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On some properties of symmetric derivatives

by N.XK. Ku~NpU (Hooghly, West Bengal)

Abstract. A sufficient condition for the first symmetric derivative of a real function
f is obtained under which the function f is monotone. With the help of this result.
certain Mean Value Theorems for the first symmetric derivatives are strengthened
and some consequences are studied.

1. Let f be a real function defined in a neighbourhood I of the in-
terval [a, b]. For xze[a,b], let

h—s0 2h ’
f(@+4-h)—f(e—h)

")(x) = liminf =~ :
) = imint ==

Then f()(z) and f)(z) are the upper and the lower symmetric derivatives
of f at #. I f*(¢) = f)(«), then the common value, denoted by f(x),
is the symmetric derivative of f at z.

In paper [4] Gal proved that if

(i) limsup f(t) < f(z) < limsup f(¢) for all z,

t—>z— t—z+0
(ii) D*f > 0 almost everywhere,
(iii) D*f> — oo, except of a countable set,
then f is non-decreasing.

In the present paper analogous theorems concerning symmetric
derivatives are obtained with the help of the above theorem and certain
mean value theorems for symmetric derivatives are sharpened. Some other
consequences are also studied.

2. In this section we prove certain theorems which imply the mono-
tonicity of a function.

LEMMA 1. For any function f, the set

Z ={z: f(')(ﬂ?) > D+f(w)}
is at most countable. '
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Proof. For any fixed rational number r, let Z, denote the set of all
points # of Z such that

(1) D*f(e) <r < fO().
Then
(2) Z = U Zr"

where the union extends over the set of all ra;tiona,l numbers 7. We shall
gshow that the set Z, is at most countable for each r and this will by (2)
complete the proof. Let r be any fixed rational number. Define

¢(®) = f(x)—rz.

Then by (1), Z, = {z: D*gp(z) <0 < ¢)(z)}. Let &£eZ,. Then since
Dtg(&) <0, there is 6 (> 0) such that

3) 9(&)>ep(x) for all z, E<a < &+4.

Also, since ¢!)(£) > 0, there is &' (> 0) such that

(4) 9(E+h)>@(t—h) fodall h,0 <h<d.

Taking 8, = min(é, é') we have from (3) and (4) ‘
p(E+h) <€) for all h, 0 < |h| < &,.

Hence ¢ assumes a strict maximum at &. Since & is an arbitrary point
"of Z,, p assumes a strict maximum at each point of Z,. Since the set of
points at which a function assumes a strict maximum is at most countable
[9], p. 261, the set Z, is at most countable.

THEOREM 1. Let f be such that
(i) limsupf(z) < f(¢) < limsupf(x) for all &e[a,b];
z—£—0 z—E+0

(ii) f(x) > 0 almost everywhere in (a, b);

(iil) fU(x) > — oo ewmcept of a countable set in (a, b).

Then f is non-decreasing in [a, b]. )

Proof. Condition (i) ensures that the function f is upper semicon-
tinuous at all points off a countable set and hence f is measurable. Since f
is measurable and f(x) > — oo off a countable set, f'(z) exists and is
finite almost everywhere in (a, b) (cf. [5]). Since f)(z) > 0 almost every-
where in (a, b), we conclude that f'(z)> 0 almost everywhere in (a, b).
Further, by Lemma 1, D*f(z) > f)(x), off a countable set, hence condi-
tion (iii) ensures that D* f(z) > — oo off a countable set. So by the theorem
of Gal [4] we conclude that f is non-decreasing in [@, b]. This completes
the proof.

\
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Note 1. If f() is replaced by f? in condition (ii) above, then we get
a result of Mukhopadhyay [7]. )
THEOREM 2. Let f be such that
(i) imint f() > f(£) = liminf f(z) for all e [a, b];
z—+£—0 z->+40

(ii) fO(x) <0 almost everywhere in (a, b);

(iii) fO(x) < oo except of a countable set in (a, b).

Then f is mon-increasing in [a, b].

Proof. This can be proved by putting f(z) = —g(«) and applying
the result of Theorem 1.

THEOREM 3. Let f be such that

(i) lim f(z) = f(§), liminf f(2) < f(£) < limsupf(z)
240 z>£40 40
for all £e[a,b];
(i) —oo < f @) <FO(#) < + 0o except of a countable set in (a, b);
(iii) for almost all points x of [a,b] either ) =0 or fO(2) =0.
Then f is constant in [a, b].
Proof. The proof follows from Theorem 1 and 2.

3. Mean value theorems for symmetric derivatives
LEMMA 2. Let f satisfy conditions (i) and (ii) of Theorem 3 and let f(b)

> f(a) [or f(b) < f(a)]. Then there is a set of poinis x, a <z < b; of positive
measure such that

f)y >0 [or fO2) < 0].

Proof. As in Theorem 1 we conclude that, under the hypotheses,
f is measurable and f' exists and is finite almost everywhere; hence f!"
and f¢) are measurable. Suppose that the set {z : f(2) > 0} is of measure
zero. Then by Theorem 2, f is non-increasing in [a, b] and hence f(a)
= f(b) which is a contradlctlon The other case follows similarly.

LeMMA 3. Let f satisfy conditions (i) and (ii} of Theorem 3 and let f(a)
= f(b). Then there ewist two sets C and D of positive measure such that
CuUDcla,b] and

Jor all ¢ceC,

fOe) =0
<0  for all deD.

O

Proof. If f is constant in [a, b], then fO)(z) =f(z) =0 in (a,d)
and we may take C = D = (a, b).

If f is not constant in [a, b], then suppose that there is a point z,,
a < xy < b, such that f(a) < f(x,). Then, by Lemma 2, there exist two
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sets C and D of positive measure such that C < [a, ,], D < [2,, b] and
fO) >0 for all ceC,

FOd) <0 for all deD.

If there is no zy, a < x, < b, for which f(a) < f(x,), then there is ;, a < 2,
< b, such that f(a) > f(x,) and by the same argument we obtain D < [a, z,]
and C < [@,, b]. This completes the proof.

THEOREM 4 (Quasi-mean-value theorem). Let f satisfy conditions
(i) and (ii) of Theorem 3. Then there exist two sets C and D of positive measure
such that C U D < [a, b] and

@<

f(b) _i.(a’) < ._f(,)(c)

b—

for all ce C and de D.
If, further, f) ewists and has the Darboux property in (a, b), then there
i8 £e(a, b) such thal

fe)—f(a)

)
o =101

Proof. The proof of the first part follows by applying Lemma 3
to the function

J®)-j@

9@) =f(@) =

To complete the proof we see that if the equality holds for at least one
¢eC n(a,bd) or one de D N (a, b), then we are done. So we suppose that

ﬂMﬂ)ﬂm

fOa) <
for allce C N (a, b) and de D N (a, b). Since f\") has the Darboux property
there is £e (a, b) such that

'0) _ f(b)—f(a)
) ===
Note 2. The above theorem sharpens a result of Aull [1] who proved
that if f is continuous in [e, b] and if f(? exists in (a, b), then there are
points x, and 2, in (a, d) such that
f(b) —f(a)
b—a

f(') (%) < < f(') (2,)-
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Since by Lemma 1 the set {z: D, f(2) > ()} {z: D*f(x) < f(2)},
is at most countable, we get

COROLLARY 1. If f satisfies conditions (i) and (ii) of Theorem 3, then
there are sets C and D of positive measure such that CUD < [a,b] and

b)—f(a :
p, 1@y < OO o prgy
for all ceC and deD. .
THEOREM 5. Let f satisfy conditions (i) and (ii) of Theorem 3. Then
there exist two sets C and D of positive measure such that CUD < [a, b] and

fle)—f(a) (@) —f(a)

b—ec b—d
for all ¢ce C and de D. If, further, f is continuous in [a,b], f exists and
satisfies the Darboux property in (a,b), then there is £e(a,b) such that

F(&)—f(a)
b—¢&

o) = and  fO(d) <

7O =

Proof. Applying the result of Lemma 3 to the function g(z)
= [f(2#)—f(a)1(b—x) the proof of the first part is completed.
If the equality holds for at least one ce CN(a, b) or one de Dn(a, b),
there is nothing to prove. So we suppose
f(e) —f(a) J(d)—f(a) )
b—e b—d

for all ¢eCn(a,b) and deDn(a,d). Let g(z) = [f(z)—f(a)](b—=x).
‘Then ¢ is continuous in [a, b] and

(2) g (@) = (b—2)f () - [f(x) —f(a)].

Now, f? being the limit of a sequence of continuous functions, it is of
Baire Class 1. Since it is known that ¢ +y and ¢ -y are Darboux function’
of Baire Class I whenever ¢ is a Darboux function of Baire Class 1 and y
is "continuous [2], we conclude from (2) that g7 possesses the Darboux
property in (a, b). Thus, since by (1)

(1) O > and  f(d) <

g (c)> 0> g'’(d) for all ceCn(a,b) and de DN(a, b),
there is £e(a, b) such that

_ f&)—f)

g (E) =0, ie, fO&) b—¢

Note 3. The above theorem generalizes a result of Simeon Reich [8].
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Similarly to 00rollé,ry 1 we get
COROLLARY 2. If f satisfies conditions (i) and (ii) of Theorem 3, then
there are sets C and D of positive measure such that CuD < [a, b] and

Fle)—f(a) f(d)—f(a)
b—o

D™ f(o) = -

and D, f(d)<
for all ce C and de D.
THEOREM 6. Let f satisfy conditions (i) and (ii) of Theorem 3. Let D+ f(a)

=D_ f(a) = b‘f(b) = D_f(b). Then there exist two sets C and D of positive
measure suoh that CuD < [a,b] and

f(c f( ) f(d)—f(a)

and fOd) < g

j("(c)
for all ce C and de D.
If, moreover, f is continuous, ) exists and has the Darboux property
in (a,b), then there is £e(a, b) such that

. f(&)—f(a)
Q] - JA= SN\
1) == ——
Proof. Let
_ J@)—Ff(a)
" glo) =———"—, a+a,

g(a) = D*f(a)
Then for ze(a, b)

g(')(w) — f(,) (w) _ f($) —'f(a)

r—a (x—a): '
(2) )
g(’)(m) — ;f (2) _ f(a) _f(za) )
= r—a (x—a)

Thus ¢ satisfies eonditions (i) and (ii) of Theorem 3. Now, if

vy = 1010,

then
g(@) = D*f(a) = Df(b) = g(b)

and so by Lemma 3 there are sets ¢ and D of positive measure such that
CuD c [a,b] and

(3) : ge)>0 and §(d)<0
for all ¢e¢ C and de D.
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A )_f( . Let g(a) < g(b). Then
by (1)
Dg(b) = D f(b)  fb)—f(a) _ D*f(a)—g(b)
IV = b—af  b—a
=y(a)—y(b) <0
b—a

So, there is z,, a <z, <b, such that g(a) < g(b) <g(z,). Hence,
by Lemma 2, there are sets € and D of positive measure such that CuD
< [a, b] and

(4) g%)>0 and §Na)<0

for all ¢e C and de D.
The case g(a) > g(b) can be similarly treated. Thus in any case there
are sets C and D of positive measure such that CuD < [a, b] and

f(c) f( ) f(a)—f(a)

d f)\a <
. and f(d) i—a

f(’)

for all ce C and de D.
If, further, f is continuous, f\? exists and has the Darboux property,
then from (2)

O f@—fe)

x—a (x—a)?

g (2) =

Now if the equality holds for at least one ce CN(a, b) or one de DN (a, b),
the proof is complete. So suppose that

gdMe)>0 and ¢d)<0

for all ¢ceCn(a,d) and de Dn(a, b).
By the argument applied in the proof of Theorem 5, g\ (z) possesses
the Darboux property and hence there is £e(a, b) such that

g(’)(g) =0, ie., f(l)(S) _ f(&)—f(a) )
E—a
This completes the proof.

Note 4. The above theorem gives a generalization of the analogue
of a theorem due to Flett [3] concerning ordinary derivatives which
states that if f is differentiable in [a, b] and if f'(a) = f'(b), then there
exists £e(a, b) such that

F(&)—f(a) -

e ==
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Again as in Corollary 1 we get
COROLLARY 3. If f satisfies conditions (i) and (ii) of Theorem 3 and

if D*f(a) = D, fla) = 12‘f(b) = D_f(b), then there are sets C and D of posi-
tive measure such that CUD < [a,b] and

f(d)—f(a)

D*‘f(c)}M and D, _f(d)< i—a

c—a
for all ¢ceC and de D.
Note 5. Flett’s theorem is a consequence of the above corrollary.

4. Some other consequences

THEOREM 7. Let f satisfy conditions (i) and (ii) of Theorem 3. Then the
functions fO, fO, D*f, D, f, D~f and D_f have the same bounds in (a, b).
- Proof. To prove the theorem we shall show that the upper and
the lower bounds of each of the functions f©, f, D*f, D, f, D~f and
D_ f are respectively equal to the upper and the lower bounds of the set

{ f(@s) —f (1)

$ Xy, Toe (@, b))y, By F* Typ.
wa'—wl y W1y w2 (’ )7 1 2}

We shall consider /7 and D*f; the other cases follow similarly. Let M

= sup{f(#); xe(a,d)} and suppose that M < +oco. Choose M', M

< M’ < +oco. Then ¢! (z) < 0 for all z¢ (a, b), where ¢ ()= f(x) — M’ & and

8o by Theorem 2, ¢ is non-increasing in (a, b). So, for every pair of points

S —f(@)
x

-y, Tye(a,d), x, < ,, we have ¢(x;) > ¢(z,), i.e. < M. Since

2 1

f(@)—f(wy)

< M. Also for any
Ty— &y

¢>0 there is £e(a,b) such that f(£)> M—e¢ and hence there is
h > 0 such that

f(E+R)—f(E—R)
o > M—e¢,

M’ is any number greater than M, we have

E+he(a,b).
This shows that

M = sup{ J(@s) —f(@,)

; Byy pe (@, b), x, # mz}-

73 1

If M = 400, the above equality is trivial.
It can be shown similarly that

f(@,) —f(,)

&y — &,

m =illf{ ; &1y Tae (a,b), @, #wz}’

where
m = inf{f(2); ze (a,d)}.
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Again since —oo < fO(x) <f(#) < + oo off a countable set, we
conclude from Lemma 1 that D*f(z) > —oc and D, f(z) < + oo holds
off a countable set. Hence by applying the result of Gal [4] it can similarly
be shown that the upper and the lower bounds of D*f in (a, b) are res-
pectively equal to the upper and the lower bounds of the set

{ f(@:)—f(@,)

$2 —a}']_

3 @1y Tpe(a, b), »; # -"”2}-

Note 6. A similar but less general result is obtained in [6].

THEOREM 8. Let f satisfy conditions (i) and (ii) of Theorem 3. Then
the continuity of any of the functions f), f), D*f, D.f, D~f and D_f
at a point Ee(a,b) implies the continuily o-f the other functions at & and
I (&) exists.

Proof. Suppose that f)(z) is continuous at a point £¢(a, b). Then
for any &> 0 there is 6 > 0 such that fU(&)—e < fO(z) <fOE)+e
whenever ze (§— 48, £+ 9).

~ If M and m are the upper and the lower bounds of f in (§ — 4, &+ 9),
then
FUE —e<m < fO2) K M <FO(6) +e.
Thus, by Theorem 7,

1) fUE—e<m< fO@) S ML FIE) +¢
for all ze(£— 38, £+ 6).
Hence

| f@)—fO (&) <2e forall we (£—9, £+9),

showing that f()(x) is continuous at £. Since in inequalities (1) f may
be replaced by any one of the four Dini denva.tlves, the continuity of the
Dini derivatives and the existence of f'(£) follows.

THEOREM 9. Let f satisfy conditions (i) and (ii) of Theorem 3. If U
(or f) is bounded in (a, b), then f satisfies the Lipschitz condition in (a, b).

Proof. We shall prove the assertion for f). The case is similar for f©).
Let M be the upper bound of |f| in (a, b). Then, by Theorem 7, for every
pair of points x,, x,¢{a, b) we have

f@) —f@) | _ o

Ty — T,

and hence |f(x,)—f(x,)| < M |z, —@,|, proving our assertion.
Note 7. The result again sharpens a result of Aull [1].

In conclusion, I offer my grateful thanks to Dr. S. N. Mukhopadhyay
for his kind help and suggestions inathe preparation of this paper.
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