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Abstract. Nocessary and sufficient conditions on the coefficients of the general
linear, homogeneous, nth order, ordinary difference equation are obtained so that
it can be associated with a certain nth degree algebraic equation. The given equation
is thus effectively reduced to a difference equation with constant coofficients, and
is therefore solvable. The solutions are displayed explicitly in terms of the coefficients.
The second order cquation is treated in greater detail.

1. Introduction. Linear ordinary difference equations arise quite
naturally in many branches of applied mathematics and engineering.
There exist no general methods of solving these equations when their
coefficients are variable, even for low orders » > 1.

The situation is much the same in the case of linear differential
equations, but recently Breuer and Gottlieb [1] have characterized thoese
differential equations which can be transformed into equations with
constant coefficients by a transformation of the independent variable,
and hence solved explicitly. In this paper we shall introduce a method,
effectively equivalent to a change of the independent variable, to charac-
terize a class of solvable difference equations of nth order.

Section 2 motivates the procedure to be used. In Section 3 we deduce
necessary and sufficient conditions on the coefficients of the equations
that are solvable by this method, and display their solutions explicitly.
Section 4 treats the case n = 2 in greater detail, on account of its special
importance.

2. Preliminary comsiderations. In the following we shall be interested
in the most general nth order, linear, homogeneous difference equation,
which has the form

(1) DIPGy(i+k) =0, j=0,1,2,...
k—O

The coefficients P,(j) need not be real, but we shall agsume P,(j) as well

n
as >, P,(j) to be different from zero for all j under consideration. By
Km0
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a solution of (1) we shall mean a function y(j), defined for all relevant j
and satisfying (1).

- If the coefficients P, in (1) are independent of j, the solution of (1)
reduces to the solution of an mth degree algebraic equation, as does the
solution of the associated differential equation with constant coefficients.
However, no general methods are available to solve (1) when the P, are
functions of j. There are of course special cases in which (1) is equivalent
to a difference equation with constant coefficients, under a transforma-
tion of the dependent variable % (j) ([2], p. 584 or [4], p. 408). There
are also various methods treated in standard texts such as [2], [3], and [4],
which can be applied in gpecial cases. On the whole, the situation is rather
similar to the case of differential equations.

In this paper, we ghall characterize a new class of difference equations
of the form (1), which can be associated with an equation with constant
coefficients via an nth degree algebraic equation, and hence solved explic-
itly in terms of its variable coefficients. To this end, we consider the
recent work by Breuer and Gottlieb [1] on the most general nth order,
linear, homogeneous differential equation of the form

(2) D Pu(@)y® (@) =0,

k=0
which is the counterpart of (1). They have found necessary and sufficient
conditions on the coefficients of (2) such that a transformation & = &(x)
of the independent variable » will carry (2) into a differential equation
with constant coefficients for the function y(2(&)) = ¥ (£). The trans-
formation is essentially unique, and Y (&) = exp(mé) is a typical solution,
where m i8 a simple root of the associated algebraic equation of nth degree.
The case of multiple roots is also treated in detail. It is clear that y(z)
= exp (m&(x)) is a typical solution of (2), where &(x) is an explicit function
of the coefficients P,(z).

The procedure outlined above is not directly applicable to the differ-
ence equation (1). If we try to change the variable j to, say, a new inde-
pendent variable s, then when j changes by unity, s does not do so in
general, and the transformed equation is not of the form (1), with or
without constant coefficients. Evidently, then, a new line of attack has
to be devised.

In order to motivate the procedure we shall use here, let us congider
the first order linear differential equation

(3) Pyi(2)y’ (2) +Po(2)y(z) =0,
whose solution, for P,(z) # 0, is given by

(4) ¥ (%) = exp '[— f%g; dw]
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The, fact, emphasized in [1], that the conditions on P, () in (2) always
leave Po(x) and P, (#) arbitrary (except for sign requirements), is reflected
in the fact that (3) is always solvable. It is instructive to apply the trans-
formation deduced in [1] (equation (21)), namely

-Po 1/n
T
to (3). Thus, let & = [[P,(2)/P,(@)]d2, and let y(2) = ¥ (£). The chain
rule gives

(6) Po(z)[T' (&) +X(£)] = 0.
The equation for Y (£) has constant coefficients, and we find that ¥ (£)
= expmé with
(7) m—+1 =0,
i.e., m = —1. Substitution of & from (5) yields the solution (4). In the
nth order case, the transformation (5) leads to an algebraic equation
of nth degree, with corresponding exponential solutions.

We consider next the first order linear difference equation
(8) Py (i +1)+Po(Ny () =0,
whose solution is given by

i-1
N n —Py(k)
The indicated product is on the index %, and since the lower limit

is irrelevant, we have suppressed it. Suppose next that we look for a solu-
tion of (8) of the form

i-1

(10) y(j) = n(1+mQ(k)), m constant.
Substitution of (10) into (8) yields

(11) Y(){P1() [ +mQ ()] +Pe(3)} = 0.

In order that (11) define a constant m, independent of j, it is necessary
and sufficient that the equation

(12) Py () +Po () +mP1(§)Q(J) = 0

be proportional to (7). (Actually it should be proportional to m+¢ =0,
¢ constant, but we may then redefine m to get back to (7).) This yields
(13) Pl(j)"‘-Po(j) =P1(j)Q(j);

as well as

(14) m = —1.



242 S, Breuer

Substituting (13) and (14) into (10), we find that (10) is identical with (9).
We may therefore associate (8) with the equation y(j+1)4y(j) =0,
via (7).

It becomes clear now that we may follow the same procedure for
the general equation (1). We shall require solutions of the form (10), and
this demand in turn will supply us with a set of necessary and sufficient
conditions on the Pi(j) such that m will be a solution of an nth degree
algebraic equation, via which (1) may be associated with a corresponding
equation with constant coefficients.

- 3. The equation of order #. In this section we shall state and prove
the main theorem of this paper.

THEOREM 1. Necessary and sufficient conditions that (1) possess a solu-

tion of the form (10) are that the coefficients P,(j) satisfy the following n
equations:

(15) D a(Pu(i) = B, ), Peli)s 8 =1,2,...,m,
k=s r=0

where f, are constants, 8, =1, and wy, .(j) are given by

(16) Yoo(J) = D QUALQU i) ... Qi +ia),

0<i) < By <. <dghe—1

in which

_ . Fi—n4+1)F(j—2n41)... P(j—kn+1) i
A0 QU == F o FG—m) ... FG—Tm) S
where, in turn,

18 F(j)y=—"—,j=0; F()=1,j<0.
(18) () 7.09) ) J )] i<

Before we prove Theorem 1, we note that (15), (16), and (17), (18)
are the counterparts of (17), (10)-(12), and (18), respectively, in [1].

Proof of Theorem 1. Let (1) possess a solution of the form (10).
Substitution of (10) into (1) yields

R k—1
(19) Po(i)+ ) Pu(i) [ [ [1+mQ(5+ 1)1 = 0.
k=1 l=0

Expanding the product in (19), we find

k—1 k

(20) [ +mQG+0] =1+ Y o (i)me,

=0 §=1
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where y; ,(j) is given by (16). Putting (20) into (19), we obtain

n n k
(21) 2P+ D Puli) Y wns(f)m = 0.
r=0 k=1 8]

Interchanging the order of summation jn (21) leads to

(22) DI04 D) mE D s (3)Prld) = 0.
r=0 s=1 k=8

Now if (22) is to define a constant m independent of j, it is necessary
and sufficient that (22) be proportional to an algebraic equation of the
nth degree, i.e. proportional to

¢ n-1
(23) m"+2 g.m*+1 =0,

g=1
where B, = 1 without loss of generality. This proves the necessity of (15)
and (16) in Theorem 1.
To prove (17), we put § == in (15) to find

Z;Pf(j)
24 n j) = ":—“."_:
(24) tunld) =

since 8, = 1. Using (16) and (18), we may write (24) in the form
n—1

(25) JleG+h =FG), §i=0,1,2,..,
=0

from which it must be shown that Q(j) are given by (17). To this end,
define Z(j) = log@(j) and ¢(j) = logF(j). Then (25) becomes

-1
(26) D Z(§+1) = elj).
1=0

‘Equation (26) has constant coefficients and is easily solved. Indeed, the
general solution is given by

n-—1
(27) Z(j) = D wol+2*(j),

fe=1
where q; are arbitrary constants, w, are the nth roots of unity, other
‘than unity itself, and Z*(j) is any particular solution of (26). It is easily
seen, however, that the terms in w, contribute nothing to the solution
of (256) except multiplying the left-hand side by unity. Consequently,
we are only interested in any one particular solution of (26), and we
might as well forget about Z(j) and get a particular solution for @(j)
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directly from (25). For that purpose, it is entirely sufficient to define
@ (j) recursively as follows:

Q(0) =Q(1) =... =Q(n—2) =1,
P(j) .

, §=0,1,2,..
GNeG+D) .G +n—2)" 7

(28)

Q(l+n—1) =

A little reflection will show that (28) are identical with (17). This completes
the proof of the necessity of the conditions in Theorem 1. The sufficiency
is proved by straightforward substitution, completing the proof.

It i3 part of the import of Theorem 1 that demanding y(j) to be of
the form (10) effectively reduces (1), via (23), to the nth order difference
equation

n—1

y(i+n)+ D) By G+ +y() = 0.
k=1

An immediate consequence of Theorem 1 is the following:

OOROLLARY 1. Neoessary and sufficient conditions that (1) possess n
linearly independent solutions of the form (10) are:

(i) The conditions of Theorem 1 hold, and
(ii) The algebraic equation (23) has n distinct roots with B given by (15).

It is obvious that if the conditions of Corollary 1 hold, then the solu-
tions are given by (10), where m is any one of the n distinet roots of (23).

The case where (23) has multiple roots offers no special difficulty
and can be handled by the standard methods of reducing the order of
the equation when one or more solutions are known. We shall treat this
case in some detail for the difference equation of second order, to which
we shall turn our attention in the next secfion.

4. The equation of order 2. The difference equation of order 2 is
by far the most important one from the point of view of the applications,
and it seems worthwhile to specialize the results of Section 3 to this case.
This will yield the most general from of the second order equation whose
solutions are of the form (10).

The equation under consideration is

(29 P(Dy(G+2)+P(Y 0+ +Pe(DY(G) =0, j=10,1,2,...

For future reference we recall that (29) can always be written in the self-
adjoint form

(30) Alp (3) dy(D]+a(Ny(j) =0,
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where Ady(j) = y(j+1)—y(j), and where

81)  Py(j) =p(+1), P.() = —[p(N+p(+1)], Po(h) = »()+4().

It will be seen that the form (30) will help to simplify the calcnlations
considerably.

Next we set n = 2 in (15) and (16) to obtain the following 2 equations:

(32) QNQU+LP.() = DB, (),
(33) QU)Py () +[QU) +Q( +D1)1P,() = B, V', (4).

r=0

Making use of (31), the left-hand side of (33) becomes
(34)  [P())+P.(N)IQ(H+P:(NQ(I+1) = @[F+1L)2(i+1)—-Q(H)p ()
= A4[Q(j)p (1.

Similarly, using (31) for the right-hand side of (33) as well as for (32),
we find that we must have

s q(j)

5 ) = ,
(36) Q(HQE+1L) 20 +1)
and
(36) A[Q(N2 ()] = B.209)-

The right-hand side of (36) is F(j), defined in (18), as stated in (25).
We could use (17) to find @(j), and use this in (10) to determine y(j)-
However, since p(j) and ¢(j) are not independent, it is more profitable
to work with the system (35), (36) directly.

There are two cases to consider, according as f;, =0 or 8, # 0 in
(36), where S, of course enters the algebraic equation for m, which for
n = 2 is obtained from (23) as

(37) m*+pfym+1 =0.
Suppose first that B, = 0. Then (36), (35) and (37) yield

2

. a .
(38) Q) = () q(a)—m, m = +i,

where a i a constant, not necessarily real. Replacing a by ia, we obtain
the following theorem.

THEOREM 2. Two linearly indepmdem soluttons of the equation

(39) A[p(5) 4y (3)

10(9)
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are given by
i-1

(40) v =[] [uc p‘;‘l)].

If a is complex, the solution (40) can be expressed in terms of the appropriate
gines and cosines in the usual way. .

Suppose next that f#, # 0. Then (36) yields

7—1

(1) o) =5 3,
and (35) in turn gives

i i=1

. 2a(k) X q(d)

42 = p - .
(42) 2(j) = h a(4)
Moreover, m is given by (37) as
(43) o —ﬁli;/ﬁl—et |

where we assume for the time being that B] # 4.
Collecting the results we have proved the following theorem:

THEOREM 3. The most general form of (30) having two linearly inde-
pendent solutions of the form (10), where p(j)q(j) * constant, s

i i=1
k l . o
(44 a[ 228290 4y(5)] + grw) = 0.
The solulions of (44) are given by
j-1
. m ( q(l)
(45) v = [T 1+ (2],
[, Sk

where the two values of m are given by (43), in which 4t s assdmed that 7 +# 4,

Theorem 3 may be given an alternative formulation by expressing

q(j) in terms of p(j). Indeed, if we expand (36) and divide it by (35),
we obtain

QG+1r(+1)  QUpH) P’
which is first order linear in 1/Q(j)p(j). Solving (46), we reach

(46) 1 1 B

(47) () = — =l

-1 b
g 1

P(J')Zm
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and (35) then yields

(48) a) = —
2D 25w 2 50

It easily follows now that Theorem 3 has the following equivalent
formulation.

THEOREM 4. The most general form of (30) having two linearly in-
dependent solutions of the form (10), where p(j)q(j) # constant, is

(49) At (0) Ay (N +— gy = 0.

pmzp(k) Z 2(l)

The solutions of (49) are givem by

T mif,
(50) yi) =[] [1— ]
p()Z‘P(L)

where the two values of m are again given by (43), in which it is assumed
that B} + 4.

Equations (41) and (47) are of course consistent and can easily be
shown to be consistent with (17). Comparison of (41) and {47) also yields

(61) 24‘ )Z = ﬂ; :

which is another necessary and sufficient condition for (30) to have solu-
tions of the form (45) or (50).

'We note that Theorems 2, 3, and 4 are the counterparts of cases (iii)
and (i) of Corollary 4.1 in [1].

There remains the case §; = 4 to be considered. In this case we find
from (43) that m/8, = —1/2, and one solution is given from (45), say, by

j—1

l
(52) vo) = [ ][1-—1°2—]
25 q(k)
Standard methods then show the other solution to be given by
” [Po(k)/Py(k)]
(53) ¥ (j) = y( 3)2 TSI

where Py(j) and P,(4§) are given in terms of p(j) and ¢(j), by (31). This
case is the counterpart of case (ii) of Corollary 4.1 in [1].
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