q;). Hence (X, g)
satisfies SAP.

(iii) = (i), (iv). Assume that (X, g) satisfies SAP. Then for every ¢ € X
there exists a € ¢ such that X(a) = {o}; moreover, a is minimal if and
only if | X(—a)| =1 (i.e., [g: Dx({1, —a))] =2). Thus, 4 =Y, |Y]j
= |X| =rankG,(X, g) and G,(X, g) = (Y). In this case Y is a free basis
for G4(X, g).

(i) = (i), (iii). Let |g| =2" and |X| =»r. If ¥ = {K1) —{@D}icicrs
then a,, ..., a, are independent elements of g. Notice that |[A| = r>=n = | Y|.
If Y is a free basis, then | Y| = n = » (by Section 2 this is equivalent to
(iii)). Since (iii) = (iv), we get (i). At the same time (ii) = (iv) is proved.

Now, (iv) implies that » = » and this is equivalent to (iii). The the-
orem is proved.

The last theorem gives a characterization of (X, g) satisfying SAP.
M. Kula (cf. [3]) has shown that for any pythagorcan ficld ¥ the sentences
(ii), (iii) of Theorem 3.7 are equivalent.

Let B(o) = {{1>—{(—1)}UA(0), 0 e X. By Thecorem 3.6 we see
that G4(X, g) = (B(o)). If (X, g) satisfies SAI’ or is full, then |B(o)!
= |X| and therefore B(s) is a free basis for ¢ (X, g). In the next part
of this paper we show an example of (X, g) such that B(s,) is independent
and B(o,) is dependent for some a,, 0, € X. There exists also (X, g) with
the property that B(s) is dependent for all ¢ € X. IIowever, sometimes
one can choose a basis for G4(X, g) from B (o).

OOROLLARY 3.8. Let X be finite.

(i) If m = |min(X, g)|, then |X| < m < lg] —2.

The first inequality is am equality iff (X, g) satisfies SAP.

The second inequality is an equality iff (X, g) is full.

(i) If oeX, then |X|—1<|A(0)< }lgl—1.

Remarks.

(3.9) It is worth while noticing that |min(X (F), g(F))| is an invariant

of the GR-equivalence in the meaning of [8], [10].
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(3.10) There is an obvious analogue of Theorem 3.7 for the Witt group
W(X, g). One can just take f(A), f(Y) and W,y(X, g) instead

of 4, Y and G((X, g), where f is the canonical homomorphism f:
G(X, g) > W(X, g).

4. Grothendieck and Witt groups for fields with |g(F)| < 16. In this
section we show that the results of the previous section are precise enough
to determine explicity the reduced Grothendieck and Witt groups for
all fields with |g(F)| < 16. Of course, this class of fields contains all formally
real fields with at most 16 square classes, but it also contains many fields
with infinite group of square classes; for the example, the rationals.

First, we prepare a lemmma which establishes the connection between
G(I') and G(X(F),g(F)).

LuMyMa 4.1. Let F be a formally real field and let the maps h, h be as
in Section 1. Denote A = {A,, ..., A} = Go(F).

(i) If k(A) generates G,(X(F), g(F)), then
Go(F) = G(F)+(4).
(ii) If R(A) is a free basis for Go(X (F), g(F)), then

Go(F) = G,(F)®ZA,® ... ©DZA,.

Proof. The map hlg g : Go(F) > G, (X (F), g(F)) is surjective and
Go(X(F), g(F)) is a free Abelian group with ker 2 = Gy(¥). By a well-
known theorem on Abelian groups, ker? is a direct summand of G,(F)
and we may take the complementary direct summand to satisfy the
requirements of (ii) (cf. [4], p. 44). Hence the result.

We are now going to study the structure of Grothendieck and Witt
groups of quadratic forms over fields F with |g(F}| < 16.

We shall use the sets of generators for G (X (F), g(F)) found in fore-
going section to the construction of a free basis for the ‘free part” of G (F).
Let us first recall that n < |X| < 2"t if |g] = 2" (cf. (v), Section 1). More-
over, in the case of » = 4, we have |[X| # 7, as proved by Marshall [5].
The transition from the decomposition of the Grothendieck group G(F)
to the decomposition of the Witt group W (F) will be accomplished along
the same lines as this is done in Theorem 1.2 of [8].

We consider below all the possible cases.

Case L. |g(F)| = 2. Since min (X (F), g(F)) = O, we see that
G(F) = Z{)@Z({1) —{— 1)) DG (F),
and
W(F) = ZQ>@W,(F).

Case II. |g(F)| =22 The sct of quasi-orderings satisfies SAP
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Therefore min|(X(F), g(F))| = 2. Let min(X(F), g(F)) = (@, b}; here
and throughout the remainder of the paper @ denotes h(a), for a e F*.
Then

G(F) = Z<A)@Z (1) —<a))®Z (1) — b)) DG (F)
=Z1@Z(1) —<—1))@Z(A) —(a)) DG(F),
W(F) =Z1eZd, —ay@W,(F),
where a can be changed into b, by Theorem 3.6.

Case IIL |[g(F)| = 23

(i) |X(F)| = 3. Then (X (F), g(F)) satisfies SAP, |min (X (F), g(F))|,
= 3 and, for every o € X (F), |min(X(F), g(F))nkero| = 2. Let min(X (F),

F)) = (min(X (F), g(F))nkero)u {&} = {a,b,c. In view of 3.1, 3.2,
3.7, 4.1 we may write
G(F) = Z 1> BZ(KL — (@) @ (L) — B)) @ Z(1) = (0)) DG, (F)
= ZAYDZ(L) — (1)) ®Z (<1 — @) @ Z((1> — b)) @G, (F),
WF) =21z, —a>@Zd, —byaW,(F).

(ii) |X(F)] = 4. The set of quasi-orderings (X (1),
therefore for each oe X(F) we have Imm(X (F),
(Corollary 3.8(iii)). If min (X (F), g(F))nkero = {a@, b,
the following decompositions:

G(F) = ZQ>OZ(1) —(—1) BZ({L>— (@) ®Z (L) — (b)) ®

DZ(1) — L)) @G, (F),

W(F) =ZA)@ZA, —ay®Z{, —b>@Z{L, —c>@W,(F).

Case IV. |g(F) = 2%

(i) |1 X(F)| =4, ie. (X(F),g(¥)) satisfies SAP. Then we can write
min (X (F), g(F)} = (min (X (F), g(F))r\kera)U{E} = {@, b,¢,d}, where
g€ X(F). In view of 3.2, 3.7 and 4.1 we have

G(F) =ZA@Z(L)—<)DZ (1) —<b))DZ(<1) — <)) D Z(1) —
—<d)> ®G(F)
=ZA)DZ(L)—(—1)DZ({1)—<ap) D Z (1) —<b) D Z({1) —
— (YD G (F),
W(F) = ZAY@ZL, —a)@Z (L, —bY®ZA, —> @ W,(F).

(ii) |[X(F)| = 5. We do not know any example of a field satisfying

this condition(?), but there is known a construction of a set of quasi-order-

ings (X, g) for which |X| = 5 and |g| = 2. We shall find a basis for
G(X, g) in this case.

g(F)) is full and
g(F))nkero| =3
¢}, then we get

(1) For construction of such ficld see M. Kul a, Fields with prescribed quadratic
form schemes, Math. Z. 167 (1979), p. 201-212.
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Arguing as in the proof of Lemma 4.2(i) we observe that @ e min(X, g)
<3< 1X@)|<4<1<|X(—a)<2. By OCorollary 3.5 we have X
= J X (—a;) for some @, e min(X, g) such that X(—-@,)nX(—a;) =9,
i # j. There is only one possibility: X = X(—a,)VX(—&,)VX(—a,)
and X(—a,) = {0}, X(—@,) = {0,, 03}, X(—@3) = {o,, o5} (in any other
case the first inequality in Corollary 3.8(i) does not hold). Since X (— a,)
contains only one element, then for @ € min(X, g) — {@,} the sets X(—a,)
and X(—@) are disjoint. Since the pair (X, ¢) does not satisfy SAP, by
Corollary 3.8, |min(X, g)| > 6. There is only one possibility, namely,
that min(X, g) = {@,,...,8;} and X(—a,) = {0y}, X(—8,) = {02, 03},

X(—y) = {04, 05}, X(—7a,) = {0y,0,}, X(—8a) = {03, 05},

X(—ag) = {02, 05}, X(—a;) = {03, 0,}-

Since the set B(o;) = {(1) —<(—1>}u{1>—<@); @emin(X, g)n
Nkero,} contains 7 elements, it is dependent. For ¢ = 2,...,5 the sets
B(o;) are free bases for G((X, g). For example, B(s,) = {{1) —<{—1),
A —<Layp, 1) —Ldyy, {1>—<asy, (1> —<a,>}. If there exists a field #
which might be the object of our present considerations, then

G(F) =Z<ADZ(1) —<{—1)DZ({1) —<a)) D Z(1) —<a3)) ®
BZ(1) —<a>)BZ({1) —<a) B G (F),
W(F) =Z15@Z, —ap®Z{, —a;p ®ZA, —ag)y ®Z{A, —ap®
DW(F).

(ili) | X (F)| = 6.

LrMMA 4.2. Let (X, g) be a set of quasi-orderings such that |g| = 2*
and |X| = 6. Then

(i) a emin(X, g9) <3 < [X(a)| <4=2< |X(—a)| <3,

(ii) for A = {a eg: | X(—a)| € 2Z} (it is a group), we have [g: A] = 2,

Proof. (i) Assume a € min(X, g). Then |g/Dx({1, a))] = 2°. Since
the pair (X (a), 9/Dx(<1, a>)) is a set of quasi-orderings and since | X (a)|
= |X(a)], we get 3 < |X(a)] <22 Now, suppose a ¢ min(X,g), ie.,
lg/Dx ({1, a))| < 2% Hence |X(a)] = |X(a)] < 2, contradicting the second
condition. Now it suffices to note that | X(—a)| = | X|— X (a).

(ii) Assume [g% A] # 2, ie., [g: A] =1 (by Lemma 2.3). Then,
by Remark 2.2 and Lemma 4.2(i), min(X, g) = {aeg: |X(—a)| =2},
max(X, g) = {a € g: |X(—~a)l =4} and [min(X, g)] = max(X, g)
=}lg—{1, -1} =17.

Since max (X, ¢g) and min(X, g) are disjoint and max (X, g)umin(X, g)
=g—{1, —1}, by Corollary 3.8 we have for every c e X

max (X,g)nkero|= (g — {1, —1})Nnkero| — min(X, g)Nnkers| <7—5=2.

Now, the mapping max(X,g) > 2% defined by a+ X(a) is injectiv e
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and, as shown above, |X(a)] = 2 for every a e max(X, g) and X(a,)N
NnX(a,)NnX(a;) =0 for every three different clements a,, a,,a, of
max (X, g). Hence the number of elements of max(X, g) is not greater
than the number of 2-element subsets of a 6-element set which have
the property that the intersection of any three of them is empty.
We get a contradiction: 7 = [max(X, g)| < 6. This finishes the proof.

Let X(F) = {64,...,0,}- By Lemma 4.2 we may decompose g(F)
in the following way:

g(F) = {1, -1} x{1,a} x {1,b} x {1, #}
and

X (@) = {0y, 05, 0y, 05}, X(E) = {0y, 03, 0, 0'6}, X(Z) = {06,, O3y 3}.

It is easy to see that |min (X (F), g(F))nkers| = 6 for cach o e X (F).
Then the set B(o) is dependent for cach o € X(F). Yet, we shall show
that B (o) contains a basis set for @, (X (F), g(F)). Let, for example, ¢ = o;.
Then B(o,) = {<1)—<{—1>, <1)—<a@», 1) —<b), <A} —<t), {1)—<at),
> —bty, (1> —<abt)}. Since

Ay — @bty = (1) —<@ty) + (1) —<bty) — (<L) — <b)),
the sct B(o,)— {(1)> —<abt)} forms a free basis for G, (X (F), g(F)). Hence
G(F) =Z<1@Z(K1) —<{—13)@Z({1) —<ap) ®Z({1) — (b)) D Z({1) —
—DH)DZ(A) —Lat)) D Z (1) — b)) DG (F),

W(F) =Z<1>@Z<11 —a)@Z(l, —b>@Z<13 _t>@Z<19 _a't>@
®Z{, —bty W, (F).
“This case takes place when F is the power series field k((2)) over a SAP
pythagorean field & with three orderings (cf. [2]).
(iv) | X (F)| =8, i.e. (X(F),g(F)) is a full set of guasi-orderings.
By Corollary 3.8,

G(F) =Z{H@Z(K1L—{-1)o M OG,(F),

where )
M= ©® Z(Q)—<a), oeX(F)
dekero—{1}
and
W(F) =Z{1>®NoW,(F),
where

N= ©&® Z{1, —a), ocelX(F).

dekero— (1)
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