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A Cantor regular set which does not have Markov’s property

by W. PLESNIAK (Krakow)

Zdzislaw Opial in memoriam

Abstract. We construct a Cantor type compact subset of R which is regular in the sense of
Green’s function of C\E but fails to be "good” regarding Markov's inequality for the derivatives of
polynomials.

Introduction. In 1889, Markov [5] proved that for every polynomial p of
degree n

Ip'(x)] < n? sup |p(x)] for xe[—1,1]; .
[—1.1)

this solved a problem posed two years earlier by Mendeleev. During the last
century, Markov’s inequality has appeared to be of particular significance in
approximation theory and its applications. In the one-dimensional case, an
excellent introduction to the subject is given in monograph [11], while the
series of papers [6]-[10] seems to be an adequate reference regarding the
theory of subsets of C¥ with the following Markov property:

(M)  There exist positive constants M and r such that, for each polynomial
p. C¥ - C and each multiindex acZ¥,

ID*plly < M(degp)™pllg;

| k|l denoting the supremum norm of h on E. By Cauchy’s integral formula, in
order that a compact subset E of C¥ have property (M) it is sufficient that
Siciak’s extremal function

&.(x): = sup{|p(x)|'/?e?: pe P(E)}, xeCV,
E 1

where P(E)1s thé family of noﬁ-constant polynomials with ||p|l; < 1, be Hoélder
continuous in the sense that

(HCP) Pp(x) < 1+M5™ as dist(x, E)<d <1,

with some positive constants M and m independent of .
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It was proved in [6] that the collection of (HCP) sets contains a large class
of uniformly polynomially cuspidal sets, which in particular includes all fat
subanalytic compact subsets of RY. (Throughout the paper RY is regarded as the
set {(zy,...,2zy) €C¥: Im z;=0, j=1,..., N} Siciak [12] seems to be the
first to construct an (HCP) set which is not uniformly polynomially cuspidal;
his example is a Cantor type subset of R obtained from [0, 1] by deleting in
each step of the construction sufficiently small subintervals.

So far, it is not known whether the Cantor ternary set has property (M). In
this paper, we construct a Cantor type compact subset E of R which is regular
in the sense of the Green’s function of C\E with a pole at co but fails to have
Markov’s property.

By a result of Baouendi and Goulaouic [1], if E is determining for germs
of analytic functions of E, the regularity of E is equivalent to the Bern-
stein—Walsh characterization of analytic functions by means of polynomial
approximation. Similarly, by [10], Theorem 3.3, in the class of C* determining
sets, Markov’s inequality (M) is equivalent to Bernstein's characterization of C®
functions: f is C* on E iff the sequence of the distances in the supremum norm
on E of f from the spaces of polynomials of degree at most k (k=0,1,...)is
rapidly decreasing. Consequently, we have constructed a compact subset E of
R for which the Bernstein—Walsh theorem for analytic functions holds and yet
there exist continuous functions on E which are rapidly approximable by
polynomials but cannot be extended to C* functions on R. We note that in R?
such an example was first constructed by Baouendi and Goulaouic in [1].

The construction of the set E. Let E be a Cantor set constructed as follows.
Given a sequence {l,} of positive numbers with I,,; <1,/2 (n=1,2,...) and
I, <1/2, we put E, =Ijulj, where I1 =[0,1] and I} =[1-1,,1]. If
E, =I7v ... ul}a.is already constructed, with each I} being a closed interval
of length I7=1,, then E,,, is obtained by deleting an open concentric
subinterval of length [, —2I, ,, from each I}. We now put

E=(E.
We have "
ProrposITION 1. If
(i) lim sup (log/, *)/n = o0,

n—aw

then the set E does not satisfy (M).

Proof. Let {a,, a,,...} be a Leja sequence of points of E, ie., a,€E is
arbitrarily chosen and then, for n=1,2,..., we choose a,e E so that

max |(x—ag) -.. (X —an-1)| = I(@y—ag) .. (@,—ap_ ).

xekE
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Put

pax) = [(x—ap)...(x —an-))/(@,—ap)...(a,—ay-1)], n=12,...

Then obviously |p,llg = p,(a,) =1 and p,(a,) = 0 for k < n. Observe that for
each n we can find two indices k, and m, such that 0 < k, < m, < 2" and the
points a, and a,, belong to the same interval I of E,. For the polynomial p, ,
we then have degp, < 2" and

(1) 1PVl = P, () = P (@ MO, —a | = 1/la,, —a, | = 1/1,

for some point y,e(q, ,a, ] (or else y,ela, ,a,]), whence in particular
(2) dist(y,, E) < 1/1,.

By [10], Theorem 3.3, property (M) is equivalent to the following property:

(P)  There exist constants M, > 0 and s > 0 such that for every polynomial
p of degree at most n (n =1, 2,...) we have

lp(x)] < M,lpllg when dist(x, E) < 1/n’.

Now suppose that E has property (M). Then by (1), (2) and (P) we would
have

Vi < |pm vl < My [P, | g < M M27,
which contradicts (i).

PrOPOSITION 2. The following statements are equivalent:

(u) Y 27"log(1/1,) < o0;
n=1
(1)  E has positive logarithmic capacity c(E);
(iv)  E is regular in the sense of the Green's function of C\E with a pole at .

Proof The equivalence (ii) <> (iii) is well known (see e.g. [2], Chapter 1V,
Theorem 3). Thus, it is sufficient to show that (ii1) = (iv). To this end we shall
use the following

WIENER’S CRITERION (see e.g. [4], Theorem 5.6). For a sequence {e,} of
positive numbers with |1 <a<¢fe,41 << +0 (n=1,2,..), we put
K, .=En{xeC: ¢, <|x—a| <¢,}, where acE is fixed. Then E is regular at

a iff
Y loge,/loge(K,) = + 0.
n=1

Let us pass to the proof of implication (ii1) = (iv). Fix a€ E. Then for each
n there is exactly one j,e{1, ..., 2"} such that ael]},. We put I:= I} and
Jyi=U-\[[)NE,, n=1,2,..., where we set I,: =[0, 1]. Observe that
a¢J, and J, =TI} for some j,e{l,...,2"}. We now consider two cases.
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(x) There i1s a constant M such that L/lhst SMlorn=1,2,... Define
6n: = Sup{la—ylz yEIn}
Clearly,
(3) I —1,,, <96

n

<.

Put ¢,:=6,,-,, n=1,2,... Then by (3) we have
2 < llane1/l2n) S Upn-1—Lan)/lan+ 1 < €/E044
=020-1/02m+1 < lan 1 Mlzns1—12a— ) S M?
Furthermore, we have
EnJy,,.1 <K, as dist{a, Js,) <03,+1,
or else
EnJ,, <K, as distla, )= 03,4+

It follows from the construction of E that for each n and je {1, ..., 2"}, the set
E NI} can be obtained from E by translation and a homothety of ratio I,.
Hence c(EnIj) = [,c(E), and we get

Z loge,/loge(K,) = Z logl,,—1/(logc(E)+logly,+ ) = + .

n=1

The result now follows from Wiener’s criterion.

(f) Suppose that limsup! /I, ., = + oc. It is seen from the construction of

E that we may assume /,/l,; T+ co. Observe that for each ne N there is exactly
one k,eN such that k,—1 <log,-./, < k,. We now put

I {k,,, as  k,—log,-.l, <log, ., —(k,—1),

" k,—1 as k,—log,-.l, > log,_.l,—(k,—1).

Then we have |
4 Im, —log, .l,| < 1/2.

Futhermore, observe that if me N and |m—m,| = 1 then there is no pe N such
that m = m,. Now define

A 27" if n¢{ml,m2,...},
"8, if n=m, for some k.

We want to show that there are constants a, ff such that | < a < ¢,/e,+, < f for
almost all n. To this end, consider three cases that can occur:

(a) Neither n nor n+1 belongs to m,, m,, ... Then evidently ¢, /¢, , = 2.

(b) n =m, for some k. Then n+1¢{m,, m,,...}. From (4) we get

(5) V2L, <27 <2, /21,
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Hence, by (3),
7/5 < (b= b U//2) < fEner = 8/27™ 7 < 1 /(L/2/2) = 2/2

for n sufficiently large, say, n > n,.

() n+1 =m, for some k. Then by (3) and (5) we get
2= V2 S efenry = 2718, < 2/ 2l —hev 1) < 44/2.

Now, if n is sufficiently large we have K, > EnJ,,. For, if xeJ,,,, then
|x—al <6, =c¢, , and by (5),

mp°

x—al 2 0y—lysy = 1, —=2 21/ /222"™ V=g, ., for n=n,

with some n, > ny. Hence ¢(K,, ) = c(ENnJy41) = 4 1¢(E), whence we get

Y, loge,/loge(K,) > ), loge, /loge(K,,) = ), logé,/log[l,+c(E)]
k=1

n=ny n=ny

= Y logl/(logc(E)+logly.y) = + o0,
since, by (ii), (logl,/logl, ) cannot tend to 0. Thus, by Wiener’s criterion, E is
regular at a.

Remark. I wish to thank Professor Siciak for calling my attention to the
equivalence (ii) <> (iii). In order to prove that (i1) implies (iii) we can also repeat
a potential-theoretic argument used e.g. by Diederich and Fornaess in [3].

The equivalence (iii) <> (iv) seems to be known. We do not know, however,
any bibliography to refer to.

COROLLARY. Assume that the sequence {l,} satisfies (i) and (ii) (take e.g,
I, =1/(n+2)!). Then the corresponding set E is regular but does not have
Markov’s property (M).
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