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Dynamical systems with multiplicative perturbations

by Katarzyna Horsacz (Katowice)

Abstract. We give suflicient conditions for asymptotical stability of a Markov operator
governing the evolution of densities corresponding to a dynainical system with multiplicative
perturbations.

1. Introduction. Consider a random dynamical system whose time evol-
ution is given by the recurrence formula.

(1) Xpe1 =S(x)¢, forn=0,1,...

In (1), S is a given transformation of R, (or [0, 1]) into itself, and ¢&, are
independent random variables with the same density. Assuming that the
density distribution function f, of x, exists, under quite general conditions
concerning § and ¢, it is easy to hind the density f,,, of x,,,. The relation
between f, and f,, is given by the formula

j;|+] = P_frn

where P is a Markov operator.

In the last few years, dynamical systems with stochastic perturbations
were intensively studied ([3]-[5], [10], [11]). From the applied point of view,
the asymptotical stability of the process. The purpose of the present paper is
example, the stochastical model of the brightness of Milky-Way proposed by
Chandrasekhar and Miinch [1], [2] leads to the same type of kernel
operators P as our multiplicative model described by formula (17). Moreover,
the multiplicative perturbations in a natural way appear in biological systems
when the stimulating factor is described by a deterministic transformation
and the restraining factor is stochastic [7].

In studing evolution of densities one of the most interesting problems is
the asymptotical stability of the process. The purpose of the present paper is
to show sufficient conditions for asymptotical stability of a Markov operator
P governing the evolution of the densities of x,.

The organization of the paper is as follows. In Section 2, we consider the
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case where the transformation S is defined on the entire halfline R, . The
second case where the transformation S is detfined only on the interval [0, 1]
is studied in Section 3. Section 4 contains some applications and remarks.

2. Notation and results. Let (X, X, z) be a measure space with a
nonnegative o-finite measure u. Write L'(X) = L'(X, X, y). A linear oper-
ator P: L'(X) = L'(X) will be called a Markov operator if it satisfies the
following two conditions:

(a) Pf20 for f 20, feL'(X),
(b) IPAl =1/ for f>0.feL'(X).

where ||-|| stands for the norm in L'(X). By D(X) = D(X, X, ) we shall
denote the set of all nonnegative elements f € L' (X) such that ||f] = 1.

We say that a Markov operator is asymptotically stable if there exists a
unique f, €D (X) such that Pf, = f, and

lim [|[P"f—f =0 for every feD(X).
n—-+ x
Let S be a nonsingular transformation from the halfline R, = [0, + o0)
into itself. Nonsingularity means that m(S™"'(A4)) = 0 whenever m(A4) = 0 (m
is the Lebesgue measure on R.). Assume that £, are independent random
variables satisfying ¢, > 0, n =0, [, ..., with probability one and having the
same bounded density g. Finally we assume that the initial condition x, is
independent of the sequence of perturbation |£,).
In order to calculate f,,, from f, let us denote by h an arbitrary real
valued bounded measurable function defined on R,. The mean value

E(h(x,+,)) of h(x,+,) is evidently given by

+ @

E(h(xps )= | h(x) fys1 (0)dx.
0

Since x,,; = S(x,)¢, and the random variables x, and £, are independent,
we also have

+® + o

E(h(x,o D)= | | H(SO0)2) fa(0)g(2)dydz.

0

Let Pg be the Frobenius-Perron operator corresponding to S (cf. [8]). Setting
h.(y) = h(yz), we obtain

+ + o + @

[ h(SWz2) f)dy = | hASW) fu)dy = | Psf,(y)h.(y)dy
0 0

0

+

= [ Psfu(Wh(yz)dy.
0
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Using this equality, it is easy to calculate that

+ v +

E(h(x,+1) = | ]' Ps f,(») h(yz)g(2)dyd:z

0

= [ Pa [ heog (2 dxar

1
Vo [ Pt v

Since h is arbitrary, this implies

+

(2) Jar10) = | Psf..(y)g(f/y) dy.

Thus, given an arbitrary initial density f,, the evolution of densities
corresponding to the system (1) is described by the sequence of iterates
\P" fo!, where

+ o

: x\1 '
3 Pf(x)= { P Zl-dy = dy.
3) f (x) (1) sf(.v)g(y)y y ! f(y)g( ())S()

Our first step in the study of the sequence |P” f;) is to show that the
operator P is weakly constrictive. By definition, P is weakly constructive if
there exists a weakly precompact set ¥ < L'(X) such that

4) lim o(P"f, ¥)=0 for feD(KX),

n—++ o

where ¢(f, ¥) denotes the distance between the function f and the set ¢ in
L'(X) norm.
We shall also use the following two lemmas:

Lemma 1. Let f€L'([0, a)) (a < +c) be given by the equality
J(x)=xwx), xe[0,a),

where « is a nonnegative, nonincreasing function and r is a nonnegative
constant. Then

S < Nr+D/x for xe(0, a).
Proof of Lemma 1 (cf. [9]):

Il =1 fdy = [y o@pdy = [y wlydy
0 0 0

X

- o)X xf(x)
Zi!y @(x)dy = r+1  r+l
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LEMMA 2. Let P be a weakly constrictive Markov operator. Assume that
there is a set A < X of nonzero measure, u(A) > 0, with the property that for
every f€D(X) there is an integer n,(f) such that

P f(x)>0
Sfor almost all xeA and all n = n,(f). Then P is asymptotically stable.
The proof of this lemma may be found in [6].

Now we are ready to state our flirst result of this section.

THEOREM 1. Assume that the transformation S: R, — R, and the density
g satisfy the following conditions:
(i) S is differentiable increasing with continuous dS~'(x)/dx and S(0)
(1) S(x) < nx+p for x> M, where n, f and M are nonnegative con-
stants and

+

n | xg(x)dx <1
0

(iti) g is bounded and there exists a function heL'(R,) such that

(5) 0 <g(x) < xh(x) for xe(0, +x0)
and
(6) 1Al < S'(0).

Then the operator P given by equation (3) is asymptotically stable.

Proof of Theorem 1. D’cline

+ ®

E(f)= | xf(x)dx
0

and consider the sequence ,E(P"f)! for an feD(R,). From equation (3) it
follows immediately that

‘ Sy

o O

ot @ x \ 1
EP* fy= | | xP"f(y)g(L)mdydx

+ + ®

| PPfOSO) | z9(2)dzdy.
Y 0

From assumption (ii) it follows that

S(y) < max S(x)+ny+p for yeR,.

OsxsM
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Thus

+

E(P"" )< E(g)n | yP"f(»dy+(f+ max S(x))E(g)
0

O<x<M

=nE(g) E(P" f)+(B+ max S(x))E(g).

OsxsM

As a consequence

(f+ max S(x))E(g)

E(P"f) < °j"jj1’E(g) +1"E(@@)"E(f).
Choose an arbitrary K*>(,B+01;na<xMS(x))E(g)/(l—nE(g)). If E(f)<+x
then there i1s an integer n, = no(};\such that
(7 E(P"f)< K, for n=ny(f).
Set L = sup g(x) and 4 =S5'(0). Since 4> ||h||, we may choose ¢ >0 so
small thr:teh
IAll/(2—e) < 1.

Using the continuity of the function y =+ dS~'(y)/dy and the condition S(0)
=0, we can find a constant é > 0 such that

S(S7')=4—-¢ for 0<y<3s.

Let ¥’ < D(R,) be the set of all densities f satisfying the following two
conditions:

(8) [ f(x)dx < K,/ro for ro >0
X?ro

and

9) f(x)<c for xeR,,

where ¢ i1s some positive constant. Evidently, ¥ is a weakly precompact set.
Denote by Dy (R, ) the subset of D(R,) consisting of all functions f with
E(f) < 4+ o0 such that

S (x) <ko(f) for xeR,,

where the constant k,(f) depends on f. Choose an f €D, (R,). From (7) and
the Chebyshev inequality it follows that

| P f(x)dx < K,/ro for ro >0 and n > ne(f).

X?ro
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It is easy to verify that

1
Psf(y) = f(S 1(}’) S(s” ()lsuu)(y},

where 1, is the characteristic function of the set 4. Thus Pf may be estimated
as follows:

PR = (£ (5™ ) i Dm0 (5)1d7+ RS (f)ld:
.Hﬂ—bf y ywl()smg}g.yy} I} PsTay y

0

k ® h L
oU” 47@+ Hdeﬂ+_
y)y

S —e} l—

l( P L+oo
<oty ( ) dy+5 [ Psf(dy
-—&€o \V

Since [|h||/(A—¢) < 1, there exists a real

c > L
5(1—IIHI/(A—2))

such that
PP f(x)<c

for n sufficiently large, say n>=n,(f). As a consequence, P"fe¥ for
n = max(no(f). n, (f)). Since Dy(R.) is dense in D(R.), this implies (4). We
have proved that P is weakly constrictive. Furthermore, since g(x) > 0, from
(2) 1t follows that

P f(x)>0 for xe(0, +o0);: n=1,2,...

According to Lemma 2 the proof of the theorem is complete. —

Up to here we have considered a special case where the transformation
S was differentiable and increasing with the continuous derivative

dS~'(x)/dx. Now we assume that the transformation S: R, — R, satisfies
the following conditions:

(2i) There is a partition 0 =a, <a, <... of R, such that for each
integer j the restriction S; of S to the interval [a;, a;,,) is a C* monotonic
function:

(2i)) S(x) <nx+p for x> M, max S(x}) < +o, where n, § and M

OsxsM
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are nonnegative constants and

+ @
(10) n | xg(x)dx <1:
0
(2ii1) $(0) =0:
(2iv) There is a constant b such that

c; =inf }IS;(x)}: S;(x) <b} >0 for j=2,3,. .
and

+fl':l
Y — <+,
=26

where Sj(a;) denotes the right derivative and §,(a,) = lim S, (x).

X*az

An example of transformations satisfying conditions (21)—(2iv) is given by

S(x) =4 /T+(x+m>lsinx—1), xeR.
and g(x) = xe ~.

THeorem 2. Let S: R, — R, satisfy conditions (2i}{2iv). Assume that
there is a nonincreasing he L' (R, ) such that

(11) 0 <g(x) =xh(x) for xe(0, + )
and
(12) Al < §7(0).

Then the operator P given by equation (3) is asymptotically stable.

Proof of Theorem 2. Since h is a nonincreasing function, by Lemma
1 we obtain h(x) < ||hll/x. Thus g(x) < ||h|| for xeR,. Set i =S5(0) and
choose ¢ > 0 so small that

(Al
A—¢

<1.

Since S, is a C? function and S, (0) = 0, there is a positive constant § such
that 6 <min(b, S, (a;)) and

Si(Si'(y)=i-e for 0<y<4.

Let ¥ = D(R,) be the set of all densities f satisfying the following two
conditions:

. K
(13) [ f(xdx<—* forry>0

.\'?ro rO A
¢
N
AR
2 — Annales Polonici Math. 50.1 [ T

-
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and
(14) f(x)<k for xeR,,

where k is some positive constant.
Denote by Dy(R,) the subset of D(R,) consisting of all functions f with
E(f) < + o such that

f(x) <ko(f) for xeR,,

where the constant ky(f) depends on f. Fix feDy(R,) and set f, =P"f, n
=0,1,2,... It is easy to show, analogously as in the proof of Theorem 1,
that

‘ fo(x)dx < K, /ro for n=ny(f) and ry > 0.

X?ro

Since g(x) = xh(x) and h is nonincreasing, it follows [rom Lemma 1 that
g(x) < 2/x and consequently

+ o

: 2 2
(15) PPf(x)< | Psf,,_,(y);dy=; forn=1,2,...
0 o

Now our goal is to show that f,(x) < k for sufficiently large n. Note that (cf.

[8))
+ - 1
PSf(y) = j;l f(S_, (y))ls;(sj_ 1 (y))' ISj[aj.aj+ 1)(y).

Thus from equality (3) we obtain
dy

(16) P"f(x) = U,. 1 (ST I(Y))—(—r(*)) Silay a2>(Y)g(y>y

+a o

+ Z “.fn—l

j=20

1 dy
5,05, O] e o000 (5 )5+

+

+ | Psfuuit Mg (x/y)dy/y for n=1,2,...
o

Therefore

)2 dy toq 0 h
Pf(x) < f \g(y);wo(f Ll (;)y“”;”

Setting

1 1 h
() = ke NI (75 + £ o ) 1.
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we obtain
Pf(x)<k,(f) for xeR,.
Using this and inequalities (15) and S; YW =a; (=2, yeS;laj, aj4y). we
may estimate Pf, as follows:
(f) dy
Pfy () < - LIRS Z lfl (57 ' O s, ,H)(y}g( ) +
i=2€jo y7y
IIhII Mkl
B < e (2 5 v 5 )

JZJJ

By an induction argument we obtain

Pro< (ML ko (25 4 2)Y ()

j=295€; 1=0
for n=2,3, ... Since [|h||/(A—¢) <1, there exists a real

hl1(2 ). 1/a;c;+1/5)
j=2
L= lAll/(A—e)

such that f, (x) < k for sufficiently large n. Further proceeding analogously as
in the proof of Theorem 1 and using Lemma 2 we may complete the
proof.

3. Dynamical systems on the interval [0, 1]. In Theorems 1 and 2 of the
previous section, we have assumed that the transformation § in (1) is defined
on the entire halfline R, . Now was assume that S is a transformation of the
unit interval [0, 1] into itself. We assume also that x,€[0, 1] and &,, n
=0, 1, ... are [0, 1]-valued independent random variables having the same
density g. In formula (3) for the operator P the domain of integration must
be altered, so

1
(17) Pf(x) = [Psf(»)g(x/y)dy/y for feL'([0, 1]).

We shall assume that S: [0, 1] =[O0, 1] satisfies the following condi-
tions:

(31) There is a partition 0 =a; <a, <... <a, =1 of [0, 1] such that
for each integer j the restriction S; of S to the interval [a;, g;.,) is a C* and
monotonic function:

(3i)) $'(0) >0 and S(0) =
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(3iii) There is a constant b such that
c; =inf{|S;(x): S;(x)<bh) >0 forj=2,3,...,q-1.

Conditions (31)—(3111) are quite similar to (21)-(2iv). Observe that now
inequalities (2i1), (10) and (2iv) are automatically satisfied with n =0, M =0
and f =1. Thus, assuming that there is a nonincreasing function
heL'([0, 1]) such that

(18) 0<g(x)=xh(x) for xe(0, 1]
and
(19 Al < 8"(0),

we may repeat the proof of Theorem 2 and to obtain the following
proposition.

ProposiTioN 1. If S: [0, 1] —=[0. 1] satisfies conditions (31)-(31i1) and if
there is a nonincreasing function he L' ([0, 1]) satisfving (18) and (19), then the
operator P given by equation (17) is asymptotically stable.

Conditions (18) and (19) are quite restrictive. Consider as an example the
parabolic transformation

S(x)=2x{1—-x), xe€[0, 1],

and the sequence &, of independent random variables with density ¢g(x) = 2x.
In this case, /i(x) =2 and S’(0) = ||hll. Thus, (19) is not satisfied. However,
using another technique, we may prove a theorem where inequalities (18) and
(19) are replaced by essentially weaker conditions.

THeoreM 3. Let S: [0, 1] — [0, 1] be a transformation satisfying condi-
tions (31)—(3m). Assume that the density g satisfies

(20) 0 <g(x) < Kx, xe(0,1],

with positive constants r and K, and that there exists a constant x €(0, 1) such
that

(21) K2 Yx+r) <1, where 1 =15(0).
Then the Markor operator P defined by (17) is asymptotically stable.

Proof of Theorem 3. Fix an a €(0, 1) for which (21) holds true and

denote by D, the subset of D([0, 1]) consisting of all functions f which satisfy
the inequahty

(22) f) < My(f)x*  for xe(0, 1],

where the constant M, (f) depends on f. It is evident that D, is dense in
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D([0, 1]). Fix feD, and set f,=P"f, n=0,1, ... Then
A ! x\1
(23) frort0 = [Ps /g (1 ) av.
Using the 1nequality g(x) < Kx', we obtain

1
(24) j;l+1('\’) X K ‘PS./;I ,+1dy

Denoting the second factor in the rlght-hand side of (24) by w(x) and
applying Lemma 1, we obtain

(25) )< K/x for xe(0,1] and n=1, 2, ...

We may derive an explicit formula for the function f,. First, note that
(cf. [8])
qil 1
’ S ISis7 T

Thus from equality (23) we have

,f(Sj_ ! (,V)) lsj[aj.aj+ 1)(."")-

g-11

26 -
(26) Su 1 (x) = ,Z,,IS(S )]

dy
¥

fn(s (‘))15J[a’a1+1}(.})g( )

Now by an induction argument we are going to show that the functions
f,, satisfy the inequalities

(27) i< M, (f))x* forn=1,2,...,

where M, ,(f) =yM,(f)+f with some constants 3, ff, 7 <1 which do not
depend on f. Thus assume (27) for a given n> 1. Since

K
T <
A(1/2) (a+7r)
we may choose ¢ > 0 so small that

K
. <1
(A—e)(1/A—¢)* (o +7)

=
..

From the continuity of the functions y —S)(S7'(y)) and y —=[S7' ()]
follows the existence of a positive constant d < §, (a,) such that

(28) SUST' () =S (ST ) —e=i—r for 0Ky <3
and

(29) ST'"MY =[S 0)]) —e=1/i-¢c for 0K y<4.
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Further, from (29) and S;'(0) = 0 it follows that

(30) ST'y) = (1/Ai—g)y for 0<y<s.
The lirst term in the sum (26) may be estimated as follows
1 dy
31 B._——,,S’ 15 0y ()
(31 1 ’S' ST T( ))lf( 1) Sqlay, 2)(1’)9 y
1 d
SKX [ (ST )+

(6. 111(0.8] 1 (Syton’"

+Kx" |

EEE——
[xlln(os,(,,z,,S' (Sl 1 ))f( 1 (}’)) r+1'

Using the inequality
LT W) < ML(N)/IST ()]
and (28), (30), we obtain

(32 Kx |

_ dy
1 ST ) =5
[x,l];-\(O.J]Sl (Sl 1()’)) ( : y)y *

KM, () v M)
S B 1X at+r+1 S v )
(A=e)(1/2=e)  x1y~o0.8Y X!

It is obvious that
dy 9! . dy
-1 Z | IS7(s~1 ) =
(J’))I i= 1s,[a,.a,H)| /(S (}’)|

forj=1,2,...,q—1. For y > §, inequalities S; ' (y) = S; ' () and (25) imply

(33) |

J[a o

LS ) < K/STH9).
Therefore,

Kx

[x. 1]1N(5.5 (@)

| —I
S,(Sl 1( ))f( 1 (})) r+l

B K2y 5’1‘;2) 1 < K?
S5 @ ) s sito Y Ssi@e

Consequently, we obtain

. 1 X dy
(34) KX’ | e (ST ) 55 <
[x.l],\(é.sl(az))sl (Sl 1(}’)) : y 1

=~
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where ¢ = K?/S7'(8)8"*". Inequalities (31), (32) and (34) imply

(35) B, < ﬂ"—(‘({)i for every x€(0, 1].
Now define
q- ll dy
) s g, (5 )

From (25) we obtain lmmedlately

_ K
f,,(Sj"(y))sa— for j > 2, yeS;[a;, aj4y).

2
Using this and inequalities (20) and (33), we may evaluate B, as follows:

B <——K2xrq—l L 1 (,V)—dy +
2 S o= Siapais (V)
= et A G €1) A A
K?x 1! 1 dy

+— o fe=Tro Isitapa;e p W) 571
Az  j=2[x.1)n0b.1] Sj(Sjl(}’))l i+ .VH

szr g-1 1 1 dy q-1 1 d_)) )
< e g Mres IS;(S; T )]
(Z . .fyr+l Z b ( IS;(S;‘(V))'

r+1
a \j=20Cjx j=2 Sjlajajy )

K*9_'1 K?
< —— — [
< .
azrj=2 ('j ajy b’+l

Setting
K? 19211 1
d=— (“ X+ —u)
a, \r;=¢; b
we have
(36) B, <d/x* for x€(0, 1].

Combining (35) and (36) with equality (26), we immediately obtain
.f;|+l(x)< Mn+l(f)/x1 for XE(O, 1],

where M, (f) =M, (f)+c+d.
Thus we have proved that f,(x)<M,(f)/x* implies f,,(x)
<M, (f)/x* for n=1,2,... Now, we are going to show that

(37) Ji(x) < M (f)/x*.

However, in this case we cannot use inequality f,(x) < K/x. Instead of
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that we may use inequality (22) to obtain

KMo(f) KMo(f) 1e2! | ‘]1
Sl—l(a))aér+l + ( Z_ )

Silx) < [}'Mo(f)'i‘(

rj=26€;

This implies (37) if we denote by M, the term in brackets and completes the
proof of inequality (27). Now recall that » < 1. Thus for sufficiently large n,
say n > ng(f), there exists a real M, > (c+d)/(1—7) such that

Lix)< M /x* for xe€(0, 1].

Since M,/x" is integrable on [0, 1], this proves that P is weakly constrictive.
Finally, from (20) it follows the existence of u > 0 such that

f,(x) >0 for xe(0, u); n>ng(f).

Thus all of the conditions of Lemma 2 are satisfied and the proof is
complete. O

4. Final remarks.

ExampLE 1. Let S;(x) = Ax(1—x), x€[0, 1], with a constant Ae(l, 4].
Then there is a sequence ¢, of independent random variables such that the
Markov operator P corresponding the random dynamical system

Xp+1 = S}.(xn) én

1s asymptotically stable.

The proof is immediate. First note that S, satisfies conditions (3i)-(3iii)
and that S,(0) = 4. Pick a constant

If we define the density g by the equality
g(x)=0r+1)x

then condition (21) of Theorem 3 becomes

r+1

— < 1.
JAr+Y)

Consequently, all the assumptions of Theorem 3 are satisfied.

As illustrated in the following example, the condition KA* /(@ +r) <1
in Theorem 3 is quite essential.
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ExampLe 2. Consider the random dynamical system

Xpt1 = S(X") éna

where S(x) = x, x€[0, 1], and the random variables ¢, have the density
g(x) = 2x. Since P f(y) = f(v), from (17) it [ollows

! 1
(38) P9 = 2x [ ()7 dy.

Set f, = P" f, and pick the initial density f, = 1. From (38) by an elementary
calculation we obtain

N I
fo(x) = 2"[1—x )3 (= 1Y (inxy

j=0 J!

,  x€(0,1].

Now take an arbitrary constant ¢ > 0. Then

) n—1 ]
Ja(x) < 2”[1—&; 5y (In 1/e)

for xele, 1].

i=o J!
Further [rom the obvious equality
1 n—1 l 1 j @n /e ; n
_=eln1/e=z(n,/8) +e (ln—), 0<6 <,
€ =0 J! n! ¢

it follows that

c(1/e)? 2"(In 1/¢)" - (In1/e%)"

n! n!

ful0) <

for xe[e, 1]

and implies that the sequence f, = P"1 converges uniformly to zero on [z, 1].
Since P is a Markov operator, this implies 1n turn [8] that the sequence
\P" [} converges to zero in L'([¢, 1]) norm for every ¢ > 0. Consequently,
the equation Pf = f has no solution in L'([0, 1]) except / = 0.

Remark 1. Observe that if S(0) >0, then we may omit assumptions
(12) and (21) in Theorems 2 and 3, respectively.
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