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Abstract. We define for almost-product manifolds (M, J) the J-projective torsion, whose
nullity characterizes the semi-torsionless J-connections. We then consider Prvanovic's J-projec-
tive curvature tensor, giving a new treatment which includes a complete study-of J-projective
flatness. We consider also an “axiom of planes” for almost-product manifolds, and study its
consequences and the “free mobility” in the para-Kaehlerian case, giving three characterizations
ol the spaces of constant J-sectional curvature (see [2], [5)).

1. Introduction

As it is well known, E. Cartan [1] defined for a Riemannian manifold
the axiom of the plane and the axiom of free mobility, and proved the
equivalence of the property of constant curvature with each of such axioms,
and also with the existence of a geodesic representation in the ordinary
space. Later, Yano and Mogi [10], Tashiro [9] and Ishihara [3] considered
the analogues for the almost-complex and Kaehlerian cases, proving the
equivalence of the condition of constant holomorphic sectional curvature
with either the axiom of holomorphic planes, the axiom of holomorphic free
mobility, or H-projective flatness.

On the other hand, Prvanovi¢ [S] and Sinha-Kalpana [7], [8], treated
the analogue of H-projective flatness for almost-product and para-Kaehlerian
manifolds (for the later see Rasevskii [6], Libermann [4]). However, Prvano-
vi€’s proof on the equivalence of H-projective flatness with the nullity of the
H-projective curvature tensor is partially incorrect, because of the expression
(4.7) in [5]. The desired equivalence can only be obtained with some
restrictions (see our Theorem 2.5.1), and supplementary conditions must be
given in the residual cases. Moreover, Sinha [7] actually gave no proof of the
result, and limited the study to the almost paracomplex case.

In the present paper, we give the analogues of the earlier three charac-
terizations for the para-Kaehlerian case, in the context of general almost-
product manifolds (M, J), that is, with J being not necessarily almost
paracomplex. We introduce the concept of J-projective torsion: give a new
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treatment of the J-projective curvature of Prvanovic, including the complete
study of the said equivalence theorem; define the axiom of the plane and
prove a related characterization theorem for J-connections; and finally
consider the concept of J-free mobility.

2. J-projective torsion and curvature

21. Half-torsionless J-connections. Let (M, J) be an almost-product n-
manifold. We denote by L, and L,, respectively, the (+1)- and (—1)-
eigenbundles corresponding to J, and by /; and I, the corresponding
projection operators. We put

ry=rankL,, r,=rankl,, k=r—r,.

Sinha [7] defines the half-torsionless J-connections as the J-connections
whose torsion tensor T satisfies

pT =0,
where p is the operator on (1, 2) tensor fields A on M defined by
(PA)X, Y)=A(X, )+A(UX,JY)+JA(X, JY)+JA(:]X, Y).

He also proves several results on such connections. In particular that
there always exists such a connection, say V, obtained form any J-connection
V by

V=v-4pT

In order to see the geometric significance of the half-torsionless prop-

erty, we give the following:

ProposITION 2.1.1. Let V be a J-connection on (M, J). Then there exists a
unique half-torsionless J-connection V on M with the same geodesics as V.

Proof. The half-torsionless J-connection
V=v-4pT

has the same geodesics as V, since the difference tensor A = —§pT is
antisymmetric.

As for uniqueness, if ¥ is a half-torsionless J-connection with the same
geodesics as V, we have that the difference tensor 4 of V and V satisfies

VY =Py Y+A(X, Y)=Vy Y=4(pT)(X, Y)+A(X, Y).

A is antisymmetric. On the other hand, since V7 is half-torsionless, we
deduce, since p? = 4p,

0=(pT(X,Y)
=(pN(X, V)-3(pD(X, V)+3(pT)(Y, X)+(pA (X, Y)—(pA)(Y, X),



Projective torsion and curvature 309

and thus
(rA)(X, Y) = (pA)(Y, X).

But from this, applying the antisymmetry of A and the fact that ¥ and 7
are J-connections, we obtain

.A=0. qed

2.2. J-projective transformations. J-projective torsion and semi-torsionless
J-connections. Let ' be a J-connection on the almost-product manifold
(M, J), and let us consider a curve v(f) on M such that

(221) Viv =aly+B(®)J7,

where 7 denotes the tangent to y and a(t), §(¢) are functions of the par-
ameter ¢.

DermniTion 2.2.1. ([S], [7])- A curve y on (M, J) will be said a J-plane
curve if it satisfies (2.2.1). :
Since

ViJy =JV;3 =a(Jy+B(1)7,

it is clear that the geometric significance of such a curve is that the plane
generated by 7 and Jy (or the line, if Jy = Ay) is preserved by parallel
transport along the curve. We can add:

ProrosiTiON 2.2.2. Let V be a J-connection on (M, J). Then there exists a
(not necessarily unique) half-torsionless J-connection V with the same J-plane
curves as V.

Proof. As we know, the J-connection V defined by
V=v-1pT
1s half-torsionless and has the same geodesics as V. Thus, for every vector
field X we have
Py X =Py X.
In particular, for the field y of tangents to each J-plane curve
V;v="P;7=a(®j+B0)Jj. qed.
‘Then we have in a way analogous to [7]:

DerFiNITION 2.2.3. Two half-torsionless J-connections ¥ and ¥ on (M, J)
will be said J-projectively related if they have all the J-plane curves in
common.

And:

ProposiTioN 2.2.4. Two half-torsionless J-connections V and V orn (M, J)
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are J-projectively related iff there exist 1-forms 3 and § on M, such that
(22.2) PyY
=Py Y+3(X) Y+3(NX+3UX)JY+IUNIX+FX)Y-3(JX)JY.
We deduce immediately the:

ProposiTION 2.2.5 (see also Prvanovi¢ [5]). Two torsionless J-connections
V and V are J-projectively related iff there exists a 1-form 8 such that

f/'x Y=V, Y+3(X) Y+ IV X+3(UIX)JY+I(JY)IX.
DeriNiTION 2.2.6. Let V and ¥ be two half-torsionless J-connections on

(M., J). A transformation ¥ ~ i will be said a J-projective transformation iff ¥
and V satisfy (2.2.2) for certain 1-forms 3 and 9.

If now we take the antisymmetric part of both sides in (2.2.2) with
respect to the covariant indices, we obtain, being T and T the respective
torsion tensors of V and V:

TX.N=TX.VN+3X)Y-3(V)X-3UX)+3(JY)JX.

Let {¢;) be a local frame adapted to J, and let |¢'! be its dual. We then
write, T being the torsion of ¥,

C(X)=¢(T(X,¢)),
so that
C(X) = é(T(X, &) = C(X)+n3(X)—kI(JX).

DeriniTion 2.2.7. If n? # k2, the J-projective torsion 7 of V is defined by

_ 1
JT(X,Y)=T(X, Y)—PTH[{nC(X)+kC(JX)} Y-
—inC(Y)+kCUY) X =inCUX)+kC(X)}JY+ {nC(JY)+kC(Y)} JX].
And we have, by computation, the following result:

ProposiTION 2.2.8. The J-projective torsion .7 is a J-projective invariant,
that is, it is invariant under J-projective transformations.

Also, we immediately have:
T(X,Y)=-T(Y, X)
and

é¢(7 (X, ¢)=0.
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Then, we have the following generalization of the almost paracomplex
case of Sinha:

DeriNiTION 2.29. A J-connection ¥ on (M, J) will be called semi-
torsionless if its J-projective torsion .7 is zero.

It is easy to prove:

ProrosiTION 2.2.10. Every semi-torsionless J-connection V on (M, J) is a
half-torsionless J-connection.

And:

PrROPOSITION 2.2.11. There exists a semi-torsionless J-connection on (M, J)
iff the Nijenhuis tensor N of J is zero.

We have also:

ProrosiTioN 2.2.12. A half-torsionless J-connection V on (M, J) is semi-
torsionless iff it is J-projectively related to a torsionless J-connection.

Proof. Ifj7 is semni-torsionless, an T denotes its torsion, we consider the
J-connection V which is J-projectively related with ¥, being 9 and 3, with
the notations of Proposition 2.24, equal to

I(X)Y = —Z(nz—l_kzj[{nC(X)+kC(JX)} Y- {nC(JX)+kC(X)}JY].

Then it is easy to prove that ¥ is a J-connection with torsion T such
that

T(X,Y)=T(X, Y)=0.

Conversely, if V is J-projectively related to a torsionless J-connection,
since .7 is invariant by J-projective trnasformations, we deduce .7 = 0. That
is, ¥ is semi-torsionless. q.e.d.

2.3. J-projectively flat J-connections.

DeriniTioN 2.3.1 (Prvanovi¢ [5]). Let ¥ be a J-connection on the
almost-product manifold (M, J). V will be said J-projectively flat if, for each
x€ M, there exists at least a neighbourhood of x on which V is J-projectively
related to a torsionless J-connection with zero curvature.

Let V be a hall-torsionless J-connection J-projectively flat. Then the
connection ¥ given by means of (2.2.3) is torsionless. Indeed, by Proposition
2.2.8, its torsion is zero since V is J-projectively flat. Moreover, the torsion-
less J-connection F is also J-projectively flat, and thus we have:

ProrosITION 2.3.2. A half-torsionless J-connection V is J-projectively flat



312 E. Reyes, A. Montesinos and P. M. Gadea’

iff there exists a torsionless J-projectively flat J-connection which is J-
projectively related with V.

Hence, in account of Proposition 2.2.11, we obtain:

CoroLLARY 2.33.. If (M, J) admits a half-torsionless J-connection J-
projectively flat, then N = 0; that is, (M, J) is locally product.

2.4. Some J-projective invariants. The J-projective curvature tensor. Let V
and V be two torsionless J-connections J-projectively related by

(24.1) VY = Py Y+3(X) Y+ 3(Y) X+ 3(JX)JY+3(JY)JX,

and let R and R be their respective curvature tensor fields. Then if we write
X, =LX, X,=LX, etc,.

we have from direct computations, _

R(X,NZ,—R(X, NZ; = 2{(Tx (D Z,—(Py H(X)Z, +(7x )(Z)) Y, ~

—(PyNZ) X, —23(X)ZY Y, +23(Y)IZ,) X, }
and

R(X,Y)Z,-R(X,Y)Z, _
= 2{(Px (YD Z,—(Py (XD Z, +(Px H)(ZD) Y, ~
—(Vy(Z2) X, —28(X,) 3(Z,) Y, 4+ 28(Y) 8(Z,) X, },
from which if we write '
A(Y, Z) = —(Vy ) Z+3(Y)9(D)+9(Y) (U 2),
A,(Y, 2) = A(Y, Z,) = —(7y 9)Z,+29(Y,) §(Zy),
A, (Y, Z) = A(Y, Z;) = —(Vy 9) Z,+28(Yy) 8(Z>),
B(X,Y)Z=R(X,Y)Z-R(X,Y)Z,

(24.2)

we obtain
B,(X,Y)Z=B(X, Y)Z,
=2{A, (Y, 2) X, — A, (X, Z) Y, — A, (X, Y)Z, + A, (Y, X)Z,),
and .
B,(X, Y)Z =B(X, Y)Z,
=2{4,(Y, 2) X, - 4,(X, Z) Y, - 4, (X, Y)Z,+A,(Y, X)Z,}.

Now let B denote an"eirbitra}y (1.3) tensor field on M; we write, with the
usual notations

Sp(X, Y) =€ (Ble, X)Y), §,,(X,Y)=S3(X, ),
SBZ(X’ Y) = SB(Xa YZ)
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In particular, for B given by (2.4.2) we have
(243) S5, (Y, 2)
=81,(Y,2)=21r  Ai(Y, 2) = A (Y1, Z)- A (Z,, )+ A, (Y, 2)]
= -24,(Z,, V)+@2r,+ 1) A, (Y, Z2)—A,(JY, Z),

and also
(244) S5,(Y, Z2) = 2{r, A, (Y, 2)— A (Y, Z)— A3 (Z, V) + A, (Y, Z))
= —2A,(Z,, V)+Q2ry+ D A, (Y. 2)+ A, (JY, Z).
Solving for A, in terms of Sp and for 4, in terms of Sp, we put
. A (Y, Z) = ASp (Y, Z)+ uSg, (JY, Z)+vSp,(Z,, Y),
Ay (Y. Z) = ' Sp,(Y. Z)+ ' S5, (JY. Z)+V Sg,(Z;, V).

Substituting the values of Sy and Sp, given by (2.4.3) and (2.4.4) we
obtain:

L= , =——, V= ———
ai-1) M Ao 202=1)
A T | - , 1

“Tir-y P Taeoy T T2ei-y

Consequently,

B, (X, Y)Z = 2[14Sy, (Y, Z)+uSa, JY, Z)+vSp, (Zy1, Y)} X, —
— 1ASg, (X, Z)+ uSg, (JX, Z)+vSp, (Z,, X)} Y1 —
— 48, (X, Y)+uSp, (JX, Y)+vSp (Y, X)NZ,+
+ '.lSBl(Y, X)+uSg, (JY, X)+vSg, (X;, Y)| Z,],

’

and since Sp = S;;—S;,, we have that the tensor field P, defined by
24.5) P (X.Y)VZ=R(X,Y)Z, -
=2[0A8, (Y, Z)+puS,, JY, 2)+vS,,(Z,, ¥)} X, —
— A8 (X, Z)+ uSi g (U X, Z)+ VS p(Zy, X)) Yy —
— A8 1 (X, V) +uS,  (JX, Y)+vS, (Y}, X)| Z, +
+ 481 (Y, X9+ uS,  (JY, X)+vS, (X, ¥)] Z,]

is a J-projective invariant, well defined if 0 <r, # 1. In the same way we
obtain the J-projective invariant P, whenever 0 < r, # 1.

7 — Annales Polonici Math. 48.3
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DerINITION 2.4.1. We call J-projective curvature tensor of a torsionless J-
connection V to the tensor field

P=P1+P2.

It is not difficult to prove that P coincides with the tensor P in Section 3

of Prvanovi¢ [5].
Let F be a torsionless J-connection and R its curvature. We will use the

following notations:
R,(X,Y)Z=R(X,Y)Z,;
S,(Y,Z)=¢é(R(e;, Y)Z,);
A(Y, Z) =48 (Y. Z)+uS,JY, Z)+vS§,(Z,, Y):
P(X.Y)Z=R,(X,Y)Z -
—2[A, (Y, Z)X,— A, (X, Z)Y,— A, (X, Y)Z,+ A, (Y, X)Z,]:
PUX,Y)Z=P,(X,, \VZ=P(X,, WZ,;
Q(X, Y, Z) =(Vx AY, Z2)-(Vy A)(X, 2Z);
O (X, Y, Z) = (Px A)Y, 2)-(Py A )X, Z);
Q1(X, Y, Z) = (Px, A, Z)—(Py, A)(X,, 2);
and similar expressions for R,, §,, etc.

ProposiTioN 24.2. (i) If ry =2, then P} =0 and Q} is a J-projective
invariant.
(1) If ry =2, then P =0 and Q3 is a J-projective invariant.

Proof. (i) From (24.5) we can compute

(246) PI(X,Y)Z=P,(X,,WZ=R(X\, ")Z,—

1 1

—r1+l F—1 zrls(,yla Z1)+S(Zl, Yl): X, -

1
1 i S(X1, Z)+S(Z,, Xy)) Y, —

rl_

~18(X, -S(, X))} Z, |

If P! denotes the connection induced by F on each leaf of the foliation
L, then the expression (2.4.6) is precisely that of the classical projective
curvature tensor of V', Hence, for r, =2, we have P} =0.

Now, suppose that ¥ and V are J-projectively related as in (2.4.1). Then

A, Z)—-A(Y,, Zy) = —(Vy, NZ+29(Y) 3(Z)).
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After computation,
(Px, A)(Yy, Z)—(Py, A)(X,, Z}) .
= (Px, A) (Y1, Z)—(Py, A) (X1, Z)+8(P(X,, Y1) Zy).
And we obtain our claim because the last term is zero when r, = 0.
(i) Analogous to (i). q.ed.

In order to study a symmetry condition for P (see Proposition 2.4.4)
that will also become useful in Section 3, we consider the following condition
upon R:

(24.7) ' .~ RUX,X)X =aX+bJX,
meaning that this relation is fulfilled for every vector Xe€ TM with a, be R
dependent on X.

ProrosITION 2.4.3. Let V be a J-connection. Then, its curvature R satisfies
(24.7) iff there are 2-covariant symmetric tensor fields a, b on M such that

(1) a(X,, V1) =a(X,, Vo)) =b(X, ¥)=b(X,, Y,)=0;
(i) R(X,, )Z,+R(Z,, V)X, ={a(X;, ))+b(X,, )} Z, +
+{a(219 },2)+b(zlv YZ)} X];
(i) R(X,, Y)Z,+R(X,,Z,) Y, = {a(X,, O)=-b(X,, o)} Z, +
. +'{a(X1,Zz)"b(X1’Zz)} Y,.
Proof. If (2.4.7) holds it is clear that there are 2-covariant tensor fields
a, b on M, which we can always consider symmetric, such that
" RUX, X)X =a(X, X)X +b(X, X)JX.

Let {e,, ¢,} be an adapted frame, that is, Je, = ¢,, Je, = —e,, and let
{e*, ¢*} be its dual coframe. If X = X“¢,+ X“¢,, substitution on the above
formula gives (i), (ii), (ii1) by identification of the coefficients of the resulting
polynomial in the components of X.

Conversely, if (i), (ii), (ili) are satisfied, we obtain

RUJX, X)X =R(X,—-X,, X;+ X ))(X;+X3)
=2a(X,, X)) X+2b(X,, X,)JX. qed.
ProprosITION 2.44. A torsionless J-connection V on an almost-product

manifold (M, J) with r,, r, # 1, satisfies condition (24.7) iff its J-projective
curvature tensor P verifies

(2.4.8) PUX,JY)Z = P(X, Y)Z.

Proof. For every vector field X on M we have, with the usual
notations, X = X, + X,. Then it is immediate, since P(X, Y)= —P(Y, X),
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that condition (2.4.8) is equivalent to
P(X], Yz)zl = P(X|, Yz)Zz =0.
But we have, in account of (2.4.5), that

P(X\,Y;)Z, =P (X,, 11)Z

=R(X1, Yz)Zx“ {S(Yz, Zl)X1+S(Y2, X1)21}

ri+1
and, similarly,

P(Xn Yz)zz = Pz(Xx, Yz)Z

=R(X,, V) Z,+

1
S(X1,Z) 2,+5(X,, ) Z,} .
r,+1

Consequent]y, if P(Xl, YZ)ZI = P(Xl, Yz)Zz = 0,
RUX, X)X = 2[R(X,, X5) X, +R(X,, X) X5]

=2

1
p I{S(XZ' X)X +8(X,, X)X} -
1
- S(X1, X)X +S(Xy, X)) X,
r2+1 .
2
= - X X Xs
r,+lS(X2’Xl)(X+JX) r2+15( 1> X2)( JX)

and thus we have condition (2.4.7).

Conversely, if V satisfies this condition, we have, applying the results of
Proposition 24.3, again with the usual notations, anld from the Ist Bianchi
identity, '

#(R(es, Y1) Z,+R(Z,, Yy)e,)
=e¢'(R(es, Y2)Z,~R(Y;, ) Z,—R(e,, Z)) 1))
=28(Y,, Z)) =(1+r)a(Z,, )+b(Z,, Y,)),
that is

r1+1
2

(24.9) S(Y, Z) =21 (a(z,, ) +b(Zy, Y}

Analogously we obtain

(2.4.10) S(v,, Zy) = — 2+

{a(Y,, Z,y)—=-b(Y,, Zz)}~
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But, since V is torsionless, we have
R(X,, V) Z,+R(Z,, Y)X, =R(X,, Y Z,—~R(Y,, X)Z,-R(X,, Z,) Y,
=2R(X,,))Z,-R(X,,Z)) Y,
= t{a(X,, ))+b(X,, Y1) Z, +
+1a(Z,, ))+b(Z,, o) X,.
Identifying the components on L, and L,, we get
2R(X,, ))Z, = {a(X,, L))+ b(X,, L)\ Z, +
(24.11) | +{a(Z,, ) +b(Z,, V) X,,
R(X,,Z,)Y,=0.
Similarly,
2R(X,, Y))Z, ={a(X,, V,)-b(X,, Y,)) Z,+
(24.12) +1{a(Z,, Z,)-b(X,, Z,)) Y,
R(X,,Z,) Y, =0.

Substituting (2.4.9)(24.12) in the expressions of P(X,, Y,)Z, and
P(X,, Y,)Z,, we deduce

1 ry+1
P(X,, ;3)Z, = R(X,, Yz)zn—r 1 [12 {a(Z,, ) +b(Zy, o)} X, +
1

r1+
2

+ : {a(X,, )+b(X,, Y3)} ZxJ =-0,

and

' 1 ra+1
P(X,, V) Z, = R(X,, Yz)zz+r 1 [— 22 {a(X,,Zz)+b(X1,Zz)} Y, -
2

r2+1

(a(X,, Y)—b(X,, )} Z, ]= 0. qed.

25. Torsionless J-projectively flat J-connections.

THEOREM 2.5.1. A torsionless J-connection on the almost-product manifold
(M, J) is J-projectively flat iff: \

(l) P=0’ When rla r2¢{la 2};

(i) P=Q} =0, when r, =2, ry¢{1,2};
(i) P=Q3% =0, when r, =2, r,¢{1, 2};
(ivi P=Q} =Q3=0, when r, =r, = 2;
(v) P, =0, when r; =1, r; ¢1{1, 2);
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(vi) P, =0, when r, =1, r,¢{1, 2};
(vi) P, =01 =0, whenr, =2, r,=1;
(vi) P, =Q3=0, whenr, =1, r, =2

Moreover, if ry =r, = 1, every torsionless J-connection is J-projectively
flat.

Proof. (i) If such a connection V is J-projectively flat, then there exists
at least locally a torsionless J-connection V, J-projectively related with P,
such that R = 0; but then § =0, from which A =0 and so P =0, hence,
P=0.

Conversely, if P =0, then

R(X,Y)Z=2{4,(Y, )X -A,(X,Z)Y—A,(X, )Z+ A, (Y, X)Z +
+A,(Y,Z2)X—A,(X,2)Y-A,(X, Y)Z+ A,(Y, X)Z}.
If there exists locally a 1-form 3§ such that
(25.1) A(Y, Z) = (Py ) Z—9(Y) 9(Z) - 9(JY) 8(J 2),
then AV is J-projectively flat. Indeed, if (2.5.1) is satisfied we deduce that B,
defined as B(X, Y)Z=R(X,Y)Z—R(X,Y)Z is equal to —R(X, Y)Z,

from which R(X, Y)=0.
We write (2.5.1) as

(Vy9Z =AY, 2)+3(Y)3(2)+3(JY)S8(J2),
from which we obtain, since the torsion of V is zero, the integrability
condition
RX, V)3 =0y A, )=(Fy X, )+ (Px H(Y) 3= (Fy H(X) 9+
+3(N)Px3=3(X) Py $3+(Vx HJY)SJ —
—(PyHUIX)IT+IJIY)(Px NI -3 X)(Vy DJ.

Contracting with Z we obtain the integrability condition

(2.5.2) (Px A)Y, Z)—(Fy A)(X, Z) =0
that is,
0(X,Y,Z)=0.
We note that
X, Y, 2)=-Q(Y, X, 2).
Substituting in the 2nd Bianchi identity
(2.5.3) (Px R)(Y, ZYW+(V,R)(X, YYW+(VyR)(Z, X)W=0
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\the expression of R, we get

(254 QX,Z, MY, +Q0:(X,Z, WY,+Q,(Y, X, WZ, +
+0,(Y, X, MZ,+ 0, (Y, X, W)W, +0,(Y, X, Z) W, +
+Q, (X, Z, YW +0,(X,Z, )YW,+0Q,(Z, Y, W)X, +
+0:(Z, Y, W) X,+0,(Z, Y, YW, +0,(Z, ¥, X)W, = 0.

From this we have by contraction, and with the usual notations,

(2.5.5)_ 0=¢{Q,(X,Z,e)Y1+0:(X,Z, &) Y,+Q,(Y, X, &) Z, +
+0,(Y, X,e)Z,+ Q. (Y, X, Z)e,+Q,(Y, X, Z)e, +
+Q,(X,Z,V)e,+0,(X,Z,Y)e,+Q,(Z,Y,e) X, +
+Q:(Z, Y, ) X, + 0, (Z, Y, X)e,+Q:(Z, Y, X)e,

= cicl {(1+r)Q,(X, Z, )+(1+r,)Q.(X, Z, Y)}.

X,Y,Z

Substituting now in (2.54) W by JW, and contracting again we get

256 0=¢10,(X, Z, Je) Y, +Q:(X, Z, Je) Y,+Q, (Y, X, Je) Z,
+0,(Y,. X, Je) Z,+ O (Y, X, Z)e,— Q,(Y, X, Z)e,
+0,(X,Z,Y)e,—Q,(X,Z,Y)e,+0Q,(Z, Y, Jey) X,
+0:(Z, Y, Je) X, +Q,(Z, Y, X)e,—Q:(Z, Y, X)e,}

= cicl {(1+r)Q0,(X, Z, Y)—-(1+r))Q,(X, Z, V)}.

X,Y,Z

From ('2.5.5) and (2.5.6) we obtain

25.7) cicl 0,(X,Y,2)=0, cicl Q,(X,Y,2)=0,
XY.z XY,z
from which

cicl Q(X, Y, Z) = 0.

X, Y,Z
On the other hand, also from (2.5.4) we obtain, from (2.5.7),
(258) 0= ei {Ql (X3 €, W) Yl +Q2(X, €, W) Y2+Q1 (Ys Xa W)ea +

+0,(Y, X, W)e,+Q, (Y, X, e) W, + 0, (Y, X, ) W, +
+Q1(X’ (8 Y) WI+Q2(X» eia Y) W2+
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+0:(e, Y, W)X, +0,(e;, Y, W)X, 4+ Q4 (e;, Y, X)W, +
+Q:(e, Y, X)W,
=0, (X, ), W)+ 0, (Xy, Y, W)+r @, (Y, X, W) +
+0,(X, Y, W)+ 0Q,(X,, Y, W)+r,0,(Y, X, W).
Let WeL,. We then have
0: (X, Y, W)+ Q, (X, Y, W)+r, O, (Y, X, W) =0.
For X, YeL, we deduce that, if ry # 2,
0,.(Y;, X;, W)=0.
If XeL,, YeL,, we obtain from (2.5.8)
0, (X, L,, W)+r,0,(Y,, X,, W) =0,
that is, '
0,(X,, Y, W)=0.
If X, YeL, on (2.5.7) we get
Q; (X3, Y2, W) =0.
Whence, if WeL, we deduce that for r, ¢ {1, 2}, we have
o, (X,Y,wW)=0.
Similarly, if WeL,, and ry¢ {1, 2}, we get
Q,(X, Y, W)=0.

Thus, if r,, r,¢{1, 2}, we have that P =0 implies Q = 0.

(ii) Suppose now r, =2 and r,¢ {1, 2}. If P =0, then from the proof of
Proposition 244 we have A(Y,, Z,) = A(Z,,Y,)=0.

Indeed, from P(X,, Y;)Z, =0 we have (see (24.11))

R(Xy, Y)Z, =3[la(X,, ))+b(Xy, Vo)) Z, +a(Z,, Y))+b(Z,, Yo)} X,]
= —R(Y;, X)Z,
= —3[la(X,, Y)+b(X,, Y2)} Z, + 1a(Zy, X)) +b(Z,, X))} Y]
= —tla(X,, Y)+b(X,, Y1)} Z,.
Taking now X,, Z, independent, we deduce
a(X,, h)+b(X,, Y,)=0.
Similarly, from P(X,, Y;)Z, =0, we obtain (see (2.4.12))
a(X,, )-b(X,, ¥;) =0
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and thus a =b =0. Hence, from (24.9) and (24.10) we have S(X,, Y,)
=S(Y,, X,) =0, and thus A(X,, Y;) = A(Y,, X,) =0, for every X,, Y,.
Since by hypothesis Q} =0, it only rests to prove that

Q(X2, Y1, Z))=Q(X, Y2, Z)) = Q(X2, Y2, Z5) =0,
that is,
Q(X,, Yy, Z)=0, (Px,AY,,Z))=0 and (Vx, A)(Y,,Z;)=0.
As for the first one, we consider that since P(X,, Y,)Z, = 0, from (2.5.4)
it follows
(X3, Z,, W) V,-Q(X3, Y,, W) Z,—Q(X,, o, Z)W, +
+0(X3, Zy, L)W2+Q(Zy, Yo, W) X, +0(Z,, Yy, X)) W, =0.
Putting W, = Z,, and being X,, Y,, Z, independent we deduce
(239) Q0(X3,2Z2,,Z)Y,-0(X3, Y5, Z))Z,-Q(X,, V3, Z)) Z, +
+0(X3.Z,. ) Z,+Q(Z,, Y,, 7)) X,4Q(Z,, Y,, X3)Z, =0.
In particular
Q(X2, Z,,Z,) =0,
that is, for arbitrary fields, .
0(X,, Y2, Z)) = —Q0(X,,2Z,, 1)
Since, moreover,

Q(XZs st Zz) = —Q(Yzy Xz- Zz)»

we obtain, from the coefficient of Z, in (2.5.9),

0= ‘2Q(X2, Yz, Zz)+Q(X2, Z,, Yz)-Q(Yzy Z;, X))
=30(X,,Z,, )+ Q(Y,, X,,Z,) =4Q(X,, Y5, Z)).

As for the second one, we have from a =b = 0 that

R(X.Y)=R(X,,))Z,+R(X,, )2,

and thus we obtain
0=(Vw2 R)(X,, Yt)Zl'*'(Vx1 R)(Yy, W1) Z, +(VY, RY(W,, X ) Z,
?(VWZR)(Xn, nZz,.
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But
(Pwy, (X1, Y)Z, = 2{(Py, (Y1, Z) X, —(V, A (X, Z)) Y, —
~(Pw, DX, Y Z1+(Pw, A (Y, X1)Z,} = 0.
If we take Z = Y, we deduce
(Pw, DY, Y) Xy = (P, (X, V) Y, —
~(Pw, (X1, 7)Y +(Pu, A (Y, X)) Y, =0,

from which we obtain

(2.5.10) | (Vw, A(Y,, Y1) =0,

and also

(2.5.11) 2(Vw, A)(Xy, V1) =(Vw, A(Y;, X;) =0,
because r; # 1.

From (2.5.10) we deduce that Vy,A is antisymmetric, and so, from
(2.5.11) we get

(Vw2 A)(X,, Y1) =0.

The proof of the 3rd one is similar.

(i) The proof is analogous to that of case (ii).

(iv) This case follows from (ii) and (iii), since we can apply the previous
proofs, in account of the fact that r,, r, # 1.

(v If r,=1 and r,¢{1, 2}, then P, is not defined, but P, is well
defined. Before considering the condition P, = 0, we note that there exists a
local nonvanishing vector field U of L, which is basic, that is, which veriﬁcs

[Xl’ U]ELI
for each X;€elL,.

For an arbitrary X we have

L(WPxU—=VyX—[X,U) =L, (Py, U+ VU=V fU-[fU, U]
~f[U, UI+(Uf)U) = Py, U =0.

Accordingly, there exists a 1-form B, such that g,(X) = B,(l, X) and
PxU =B (X)U.
Moreover, it is immediate that

R(X, Y)U =@B,)(X, Y)U.
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So, in general we have
(2.5.12) R(X, Y)Z, = (dB,)(X, Y)Z,.
Now, if P, =0, then
(2513) R,(X,Y)Z
=24,(Y,2) X, -A, (X, 2),-A, (X, NZ,+A, (Y, X)Z,}.

If there exists locally a 1-form 3 such that
(2.5.14) A,(Y,Z)=(Vy9)Z,-29(1))9(Z,),

then there exists a torsionless J-connection ¥ J-projectively related with ¥
such that R,(X, Y)Z = 0. But then, in a way parallel to case (i), we have
that the integrability condition of (2.5.14) is

(Vx A)(Y, 2)—(Vy A)) (X, Z) =0,
that is,

0,(X,Y,2)=0.

But, since P, =0, by using the same method as in (i), that is, applying
the expression (2.5.13) of R, in (2.5.3) for' W = W, €L,, we deduce the Q, part
of (2.5.4)+2.5.8), from which we have Q, =0 for r, ¢ {1, 2}.

Hence, if we define the 1-form 3, by

3, (X) = 8(; X),

then the connection ¥ given by

e Y=Vy Y49, (X) Y+ 9,(Y) X+, (UX)JY+9,(JY)JX —
~4 {8200 Y+ B (Y) X+ B,UX) Y+ B, (JY) I X}
=Vx Y42 {3 (X) Y+ 9, (V) X} -B,(X) Y,
satisfies
R(X,V)Z =0,
as desired, taking account of (2.5.12).
(vi), (vii), (vii) We need only combine the previous techniques.

Finally, if r;, =7, =1, we have as before the 1-forms #;, and §,. If we
consider '

B =B, +8,
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then the torsionless J-connection ¥ defined by
PxY =Py Y=41B(X)Y+B(Y)X+BUX)JY+BIJY)IX]
=Vx Y-8, (X0, —-B,(X) Y,
has zero curvature, q.e.d.

2.6. The para-Kaehlerian case. Now, we suppose that (M, J, g) is para-
Kaehlerian, ie, J2=1, g is symmetric and nondegenerate, g(JX, Y)+
+g(JY, X) =0, and VJ =0 if V stands for the Levi-Civita connection of g.
We call V the para-Kaehlerian connection.

Let S be the Ricci tensor of the para-Kaehlerian connection V. Then it is
immediate to prove S(JX, Y)+S(X,JY)=0. If dim M > 2, then we deduce
from the expressions of A; and A, in terms of S, and having in mind that
ry=ry, (=r):

1
X,Y)=—-28(X,Y).
AX,Y) = —=S(X, Y)
Consequently,

1
261) P(X,V)Z=R(X,V)Z-——I(S(Y,Z)X-5(X.2) Y+

+S(Y,JZ)JX —S(X,JZ2)JY-2S(X,JY)JZ},
and"

(2.6.2) PUX,Y)Z+P(X,JY)Z =0.

From (2.6.1), if P =0, we obtain after calculation
g
S(X,Y)=-—g(X,Y),
2r

where ¢ denotes the scalar curvature. Thus, since dim M > 3, o is constant.
Hence, if we put o =cr(l+r), the Riemann-Christoffel tensor has the

expression
R(X,Y,Z,W)=4ic (X, Z)g(Y, W)—g(Y, Z)g(X, W) +
+9(X, JZ)gUY, W)—g(Y. JZ)gUX., W)+29(X, JY)gUZ. W),
that is, (M, J, g) is a space of constant J-sectional curvature (see [2]).

Moreover, since then A(X, Y) =4cg(X, Y), we have Q! = Q% =0, even in
the case n = 4. Therefore we have proved:

ProrosiTiON 2.6.1. A para-Kaehlerian manifold (M, J, g) with dtm M > 2
is J-projectively flat iff P =0 or, equivalently, if it is a space of constant J-
sectional curvature.
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3. J-planes and axiom of J-planes

3.1. The axiom of J-planes. The structure J on an almost-product
manifold (M, J) induces the automorphism J, in T M for each xe M. We
will say that a submanifold W of M is invariant if T, W is J-invariant for
each xeW.

DEerINITION 3.1.1. Let W be an invariant 2-submanifold of (M, J) and V
a J-connection. We will say that W is a J-plane if it is totally geodesic.
Then, if {e,, e;} is a local frame of tangent vectors in W, we have

(3.1.1) Ve € =afje, i,j,k=1,2
for certain functions af;, and also
(3.1.2) Je;=Ple;, i,j=1,2.
Recall that if V is a J-connection, then
V=v—-L1pT
is a half-torsionless J-connection. If the invariant 2-submanifold W is a
solution to (3.1.1), then it also verifies the equation for the associated

connection V. Thus, ¥ has all the J-planes in common V with F, and we
obtain the:

ProrosiTioN 3.1.2. Let V be an.arbitrary J-connection on the almost-
product manifold (M, J). Then there exists a half-torsionless J-connection
which has all the J-planes in common with the given V.

Furthermore, from Definition 2.2.3 we have:

ProrosiTION 3.1.3. If two half-torsionless J-connections are J-projectively
related, then they have all the J-planes in common.

DeriniTioN 3.1.4. We will say that a J-connection ¥ on the almost-
product manifold (M, J) satisfies the axiom of J-planes if there exists, for
each xe M, and each J-invariant 2-subspace E of T, M, a J-plane W such
that xe W and T,W =E.

From the Proposition 3.1.2 we deduce:

ProposITION 3.1.5. If the J-connection V on (M, J) satisfies the axiom of
J-planes, then there exists a half-torsionless J-connection which satisfies the
axiom of J-planes and has all the J-planes in common with V.

If we apply also the Proposition 3.1.3, it follows:

ProposITION 3.1.6. If a half-torsionless J-connection V on (M, J) satisfies
the axiom of J-planes, then any half-torsionless J-connection J-projectively
related with V also satisfies the axiom of J-planes.

Now, we prove the following characterization:

ProrosITION 3.1.7. A J-connection V on (M, J) satisfies the axiom of J-
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planes iff its torsion and curvature tensors T and R satisfy, for every X, the
conditions

(3.13) T(JX, X) = aX +bJX,
(3.14) RUX, X)X =cX+eJX,

for certain a, b, c, e which are functions of xe M and X € T, M. Moreover, the
associated half-torsionless J-connection V = V—§pT also satisfies the condi-
tions with exactly the same functions.

Proof. If ¥ satisfies the axiom, then it is immediate to obtain (3.1.3)
and (3.14). If JX = + X, it suffices to take a=b=c=e=0.

Conversely, if we have (3.1.3) and (3.1.4), let xeM and X, €T, M be such
that JX, # X,. Consider the geodesic

a: swals); a0 =x, @(0)=JX,.
For each s, consider the geodesic
o tma(s,t), o(s,0)=a(s), d(s,0) =Ja(s).
Thus, we have a 2-submanifold in a neighbourhood of x, with equations
(s, ) »a(s,t).
Let us denote
u= 6.(0/0), v=0,(/0s).
We have »
V,u=0.

Let f and h be two smooth functions defined in the same domain as
o(s, t). By applying (3.1.3) and (3.1.4) we have

Ve Vu(fu+hJu)+ V(T (fu+hJu, u))+R(fu+hJu, u)u

(82f a+ha +hc)u+(62h+ahb hab+he) u.

a2 o o o’ o ot
Consider the differential equations
2
0 f(s t)+a (s, )a(u)(s, )+ h(s, )— da u )(s t)+h(s, )c(u)(s, t) =0,
and
*h

e (s, t)+ (s, )b(w(s, t)+h(s, B(tu) (s, )+ h(s, e(uw(s,t) =0

If we fix s, we have two ordinary differential equations, which have a
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unique solution determined by

f(,00=0, h(s,0=1, %(s, 0 = —a(u)(s, 0)

and %i’(s, 0) = —b(u)(s, 0).

From (3.1.3), we obtain
(VuO)s.0p = (P, u—a(u) u—b(u)v)y, o,
Also, since v = Ju along the curve a(s), we have
(Vo )is,00 = (¥ t)s,0) = 0.
Hence
(Vo uhs,00 = 0,
and

(VaV)s,0) = (—a(@)u—b(u) )y o,

On the other hand,

(ulfit b = (Jut30) = (=a@u=b@ ko,
We deduce that
w= fu+hJu
is a Jacobi field, such that
Wooy = Vs, and (VW0 = (Vutdeo,
and thus
w=uv.
Hence ¢ is J-invarniant, and it follows that

V,vo=V,(fu+hJu) = u(f)u+u(h)Ju.

On the other hand, we have V,u =0, and from [u, v] = 0, we deduce
easily

T(u, v)= —h{a(Wu+b(u)Ju)=V,v—V,u,
whence

V,u = (u(f)+ ha(u)u+(u(h)+ hb(u) Ju,
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and finally
V,o={o(f)+fu(f)+fha(@)+hu(h)+h*b(u)} u+
+{v(h)+fu(h)+fhb W)+ hu(f)+h*a(u)) Ju.

That is, o is a J-plane.
The last claim follows by direct computation. q.e.d.

With respect to condition (3.1.3) we have also:

ProposiTION 3.1.8. A half-torsionless J-connection V on (M, J) satisfies
condition (3.1.3) iff

(.15 TX,Y)=—-iNX, VN+IXNY-9(NX-9(UJX)JY+S(JY)JX,
for certain 1-form §.
Proof. If T satisfies (3.1.3), then by polarization we have
TX, Y)-TUX,JY) =o(X) Y+o(Y)JX+a(JX) Y+a(Y) X,
for some 1-forms w and @. By the antisymmetry of T one deduces w+ @J
=0. Thus, if $ = —}®, we have

(.16 TX,Y)-TUX,JY)=2{8X)Y-9(Y)X-9(JX)JY+3(JY)JX".

But if we consider the operator g on (1, 2) tensor ficlds defined by

qA(X,Y)=AX, Y)-JAX,JY)-JA(JX, Y)+A(JX,JY),

it is easy to prove that N = —gT; but, since pT =0, we can write
N(X,Y)= —((p+a) TIX, Y),
from which and from the identity
T(X, NN =i(p+9 T)X, N+3(T(X, Y)-TUX,JY))

we obtain, substituting in (3.1.6), the desired expression (3.1.5). The converse
is immediate. q.e.d.

CoroLLARY 3.1.9. If a half-torsionless J-connection V on an almost-product
manifold (M, J) satisfies the axiom of J-planes, then there exists a half-
torsionless J-connection V on M, J-projectively related with V, which also
satisfies the axiom of J-planes and whose torsion is

T=-1IN.

Finally, according to Proposition 2.44 we can state:

ProprosiTiON 3.1.10. A torsionless J-connection V on an almost-product
manifold (M, J), with r,, ry # 1, satisfies the axiom of J-planes iff its J-
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projective curvature tensor P satisfies
PUX,JY)Z=P(X,Y)Z.
4. Para-Kaehlerian manifolds with J-free mobility

Let n: TM — M be the tangent bundle of the manifold M.

DerINITION 4.1. We say that the para-Kaehlerian manifold (M, J, g)
admits J-free mobility if for each pair of vectors X, Ye TM with the same
length, there is a neighbourhood U of n(X), a neighbourhood V of n(Y) and
a J-preserving isometry of U into V which sends X into Y.

That is, M admits locally a transitive group of J-isometries. From this, if it
is immediate that the J-sectional curvature is constant at a fixed point, and
thus the Riemann-Christoffel curvature tensor has the expression (see [2],

(5D
41) RX,Y,Z, W)=3clg(X, Z)g(Y, W)—g(X, W)g(Y, Z) -
—g9(X,JZ)g(Y, IW)+g(X, IW)g(Y,JZ)-29(X, JY)g(Z, JW)],

‘where ¢ is a constant function on M if dimM > 2.

Conversely, if R has that expression, then M admits J-free mobility. The
proof can be given in a way similar to Yano [11], by using now the
symmetry properties of the Riemann—Christoffel curvature tensor of the para-
Kaehlerian connection. Alternatively, we can use the results in [2]: We have
the model (P,(B), J, g) of spaces of constant J-sectional curvature, which is
an analogue of the models of constant holomorphic sectional curvature. The
para-unitarian group U (B; r+ 1) acts transitively on P,(B) preserving J and
g. Then we have locally the same property for every space of constant J-
sectional curvature.

Whence, applying also the earlier results, we can state:

THEOREM 4.2. Let (M, J,g) be a para-Kaehlerian mamfold with
dim M > 2. Then the following properties are equivalent:

(@) M is a space of constant J-sectional curvature;

(b) The Riemann—Christoffel tensor field R has the expression (4.1);

(c) M admits J-free mobility;

(d) M is J-projectively flat;

(e) M satisfies the axiom of J-planes.
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