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Abstract. The SKorokhod topology in the space of right-continuous functions t — x(1),
t€[0, 1], without oscillatory discontinuities coincides with the topology determined by the metric
3(x, y) = HausdorfT distance between graphs of the maps ¢ — (x{t—), x(t)) and ¢ - (y(t =), y(1).

1. The Skorokhod topology. Let E be a metric space. Following [2], we
denote by D,[0, 1] the space of all E-valued functions on {0, 1] which are
right-continuous on [0, 1), are left-continuous at 1, and have left-side limits
everywhere on (0, 1]. For notational convenience, for any xeDg[0, 1] we
define x(0—) as equal to x(0).

The distance between elements x and y of Dg[0, 1] can be defined as

d(x, y) = inf sup [t—A(0) v r(x(®), y(A()),

AeA te[0,1]

where r denotes the distance in E and A is the set of all continuous, strictly
increasing real functions 4 on [0, 1], such that 4(0) = 0 and A(1) = 1. Another,
even more useful distance function in Dg[0, 1] can be defined by

dy(x, y) = inf esssup logg%t—) v r(x(t),y().(t))),

AeAp 1€[0.1]

where A, is the subset of A consisting of Lipschitz functions with Lipschitz
inverse. If (E,r) is complete, then (Dg[0, 1],d,) is complete, unlike
(Dg[0, 1], d), which is incomplete unless E is a singleton. Nevertheless, both
these metrics, d and d,, always determine in Dg[0, 1] the same topology.
Proofs of these statements and historical remarks can be found in the book of
Billingsley [1], § 14.

The topology of (Dg[0,1], d) 1s called Skorokhod’s topology. The corres-
ponding convergence of sequences in D[0, 1] is called Skorokhod’s convergence.
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2. Hausdorff distance between graphs. For each xe D,[0, 1], define on
[0, 1] the E x E-valued function X so that

f(t) = (X(t—), X(t)), tG[O, 1]
For every x and y in Dg[0, 1] define

h(x, y) = sup inf |t—s| v r(x(t—), y(s—)) v r{x(2), y(s)).
te[0,1] s€[0,1]

Then o(x, y) = h(x, y) v h(y, x)
is the Hausdorlf distance between the graphs of X and y. Consequently we have
o(x, x) =0, o(x, y) 2 0, d(x, y) = d(y, x) and d(x, z) < d(x, y)+(y, 2).

If 6(x, y) = O then for each t € [0, 1] there is a sequence s,, s,, ... in [0, 1]
such that lim s, =t and lim y(s,) = x(t). Since lim y(s,)e {y(t—), y(¢)}, we
conclude that

x(t)e {y(t—), y()}.
In the case of t = 1 this implies that x(1) = y(1—) = y(1). If t€[0, 1) then for
each he(0, 1—1]
x(t+h)e{y(t+h—), y(t+h)}.

Since lim y(t+h—)= lim y(t+h) = y(t) and lim x(t+h) = x(t), it follows
h—+0 h—+0 h—+0

that x(t) = y(1). So, if 6(x, y) = 0 then x = y. We conclude that § is a metric in

Dg[0,1].

3. The scope of the paper. Our purpose is

(1) to prove that the topology of (D.[0, 1], J) coincides with Skorokhod’s
topology, and

(2) to connect this fact with a direct characterization of Skorokhod’s
convergence, not involving any metric in Dg[0, 1].

Observe that, for every x, ye D [0, 1], te[0, 1] and 1€ A, we have

inf |t—s] v r(x(z—), y(s=)) v r(x(1), y(s))
se[0,1]

< le—=A0)| v r(xe—), y(A(®)=)) v #(x(), y(A®)
< sup Ju—A@w)| v r(x@), y(2@w)),

ue(0,1]

whence h(x, y) < d(x, y). Similarly, h(y, x) < d(y, x) = d(x, y), and consequently
o(x, y) < d(x, y),

so that the topology of (D.[0, 1], 8) cannot be stronger than the topology of
Skorokhod. This reduces our point (1) to proving that the topology of
(Dg[0, 1], 8) is not weaker than Skorokhod’s topology.
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Remark. Denote by g(x, y) the Hausdorff distance between graphs of
x and y. The same argument as in the case of § shows that also g is a metric in
Dg[0, 1]. Let e and ¢ be distinct elements of E. Define

) = e for te[0, 1/2),
x(t) = ¢ for te[1/2, 1],

- {e for te[0, 1/2) U [1/2+1/2"*, 1724127,
W=V for tel1/2, 1241727 Y)Y U122 +1/2°, 1],

Then lim g(x,, x) =0 and lim h(x, x,) = 0, but h(x,, x) = r(e, €') for each n,

and lim é(x,, x) = r(e, ¢). This shows that the topology of (D.[0,1], g) is

essentially weaker than that of (Dg[O0, 1], 9).

4. Connection with the Ethier—Kurtz characterization of Skorokhod’s con-
vergence. All sequences occurring below are labelled by natural numbers. Let
xeDg[0, 1] and let {x,} be a sequence in Dg[0, 1]. Take into account the
statements:

(a) Lim r(x,(t,), x(t—)) A r(x,(t,), x(t)) =0 for every sequence {t,} in

[0, 1] such that lim ¢, =t,
(a—) lim r(x:(t:n-), x(t—)) A r(x,(t,—), x(t)) = 0 for every sequence {t,}

in [0, 1] such that lim¢, =1,

(b) for any seql:;nacj:es {u,} and {¢,} in [0, 1] such that u, <¢, for each
n and lim u, = lim t, = t, the equality lim x,(u,) = x(t) implies the equality
lim x,(t) = x(t). "

”_.w (c) for any sequences {t,} and {v,} in [0, 1] such that ¢, < v, for each
nand lim ¢, = limv, = t, the equality lim x,(v,) = x(¢—) implies the equality
lim x,i'?,i‘; x(t f)? T

" @ limh(x,, x) = 0,

(e) 'l'i_l.:h(x, x,) =0,

) ;o—;wany pair of sequences {u,} and {v,} in [0, 1] such that u, < v, for
each n, lim u, = lim v,, lim x,(1,) = g and lim x,(v,) = b, there is a sequence
{s,} innig, 1] S"l;:i th’;l_t)aou,l <s, <v, fo;—’:ach n, lim x,(s,—)=g and
lim x,(5,) = b, "

(g) for every triple of sequences {u,}, {v,} and {t,} in [0, 1] the relations



198 J. Kisynski

u, <t, <v, for each n, lim u, = lim v, and lim x,(x,) = lim x,(v,) = g imply
lim x,(t,) = g.

In cohtext of the space D;[0, o), statements (a), (b) and (c) occur in the
book of Ethier and Kurtz [2], p. 125, where it is proved that they are jointly
equivalent to convergence of {x,} to x in sense of the metric defined by formula
(5.2) of [2], p. 117. Equality (e) corresponds to the equality lim ¢, = 0 occurring

n—w

in [2], ¢, being defined by formulas (6.16) and (6.17) of [2], p. 125-126.

Statement (f) is convenient for organizing the proofs. It is instructive to
check which ones of conditions (a)}{g) are satisfied and which are not in the
situation from the Remark at the end of Section 3.

LEMMA 1. Statement (d) implies (a), (a—), (b), (c), (e), () and (g).

Proof. (d)=(a). If (d) holds and {t,} is a sequence in [0, 1] converging
to t, then there is a sequence {s,} in [0, 1] converging to ¢ such that
lim r(x,(¢,), x(s,)) = 0. But

n—+ow

0

lim r(x(s,), x(t—)) A r(x(s,), x(2))

and therefore
lim r(x,(¢,), x(t=)) A r(x,(t,), x(t)) = 0.
Remark. Note that we have in fact proved the stronger implication
(do) = (a), where (d,) stands for lim h,(x,, x) = 0, with hy(x, y) being defined by

n—w

hotx, y) = sup inf jt—s| v r(x(t), y(s)),
te[0.1] 5€(0,1]

so that hy(x, y) v ho(y, x) = o(x, y). See the Remark at the end of Section 3.

(@) = (a—). It is sufficient to observe that for every sequence {t,} in [0, 1]
there is a sequence {s,} in [0, 1] such that f,—1/n<s,<t, and
F(xa(5,) X, (t,—)) < 1/n.

(a)= (f). If g = b then it is sufficient to choose each s, so that u, <s, < v,
and r(x,(s,—), x,(u,) v r(x,(s,), x,(,) < 1/n. This is possible thanks to right
continuity of x,. Now suppose that g #b. Then, by (a2), either (g, h) =
(x(¢—), x(t)) or (g, b) = (x(t), x(t—)), where ¢ = lim u, = lim v,. Put

n—a n— o

A, = {se[u,, v,]: r(g, x,(s)) =1r(g, h)}.

Then v,eA, and infA, >u, for every n greater than some n, For
n=1,2,..., ny, define s, as any point of [u,, v,]. For n > n,, following Ethier
and Kurtz [2], p. 126, formula (6.20), define

s, = infA,.
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By (a) and (a—), each of the sequences {x,(s,—)} and {x,(s,)} either converges
to g or to b, or has exactly two cluster points g and b. The definition of s,
immediately implies

r(g. x,(s,—)) <ir(a,h) and r(g, x,(5)) > 3r(g, b)

for every n > n,. Consequently b cannot be a cluster point of {x,(s,—)},
g cannot be a cluster point of {x,(s,)}, and therefore lim x,(s,—)=g and

lim x,(s,) = b.

(a) = (e). In spite of different organization, our proof of this implication
follows the reasonings of Ethier and Kurtz [2], p. 126, and is included only for
completeness. We proceed ad absurdum. Suppose that for some xeDE[O 1]
and for some sequence {x,} in D [0, 1] statement (a) is true and (e) is not. The
former means that there exist: an ¢ >0, a sequence {t,} in [0, 1], and
a subsequence {y,} of {x,}, such that

t,—s| v r(x(t,—), yo(s—)) v r(x(t,), y.(s)) = ¢
' for every se[0, 1] and every natural n.

By choosing a subsequence, we may assume that lim ¢, = ¢, lim x(¢t,—) = g,

lim x(t) b, and that " n
(*) It—SI v r(yn(s-)9 g) v r(y,,(s), h) = J2LE

for every se[0, 1] and every natural n. Now, for every n take u, and v, in [0, 1]
such that
t,—1/n <u,<t, <v, <t,+1/n, u,<v,,

rx(u, =), x(t,=)) v rlx(u,), x(t,—)) < 1/n,
r(x(,—), x(&,) v r(x(v,), x(t,) < 1/n.
By (a) we can construct a strictly increasing sequence {k,} of naturals such that
(Y, a)s Xy =) A P(3, (1), x(uy)) < 1/n,
(Vi 0n)s X(00=)) A (1, (02, x(0,)) < 1/n

for each n. We then have lim y, (u,) = g and lim y, (v,) = b. Since we already
n— o n— o

know that (a) implies ([), we conclude that there is a sequence {s,} in [0, 1] such
that lim s, = ¢, lim y, (s,—)=g and lim y, (s,) = b. But this is absurd; it is

n-3 o [ 3mdi- o} n— o

evident from (x) that such a sequence {s,} cannot exist.
(d) = (b). We again proceed ad absurdum. Suppose that (d) holds and (b) is
not true. Then there are sequences {u,} and {t,} in [0, 1] such that u, < ¢, for
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each n, lim u, = lim ¢, = ¢, lim x,(u,) = x(¢) and {x,(t,)} does not converge to
x(t). Since (d) implies (a), we must have x(t—) # x(t) and, by choosing
a subsequence, we may assume that

lim x,(z,) = x(t—).

n— o

Then the implications (d) = (a) = (f) already proved permit to conclude that
there is a sequence {z,} in [0, 1] such that

limz,=¢t, Ilimx,(t,—)=x(t) and limx,(z,) = x(t—).

n—*w n—* o n— o0

Now, for each n we choose s,€[0, 1] so that

[T, — st v r(x,(t,—), x(s,—)) v r(x,(z,), x(s,) < 1/n+h(x,, x)
and we obtain

lims,=t, limx(s,—)=x(¢) and lim x(s,) = x(t—),

n— o n— o n—*x

which is absurd, since x(t—) # x(t).
(d)=(c). The reasoning is similar to the case of (d)=>(b).

(@) & (b) & (c)=(g). Let t = lim ¢,. By (a), either g = x(t), or g = x(¢t—). If

g = x(t), then lim x,(t,) = g, by (b). If g = x(¢t—), then lim x,(t,) = g, by (¢).

LEMMA 2 (Implicitly contained in [2], p. 126, lines 9-14). Suppose that for
some x € D¢[0, 1] and some sequence {x,} in D¢[0, 1] condition (a) is satisfied.
Then, for every t€[0, 1] and for ge{x(t—), x(t)}, there is a sequence {t,} in
[0, 1] such that limt, =t and limx,(t,) = g.

Proof. Take any sequence {s,} in [0, 1] such that lims, =t and
lim x(s, —) = lim x(s,) = g. Then, by (a), we can construct a strictly increasing
sequence n; < n, < ... of naturals such that

r(xu(s1), x(5,=)) A r(x,(5), x(s)) < 1/k

for every k=1, 2, ... and every n > n,. Now, let t,e[0, 1] be arbitrary if
n<n,, and put t,=s, if np<n<n,,,. Then lim¢, =lims, =t and
r(x,(t,), 8) < 1/k+r(x(s,—),8) v r(x(s,), g) whenever n, <n < n,,,, so that
lim x,(t,) = g.

LEMMA 3. Suppose that for some xe€ Dg[0, 1] and some sequence {x,} in
D.[0, 1] conditions (a) and (g) are satisfied. Then every subsequence of {x,} also
satisfies (g).
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Proof. Let {m,} be a strictly increasing sequence of naturals. Let {u,, },
{tm; and {v, } be sequences in [0, 1] labelled by elements of {m,}, such that
Uy, Stp <0, for every k=1,2,..., limy, =limt, =limv, =t and
limx, (4,)=limx, (v,)=g. We have to prove that then imx,_,(¢,,) = g.

Put M = {m,, m,, ...} and define 4, = u, if ne M, i, =t if ne N\M. Then
lima, = t and, since limx,, (u,, ) = g, g is a cluster point of the sequence x,(iZ,),
so that, by (a), ge {x(t—), x(t)}. Consequently, by Lemma 2, there is a sequence
{z,} in [0, 1] such that lim 7, = ¢ and limx,(t,) = g. The numbers u,, ¢, and v,
being a priori given for every ne M, we define u, =t, = v, = 7, whenever
ne N\M. Then u, <t, <v, for every neN, limu, = limv, and limx,(u,) =
lim x,(v,) = g, whence limx,(t,) = g, by (g), and consequently limx,, (t,.) = g.

5. The main result.
THEOREM. The topology of (D¢[0, 1], d) coincides with Skorokhod'’s topology.

Proof. We have to show that for every sequence {x,} in D¢[0, 1] and for
every xeDg[0, 1] the two implications hold:

lim d(x,, x) = 0= lim d(x,, x) = 0= lim d,(x, x,) = 0.
n—+ o n—+wo n—w
The first of them is a consequence of inequality < d proved in Section 3. For
the proof of the second implication, in the main it is sufficient to follow the
reasoning of the final part (pp. 126-127) of proof of Proposition 6.5 of Ethier
and Kurtz [2], p. 125. We do this, for completeness.
Suppose that lim d(x,, x) = 0. Then, by Lemma 1 of our Section 4,

n—*a

conditions (a) and (g) are satisfied. We shall show that these two conditions
imply lim dy(x,, x) =0. We know from Section 4 that (a) implies (e).
(Obvion';sly (e) is also a trivial consequence of the equality lim (x,, x) = 0, but

we wish to rely only on (a) and (g).) Hence, we can choose a sequence {,} of
positive numbers such that lim 8, = 0 and 62 > h(x, x,) for each n. Rejecting, if

n— o

necessary, a finite number of terms, we may assume that J, < 3 for each n. Sincg
lim 6, = 0, by Lemma 1 of Billingsley [1], §14, there is a sequence of partitions

T, 0= tn,O < tn,l < ... <tn,l(n) =1
of the interval [0, 1] such that

O, Styx—ltox-1 <20

for every n and k=1, ..., I(n), and

lim max sup  r(x(s), x(r)) = 0.

n2ok=1,..,1(n) s,t€[tn k- 1.n, i)

Since h(x, x,) < 62, we can choose for everynand k = 1, ..., I(n)—1 a number
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s,k €[0, 1] so that
(2) ltwse—Snd v P(x(tus=)s X (S —)) v r(x(tas), X,(500)) < 7.
Moreover, we set S,0 =0, 5,4n = 1. Then
Suk—Snk—1 2 tux—tak—1—205 = 06,—207 >0,
so that for each n we have
0=5,0<Sp1 < oo <Spym = 1.
Now, for each n we define a function 4 e A, by the two conditions:

(1) A (tpp) = Spu for k=0,1, ..., l(n);
(2) 4, is linear on each of the intervals [t,,-,, t.il, k=1,...,1(n).

The relations t,4—tpx—1 =96, >0, |t,i—S,ul <067 and lim §, =0 im-

mediately imply n-.w
lim ess sup log@ = 0.
n—-wo tef0,1] t

Moreover, it follows from (a) and from (2) that

3) < lim sup r(x(1), x,(4,()) v r(x(t =), x,(4,(t)—)) = 0.

n— o ten,

To complete the proof it remains to show that the former limit relation remains
true also when the supremum is extended over the whole interval [0, 1], ie.,
4) lim sup r(x(t), x,(%,())) = 0.

n— o te[0,1)
We again proceed ad absurdum. Suppose that (4) is not true. Then, by (a) and
by the uniform convergence of {4} to the identity function, there exist

a sequence {t,} in [0, 1] and a strictly increasing sequence of naturals {m,} such
that the four limits exist:

(5 lim¢t,=lm24, (t)=t, limx(,)=g and limx, (4, () =D,
t being a point of jump of x, and (g, ) being equal either to (x(t), x(t—)) or to
(x(t—), x(2)).
Put
u,=max{ten, : t<t,, v,=min{ten, @1, <t}
Then
(6) u, <t, <v,

and v,—u, <26, , so that

mp?

(7) limu,=lim¢, = limy, = lim 4, (u,) = lim 4, (t)= lim 4, (v,) =t.

n—ao n—w n— o n—*w L gl o} n—+ao0
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Moreover, by (1) and (3) we have
(8) limr(x(u,), x(v,—)) = limr(x(u,,), xm“(im"(un)))

= lim r(x(v, =), X, (An () —)) = O.
By (6) and (7), either limx(u,) =g or limx(v,—) =g, whence, by (8),
limx,, (A, (4,) =limx, (4, (v,)—)=g. For every n choose v, so that
t, < v, < v, and r(x, (in (©)s Xm.(Am(v)—)) < 1/n. Then
)] Ao, () < A, (t) < A, (v;) for each n,
lim4,, () =limi, (v;) and limx, (4, (4,) = limx, (4, () = g.
Since, by assumption, x and {x,} satisfy (a) and (g), the sequence {x,, } also

satisfies (g), by Lemma 3. Consequently, (9) implies that lim x,, (4, (t,)) = g,
which is incompatible with (5). This contradiction finishes the proof.

COROLLARY. For every xe Dg[0, 1] and every sequence {x,} in D[0, 1] the
three statements are equivalent:

(i) {x,} converges to x in the sense of Skorokhod,
(i1) conditions (a), (b) and (c) are satisfied,
(iii) conditions (a) and (g) are satisfied.

Indeed, the implications (i) = (ii) = (iii) = (i) are all contained in the proofs
of our Theorem and of Lemma 1.
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