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and their solutlons
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It is easy to verify that equations of the form

(1) fley + ... +ag) = 2 fu(@e) ... falzs,)

1, «os n) €PE
(where Py is a set of k& permutations of the numbers 1, ..., n) are satisfied
by the functions

1
kAs X .An_]

where 4, ..., Ap 3, @ (4, #0, ..., A, # 0) are arbitrary constants.
All the symmetrical and some asymmetrical equations (1) (see De-
finitions 1 and 3, page 258) are satisfied also by the functions

fu(@) = A,we, foz) = Aye, sy foi(2) = Ay, €%,
3
( ) fﬁ(m) = kqu 1 -An._1

where A, .., An_y,a (4; #0,.., Ap_; #0) are arbitrary constants,
and k;; is the number of components of the right side of equation (1)
with fy(2,).

We look for non-trivial (cf. Definition 6) solutions of equations (1)
such that at least one function fi(x) has a point of continuity. It will be
shown that functions (2) are the only solutions with this property for
a certain clags of asymmetrical equations (1). We shall also show a larger
class of asymmetrical equations (1) such that for every non-trivial so-
lution we have f(2) # 0, ..., fa{z) % 0 everywhere. It will be proved
that all their non-trivial 801111310115 with the first derivatives must have
form (2). Moreover, we shall prove that functions (2) and (3) are the only
non-trivial solutions with first derivatives for all the other asymmetrical
equations (1).

(2) him)= 4,6, very fa-1(®) = Ap_je=, falx) = €=

H
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258 H. Swiatak

Symmetrical equations (1) have many solutions different from (2)
and (3). Their form depends on % and » and it seemms impossible to give
a general formula. We do not solve them in this paper.

The following problem remains open: Can an asymmetrical equa-
tion (1) be satisfied by functions with a point of continuity and without
a first derivative different from (2) and (3)%

Notation.

fo=1(0)y, fo=1(0)y fa=fida),
Fz'a=f1amfi—l,afi+1.amfna; F1=F'¢‘Op
P =€), = @il

? r 7
&= 1t oo Pi-1,8Pit1,8 o Pr

S

2

i = Ple e Qi 1,6Qit1e o Pk y
6I ef E’ EI
it = P1g oo Pi—1,6P1+1,E oo Png

S

ki — number of components of the right side of (1) with fs(z,),

Dhu=Yky=k (i,j=1,.,n),

=1 =1
- ku—k for =1,

k ot A et aes ,
v {kq for j=2,..,n t=1msm),

r[a4y] — rank of the matrix [ay],
|ay| — determinant of the matrix [ay].

Definitions.
DErFINITION 1. We say that equation (1) is symmetrical if all the
numbers %; are equal.

DEFINITION 2. We say that equation (1) is symmetrical by f, if all
the numbers %; are equal.

DEFINITION 3. We say that equation (1) is asymmetrical (asymmetrical
by f) if it is not symmetrical (not symmetrical by 7).

DEFINITION 4. We say that equation (1) is reducible if r[ky]
= n—1.

Remark. We always have 7[ky] < n—1. It follows from the fact
that

n n n
7“1’1 = kﬂ_‘k = kﬂ— 2761'7' = — Zkﬁ = — 2/_&‘{1 .
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DeFINITION 5. We say that equation (1) is non-reducible if »[ky]
< n—2.

According to our definitions it is e.g.

10 f(2; +a,) = fi(®1) fo(@,) asymmetrical and reducible;

20 fi(@1 +2) = fu(@)fo(®a) +F1(22) fo(@:) symmetrical and reducible;

30 all symmetrical equations (1) with # > 2 are non-reducible;

40 (@) +2y +05) = f1(@1) Fo(@0) Fo(@a) ~+F1(@a) Fol@s) Fol@1) +11(@s) Fo 25) ol 1)
asymmetrical, symmetrical by f,, reducible;

B° fu(®1 + @+ +84) = [F1(®1) [Fol @2) Fo(%a) fal@a) +Folcta) fala) Fulera) +
+1a(@s) fa(02) fa(5)]
asymmetrical by f;, non-reducible;
6° f1(@y + @y +%3 +2,) = f1(@1) [fo(s) fa( @) o) ol @a) ] fa(20) -+
FF1(22) [fal@a) fa(@a) +Tal@s) fol@a)Fa(2)) +
11 @s) [Fo@2) fa(@a) Faly) +Ta(s) Fol:) Fu( )] +
+ F1(®s) [fa(01) fa( @a) Fo(@a) +Ta(s) fal@2) Fo(1)]

asymmetrical, symmetrical by f,, non-reducible.

DEFINITION 6. We say that the solution f,(z), ..., fz(2) of equation (1)
is trivial if f,(z) = 0.

DEFINITION 7. We say that the solution f,(z), ..., fa(#) of equation (1)
is mon-trivial it f,(x) £ 0.

THEOREM I. Every solution of equation (1) satisfies the following con-
ditions:

(1) fi(na) = kfy(a) ... fola) = kfuFia  (i=1,..,0),
(if) Fo=1/k or f,=0.
Proof. Putting in (1) #, = ... = @, = a, we obtain (i). Hence (for

a= 0 and for ¢=1) (il) follows. Q. E. D.

TurOREM II. If f,(2), ..., fa(2) is & non-trivial solution of equation (1),
we have Fy = fy ... fno 7%= 0.

Proof. Suppose that f;, = 0 for some ¢> 1. Putting in (1) &, = ...
= &y = 0, we obtain f,, = 0, and putting next z;, = 2,2, = ... = %, = 0,
we obtain f,(#) = 0. Therefore we must have f; # 0 for ¢ > 1. Q. E. D.

TueorREM III. If equation (1) is asymmetrical by f,., each of its non-
trivial solutions satisfies the condition: f.(x) # 0 for every w.

Proof. Equation (1) is asymmetrical by 7., i.e. &y # kyr for some <, j.
Suppose that f.(a) = 0 for some a. Then putting in (1) & =z,45=a
t=1,..,n,l 1), we obtain

(4) fl(w—}-('n—l)a) = kuFrfel(z) .
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Similarly we obtain
(4') fl(w +(n—1) a) = kpL'afe(@) .

It follows from (4) and (4') (after subtraction) that

(a) felw) =0
or
(b) Fra. =0.

Case (a) for r = 1 contradicts the assumption of the theorem. For
r 21 we obtain in particular f,==0, but this contradicts Theorem
I,

In case (b) it follows from (4) or (4') that f,(y) =0, but this con-
tradicts the assumption of the theorem.

Thus we must have f.(x) # 0 for every z. Q. E. D.

THEOREM LV. If equation (1) is asymmetrical by f, and fi(z), ..., fa(@)
18 its non-trivial solution, we must have f{@) ... fa(®) # 0 everywhere.

Proof. It follows from Theorem III that f,(@) = 0 for every a. If for
some @ and 8 # 1 f,, = 0, we obtain from Theorem I fip; = kfeqFsa = 0.
This contradicts the fact that f,(w) # 0 and therefore f,(z) ... fa(z) # 0
for every ». Q. E. D.

THEEOREM V. If fi(2), ..., fa(®) i8 a solution of reducible equation (1)
and fy, # 0, then

(5) Moy =120 (=1,..,n)

10
and the funotion f,(») satisfies the equation
1
(6) f@y + .. +on) = 5= Alw) .. ful@a) .
10

Proof. Putting in (1) #y=2,2;=0 (j #1), we obtain the set of
linear equations

1(2) = kaFi fi(0) +-knFofo(@) 4+ ... +FnFafal@) (1= 1,..,mn)
with the unknowns fi(%), ..., fa(2) or
(kaFy—1)fy(0) +haFafu@) + ... +FunFufa@)=0 (i=1,..,n).

Notice that if f,(w), ..., fa(2) is a solution of equation (1) and #,, # 0,
then in view of Theorem II also fi # 0 (4 = 2, ..., n) and therefore Fy % 0
for ¢=1,..., n. Moreover, by Theorem I, we have F,= 1/k. There-
fore
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and therefore
fa(@) = %fl( ;12.7‘1 z) .

Hence we obtain

A1) @) o Tnlt) = ok Fo(@a) (@) e Fulty) ~
= k—]‘l—— AN fl(wE) v fo(@n)
and therefore
F@s+ o m) = s Fu(2) o Fo(n) QED.

10

Remark. Theorems I, II, III, IV are valid for # from an arbitrary
group with the group operation ¢ 4.
TueoREM VI. If a non-zero solution of the equation

1

Zn—_lf(wl) o [{@n)

(7) fo+ .. +on) =

has a point of contimuity, it must have the form
(8) fl#) = ende®,

where a 8 an arbitrary constant, e, = 1 if n in (7) ¢s an even number and
lea| = 1 if m in (7) is an odd number.

Proof. It is easy to see that f, # 0. (In the contrary case we should
have f(x) = 0.) Moreover, it follows from (7) that f, = 4 if n is an even
number and |f,| = |4| if » i3 an odd number, ie. f, = e, 4, where e, =1
for even » and |e;| = 1 for odd =.

Now, let @ be a point of continuity of the function f(x). Putting
in (7) &= &, 2,=2—a,23=..= &, =0, we obtain

n—2

fla—a+8) ="F () (e—a) .

If £>a,z = const, then 2— ¢ + &2, and since the right side of the last
equality is continuous at @, f(z) must be continuous at the arbitrary
point z.

Making use of Aczél’s method (cf. [1], page 140-144), we conclude
that the function f(x) has all the derivatives.

Differentiating (7) by ®, and then putting @, = z, 2, = ... = 2p = 0,
we obtain

(@) = A“ 1J‘ol‘(m
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Now, taking into account that f, = ez A, we conclude that
f(x) = ep Aeom,
where a ig an arbitrary constant. Q. E.D.

Remark. Equation (7) has a very simple physical interpretation
if A=1, and a < 0: It is known that the probability of decay of the
radioactive atom during the time @ is equal for all the atoms of the given
radioactive element. Denote this probability by p(z). The probability
that the atom does not decompose during the time z is f(x) = 1—p(x).
Obviously, if the atom decomposes neither during the time #;, nor during -
the time %, ... nor during the time x,, it means that the atom does not
decompose during the time %, +%, + ... +a,. The probabilities of these
oceurrences must satisfy the equation

f@ to+ ... +on) = f(@)F (@) ... [(@n) .
Hence f(z) = e, and p(z) = 1-—e+*. If we have N atoms of the radio-
active element at the moment #= 0, we must have approximately
N(1—e) atoms at the moment ¢= x. This agrees with experiment.
(The constant a can be found experimentally.)

THEOREM VII. If equation (1) is reducible, all its solutions with fi, # 0
such that at least one function fi(x) has a point of continuity must have
form (2).

Proof. It follows from Theorem V that the funections f«(z) satisfy (5)
and the function f,(x) satisfies equation (G). Since f,, # 0, it follows from
Theorem I that

1

(9) = foo e =7

Since at least one function fi(@) has a point of continuity, it follows
from (5) that f,(#) must have a point of continuity. Therefore we can
apply Theorem VI to equation (6) and we obtain

fu®) = freeo=.
On the basis of (B)
fi(@) = fpec for i=1,..,n,
i.e.
filw) = Ageer for i=1,..,n,
where the constants 4, satisfy, by virtue of (9), the condition
1

Ag...An: E. Q. E.D.

TuroreM VIIL. If equation (1) is reducible and asymmetrical by f,,
functions (2) are the only non-trivial solutions such that at least one function
fi(x) has a point of continuity.
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Proof. Since equation (1) is asymmetrical by f,, we have in view
of Theorem IIT f,, # 0. Therefore we may apply Theorem VII and the
proof is finished. Q. E. D.

Remark. Results of Theorem VIII are well known for the equation

ful@y +25) = fo(a,) Fo(a)

(cf. e.g. [1], page 47, 48).

The next two theorems show explicitly the connections between
the type of asymmetry of equations (1) and their solutions.

In order to prove them we introduce the following

LEMMA. If fi(2), ..., fa(®) 8 the solution of equation (1), the funclions

(10) oud) = e~ film)  (i=1,..,7)
satisfy the equation

(11) P+ o @) = 2 @1(®1,) . Pul@1n).

(‘.1; sesy dﬂ) EPk

If, moreover, f(®), ..., fa(®) have first derivatives and

(12) a= ;ﬁ? , where f4(&) #0,

St

then g = 0 and
(13) V(o H(n—1)E) = ki Papslz) (I=1,...,0).

Proof. Substituting (10) into (1), we obtain (11). Differentiating (10)
and taking into account (12), we obtain ¢ = 0.

Since all the functions ¢«x) have first derivatives and satisfy (11),
we can differentiate the right-hand side of (11) by = different variables
and we conclude hence that the function ¢,(z) has an nth derivative.

Differentiating (11) by 4, ..., Z1—1, Z147) ..., Tn and then putting
H=a,54=E§ (1=1,..,n,1 #1), we obtain by virtue of ¢{; = 0 equa-
lities (13). Q. BE. D.

THEOREM IX. If equation (1) is asymmetrical by f,, all its non-trivial
solutions with first derivatives have form (2).

Proof. Let us fix some non-trivial, differentiable solution f(z),
ey Ju{®) of equation (1).

In view of Theorem IV we have fy(2) # 0, ..., fa(x) # 0 for every z.

Let us fix an arbitrary £ and write

(14) 0 = %%

The functions
(15) pix) = e flx) (=1, ..,n)
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have first derivatives and, by the Lemma, satisfy equations (11) and (13)
with s = 1. Since equation (1) is asymmetrical by f,, equation (11) is
asymmetrical by ¢,. Hence it follows that there exist p, ¢ such that
kpy # kg, and making use of (18) for I = p and for I=¢, we obtain

(bpr— kg )Prepa() = 0 .

Since kp # kn and ¢(x) #0, we must have @= 0. Thus by (13)
¢ V(@) = 0, ie. @) is a polynomial of the order < n—2 and (in view
of (15)) the function f,(#) is a product of a polynomial and the exponential
function e%® .

It we fix & instead of &, we conclude analogously that f,(z) is re-
presented as a product of a polynomial and the exponential function eey=.
But the function f,(2) was fixed at the beginning of our considerations
and therefore both these representations represent the same funection.
Hence it follows that ag = a;, i.e. «; does not depend on £ Denote it
by a. Now, in view of (14), we have

f1(€) = afi(€§)  for every ¢&.
Hence we conclude that
(16) filw) = A, e,

We look for non-trivial solutions and therefore we assume A4; # 0.
To prove our theorem it suffices to show that

fa(&)
A0 .
for s=2,...,n and for every ¢ and that

e L
m kf20 e fn—l,o '

Let us fix an arbitrary ¢ and s > 1, and write

(17) p=l22.
The functions
(18) Pi(x) = e~B2fy(x) (i=1,..,7n)
satisfy the assumptions of the second part of the Lemma, and we have
(19) P (e +(n—1)&) = kuBuPala)
On the basis of (16) and (18) we have
(20) Fulw) = A ela—Pe
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Suppose that f # a. Then in view of (20) and (19) we have
G @) #£0, P A0, ki #0,

Pol) = A"{ ela—Pn—1¢ g— B)r—1ga—PT = B, ela~F)z
kls¢'a$
Hence and from (18) it follows that fs(@) = B,e*®, and by (17) f = q,
contrary to our assumption.
Thus we have proved that
fa(£)
= a
1s(€)

for s= 2, ...,n and for arbitrary & Hence it follows that
fil@) = Aqe® (t1=2,..,7m).
Substituting this into (1), we obtain the condition

ful@y 4+ o F @) = 4,... 4, Z fu(@q, ) eol@hat ot ohy)

(il.ll"l iﬂ) EPk

Hence and from (16) it follows that all the non-trivial solutions of
equation (1) with first derivatives have form (2). Q. E. D.

TuEOREM X. If equation (1) is asymmeirical but symmetrical by f,,
all its non-trivial solutions with first derivatives have form (2) or (3).

Proof. Suppose that ky # ke (r # 1) and that f(x), ..., fa(2) is
a fixed differentiable solution of equation (1). By virtue of Theorem III
f-(z) # 0 for every =.

Fix an arbitrary & and take

_1+&)

O = 5——.
, FTHE)
The functions
(21) pi(x) = e~9®fy ()  (i=1,..,n)
satisfy the assumptions of the second part of the Lemma with s = r.
Making use of (13) for I = p and for ! = ¢, we obtain after subtraction

(Fepr— Kogr) Prepr(®) = 0 .

Since ky» # kg and @n(z) % 0, it follows from the last equality that @, = 0
and therefore
p (@) =0,

i.e. gy(w) is a polynomial of order < n— 2. Thus, in view of (21), fy(z) is
a product of a polynomial and an exponential function e%®. Such. a re-
presentation must be unique and therefore a; = const. Denote this con-
stant by a. Now we may write

(22) hiz) = gy(2) e,
where ¢,(x) is a polynomial of order < n—2.
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Now we shall prove that
(23) If fs(@) =0, then s=1 and = 0.

In fact, suppose that a s 0 and f,(a) = 0. Then it follows from Theo-
rem I that f,(na) = 0, f,(n%a)=0, ... Since f,(x) has form (22), it may
vanish only at a finite number of points. Therefore a # 0 and f,(n'a) = 0
for »= 0,1, ... is impossible and we must have f,(z) # 0 for = # 0.

For s > 1 it follows from Theorem IT that f, % 0. If we had b = 0
and f,(b) = 0, it would follow from Theorem I that f,(nb) = 0. Since we
have proved it is impossible, (23) must be satisfied.

By virtue of (23) we may fix an arbitrary s > 1 and put

3]
24 = Jle)
(24) Pe= 18
For the functions
(25) oi(@) = ePefm)  (i=1,...,n)
the Lemma implies
3
(26) Vo +(n—1)) = ku@upem) (=1, ..,n).

Notice that by (22) and (26) we have
£
(27) P1(®) = @y(@)ela—Poz,
where @,(x) is a polynomial of order << n—2 which may vanish at the
point ¢ = 0 only.
¢
If there exists ! such that k,; = 0 or if &, = 0 for every £, then, in

view of (26), qgoﬁ”‘"(m) = 0 for every ¢, i.e. qeal(m) is a polynomial and we
conclude from (27) that f: = a. Since it is satisfied for every £, (24) implies

(28) folm) = A,eo .

g
Now, suppose that %, # 0 for I=1,...,n and P, # 0 for some &.
Then it follows from (26) and (27) that

§
és(fv) == 15 ‘Pgn_l)(w -+ (ﬂ— 1) E) = 'Ps(m) ela—pr)z
ks Dse .

and by (25)
(29) fol@) = po(z)e=,
where y(z) is a polynomial of order <n—2.

This argumentation is true for s = 2, ..., » and since (28) is a special
case of (29), it follows from (29), (22), and from Theorem I that

@u(n) = kpy(@)po() ... pal®) .
Annales Polonici Mathematiel XIX 19
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The order of the polynomial ¢,(2)y.(2) ... pa(r) must be the same
as the order of the polynomial ¢;(n@). It is possible only if y,(x) are poly-
nomials of the order 0, i.e. if fs(z) have form (28).

It follows from (22), (28) and from equation (1) that

ooy + .. +on) = 4, ... 4y Zkﬂ%(mi)

i=1

but equation (1) is symmetrical by f; and therefore

n
@@y + ..o +a) = A4, ... Anan P(e)
i=1
Since ¢,(x) is a polynomial, we can differentiate the last equality
by two different variables and we conclude that it may be satisfied
only if

(i) (Pl(ﬁ) = Al’ .Az ‘s .A.n, = 1/’6
or
(i) ou(@) = dyw, Ay dw=1/ky.

In the case (i) solutions of equation (1) have form (2), in the case (ii}
they have form (3). Q. E.D.

Solutions of symmetrical equations (1) are more complicated. E. g. it
is known (cf. [2]) that the only non-trivial solutions of the equation

ful@y +a) = fo(@1) fo#a) () fo( )

such that f,(#) and f,(@) have at least one point of continuity in common
are the functions

hiw) = o) = }e=;
him) = sze"z fo() = e°2;
fi(w) = Aesrginhbr, fy(@) = e**coshbz;
f1(®) = Ae=sinbz, fo(x) = e®cosbax
(A #0,b # 0, o — arbitrary constants).
It is easy to verify that the equation
Fu@y -, +5) = Fi(@n) fa(@3) Fa(@s) +Fo(@0) ol #a) fo( 1) +71(a) fol 1) Fol o)
is satisfied by the functions
(1)  fulo) = 4 e*cosba,
fo®) = A,e%(cosbx 4 )/3sinba) ,

o) = _4117 e**(cosbz—)/3sinbx);
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(i) file) = A,ecosbz
fol@) = A,e°® (cos bz + 13_5
faol@) = L €T (cos bx — -1—_ sin bm)
4, V3
(A, #0, 4, #+ 0, b, a — arbitrary constants).
The above examples show that symmetrical equations (1) may
have many solutions different from (2) and (3). We shall not solve them

in this paper.

sin bw) R
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