ANNALES
POLONICI MATHEMATICI
XXXV (1978) ‘

On the existence and uniqueness of solutions
of some partial differential functional equations

by ZpDzIsEAW DENEKOWSEI and ANDRZES PELOZAR (Krakéw)

Abstract. The existence and uniqueness of solutions of some initial-boundary
problems for partial differential funetional equations are considered. Some methods
of successive approximations are used to prove the existence of solutions, under suit-
able agsumptions on right-hand members of such equations. These assumptions reduce,
in some classical special cases, to well-known conditions of Kamke type. The problems
considered here generalize, among others, some olassical initial problems for delay type
ordinary differential equations and also initial-boundary problems for partial differen-
tial aquations of the hyperbolic type.

INTRODUCTION

The purpose of the present paper is to give some results on partial
differential functional equations of n-th order, with unknown functions
of n variables, considered in certain sets in the n-dimensional Buclidean
space, with initial-boundary conditions of the Cauchy-Darboux type.
Special cases of such equations are partial and ordinary delay equations
of various types (in particular, the classical). We discuss here the questions
of the existence, uniqueness and the convergence of some successive appro-
ximations for such equations, and — more generally — for some in-
tegro-differential-functional equations, since Cauchy-Darboux problems
under consideration can be transformed into problems of existence .of
solutions of certain integro-differential-functional equations. If the oper-
ators A, appearing in our equations (see Section 3) are identities in corre-
sponding classes of functions and the sets V, reduce to the surface S (see
the notation introduced in Section 1), then we obtain the classical differ-
ential equation, which can be written in the form:

Uy =S (Bry ooy By Uy Ug g oony Ugyaony Uogy oy 1y vees Ug,...z,)

with the initial-boundary condition of the Cauchy-Darboux type; in
particular, in the case n =2 we have the Oauchy-Darboux problem
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(a direct generalization of the two classical problems: of Cauchy and
Darboux) for the equation

oy = J (@)Y, Uy U a'“y)

investigated by many authors (see for instance: [1], [7]- [9], [23], [24],
[26], [30]; further, a very rich bibliography can be found in references
given in the above papers and in the book [30]). Some generalizations
of the problem of Cauchy and Darboux and also of the Cauchy—Darboux
problem generalizing the both, are problems considered (and introduced)
by Szmydt [28] (see also Lasota [16] and Bielecki [1]). Our generaliza-
tions are of some other kind; we consider equations in which some oper-
ators are applied to unknown functions. Such equations for n = .2 have
been considered by Kisielewicz [6], Mangeron [17], Mangeron and Kri-
vosein [18], [19], Palczewski [22] and for n arbitrary by Kwapisz and
Turo [14], Turo [29], Pelezar [26] (only in the case of such functions f
which do not depend on the partial derivativés of unknown functions)
and Kilapyta [10], [11]. Let us note here that before some papers on
n-dimensional functional differential equations have been published, the
natural generalizations of the clagsical Darboux problem for the n-dimen-
sional case had been discussed; we quote for example: Castellano [2],
Conlan and Diaz [3], Glick [5], Nappi [20], Kwapisz, Palczewski and
Pawelski [13] and others (for further references see for instance [26]).

The questions of existence and uniqueness of solutions, as well as
of the convergence of successive approximations, should be always con-
sidered with respect to some class of regularity; one can require various
conditions of regularity which must be fulfilled by solutions, or — in
other words — one can try to find solutions (unique or not) in various
clagses of regulanty and try to prove the convergence of successive approx-
imations in various functional spaces. For example, in [23] and [24]
there are considered regular solutions (being of the so called class 0*)
of equations in the classical sense; in [27] corresponding equations are
essentially understood in the sense “almost everywhere”. Generalized
solutions are considered for example by Kisyndski in [7] and by Kisynski
and Pelezar in [9]. In the first part of the present paper we shall consider
the classical solutions, in the second part there are investigated equations
in the sense “almost everywhere”.

We do not present here any complete classification of the refer-
ences from all points of view; in particular, we do not state precisely
which of the referred papers deal with equations in Banach spaces and
which with of them finite dimensional spaces. In the present paper we
limit ourselves to the finite dimensional case only, some natural genera-
lizations for Banach spaces are possible.
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We shall consider, as mentioned above, some method of successive
approximations, which has been used in various versions and under
various assumptions in many papers, with respect to classical and ge-
neralized problems concerning partial and ordinary differential equations,
integro-differential equations, functional differential and. functional in-
tegral equations and very general functional equations in some abstract
spaccs (see for instance: [9], [12], [14], [15], [21], [24], [26], [27],
[29], [30]). , : ,

The general idea.of the method used here is taken from the funda-
mental paper of Wazewski [31]; we use in Section 10 in the proof of Theo-
rem 10.1 the method slightly modified and adopted to generalized inte-
gro-functional equations, presented by Kwapisz and Turo in [14] and [15]
(see also Turo [29] and other papers of these authors referred in [29]),.
and in Section 12, in the proof of Theorem 12.1, we use the successive’
approximations method taken almost directly from papers [23], [24],
[26], based on [81]. |

In the second part of the paper we use the same method as in Section.
10; certain possibilities of modifications, analogous to those from Sec-
tion 12, are just mentioned, without details. For some general remarks
on the methods used here we refer to paper [25].

Since the equations considered here are similar to those occurring
in [14], [15] and [29], we shall give some remarks on the correspondence
between them. Formally, cur results are neither special cases of the main
results of [14], [15], [29], nor any generalizations of them. The main
results of the present paper are, however, some generalizations of theo-
rems which can be viewed as certain special cases of the results from [14],
[15], [29]; we mean have the theorems obtained by an application of the
general results for the n-dimensional space, to integro-functional-differen-
tial equations of type (5.1). Here we shall consider very general operators 4 ,.
In particular, we admit operators being essentially of the.delay type
(including some constant delay-deviation of the independent variables).
This is ensured by conditions concerning the sets V,. One can extend
our results to Banach spaces and also to more general equations..

We shall make a few remarks on this subject in the sequel.

Note, finally, that the problem of the existence of solutions of equa-
tions of the same type as that considered here, without unigueness, has
been discussed in [4]. ' '

"PART 1
1. Preliminaries
1.1. Notation. By R, R, R,, N, N, we denote — respectively —

the sets of: real numbers, real non-negative, real positive numbers, posi-
tive integers, non-negative integers.
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Tor a set A we denote, as usual, by A" the Cartesian product 4 x ...
. XA (n-times). Hence R" = {(21,...,%,): 4; € R} i3 identified with
the n-dimensional Euclidean space. We write By R} and N{ in place of
(R4)", (B (M), respectively. For a set A — R" we denote by 04,
int.4 and 4 — respectively — the boundary, the interior and the closure
of A.
If & = (by,...,b,) €R", we write

(1.1) (=00, b] = (—00,by]X ... X(—00,b,].
If a =(ay,...,a,) R and b = (b, ..., b,) e B", then
_at
a<b<wa<bh for every 1e{l,...,n},

o af
1.2y a<b< a,<b; for every ¢e{l,...,n},

a<b b a<b and a;<b forsomeiefll,...,n}
For a, b e B" 'such that a < b we. write
(1.3) [@, D] = [@, B3] X ... X [@,,b,].
The same convention is adopted for %‘-dimensiona,l, intervals:
(s, D), (a, ], [a, D)

0
{under the assumption that a < b).
If 4 € R" and # € R", then we define

(1.4) BB = (815 ery fhy )
(we shall often write uw in place of x -z) and
(1.5) A, = {um: © e R"}.

If ue Ny, then we write
(1.6) L—p = (1= fayy eery 1—piy).

In particular, we shall consider u € R" such that y, e {0,1} (6 = 1,...,%);
in this case 1—pu is also of the same type, (1—u); =1—u; € {0,1}
(¢ =1,...,n). In this special case the sets

Ay = {(p1@1y ..y puw,): @ € B}
and Ay, = {((1—p)@y, ..., (1—p,)z,): ©eR"

are subsets of the union of all hyperplanes H; (¢ =1, ..., n), where H;
is defined by the equality: @; = 0.

If M = {M;}is a (kx p)-matrix and 2 € R*, then we denote by
Mz
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the usual product; hence, this is the element of R? whose coordinates are
given by the formulae

k
(sz)i':ZMi]'zj ('i=1,...,p).

j=1
When using multiindices, we shall apply the standard notation:
for p = (4yy ..., 4,) € N, we write -
(1.7) lul = p+ . iy
We shall extend this notation to arbitrary e RB", putting

(1‘8) 2| = Imll + .+ |w17.| .
‘We shall also use another symbol: if # € R*, then

(1.9) [Zlo = (I%ly .-y l0n]).
Hence |z|, belongs to R".

1.2. If a function w is defined in a set A and has its values in a set B,
then for any subset D of the set 4, we denote by w|, the restriction of w
to the set D.

If two functions « and w are defined. in some sets 4 and B, respec-
tively, and have values in a set 0 and, moreover,

Ulgnr = WanB

(it is possible that AN B = @, then the above condition is fulfiled triv-
ially), then we define the union % uUw as the function given by the formula

u(w) for wed,
(wUw)(x) = '
w(z) for zxeB.
If w: A— R® is a given function, then |w| or |w|, denote, respec-
tively, the functions:
A sz |w(x)je Ry
and
A 32— |w(w)|, € Ri
(cf. (1.8) and (1.9)).
Moreover, we put for such a function w:

max {w(z): e A} = (max {w,(z): = €4}, ..., max{w,(2): wcA}).

The same convention is used for supw, infw and min2.

If the domain of a function w is known and fixed in a particular pro!)-
lem, then we shall write shrotly maxw instead of max {w(z): @ € domain
of w}.
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Finally, we introduce the natural convention: if u, w: 4 — R?,
then

u < W gu(w) Sw(z) for every wed
(that means (séé (1.2)) that wu;(=2) ;<,w,;'(w) for every i € {1,..., 9}, @ € 4).
1.3. Preliminary assumptions. We shall consider the dimension »
of the space R™ in which we carry owr investigations as fixed. Suppose

that b e R" is fixed. Let 4 be a subset of E" con51dered also as fixed
throughout the paper. We assume that

(1.10) 4 18 connectec_l, closed
and fulfils the following condition:
(W) if » =(»y,...,2,)€ zi\{b}, then there exists & = (1, ...,%,) e R
such that [z,2+1] < 4 and, moreover,
({Ba X (=00, By] X ... X (—00,b,])NEE < 4,
(111)  ((—o00, by]X {by} X (— 09, b1 X ... X(—00,B,])NR} < 4,
((--00, bylX ... X(—00,b, ,]X {bn})mRZ: < 4,
(1.12) 4 < [0,0b].
It is clear that 0 € 4 if and only if 4 = [0, b].
An example of a set 4 which is not an n-dimensional cube, but fulfils
conditions (1.10)-(1.12) is the triangle AB(0 on the plane R°, where

4 =10,1), B=(1,1), 0 =(1,0).
Yor a point ze 4 we write

(1.13) 4, =[0,x]n4d.
Observe that A, = 4. By § we denote the sat

(114) AN[0,b]\(int 4)\{= e B": w; =b, for some ie{l,..., n}}.

It is clear that § « 04 and that S is compact.

We supposce that 8, being obviously a hypersurface in R", has the
form

(1.15) 8§ =xulJx,
i
where
(1.16) Xy =8n{weR": 2, =0}, idefl,...,n}

and X° is a hypersurface, which we shall describe more plcclscly below.
Let us consider the following projection mappings

(1.17)  proji: B™ 2 (@1, couy 8,) 2 (Bry e ony Dpoyy By -0y &) € BP71
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In particular we have
(1.18)  proj,(Z;) = {1y« Liyy Bip1y ovey & .) € R*L:
(@ry eeay Biqy Oy Byg1y oeny &) €

The requu'ed properties of the surface X° are described by the fol-
lowing

ASSUMPTION (A,). It 48 assumed that there are n funetions q:, (¢
€ {1, ..., n}) with the following properties:

(1 19) @:: 8~ [0, ‘l‘h‘]y

where -

(1.20) §; = Proj(S)\Proj(Z) (i {L,..., n}),
(1.21) gilw) =0  for x e §;nproj;(Z,),

(1.22) | @; is continuous (i e {1,...,n}),

(1.23:) @ is'strictly decreasing with respect to each variable,

that is: if
i< Yy,
then
@i @iy ooy Doty Brgpy oovy Bjay Bpy Bppry oeny Fn) > @i(Bryeeny Byoqy By o
-1’wj—11?/j7wj+17~--;mn) (ie{l’_---a""})a
(1.24) :D‘} = ?’j(mga ooy m}—n 511 seey wy) - if and only if

By = @ (B0 eery Doy Bhry eeny @) for every ke {l,...,n}.
Remark 1.1. In implication (1.23) it is obviously assumed that
J # 4, since g, is defined for all variables except ;.
" Remark 1.2. In virtue of (1.24) we have the set equality

(1.26) 2" ={(#y,...,®,) € §: there is an 4 {1, ..., n} such that
By = @y(Bry -y By_ay Digry -y By)}
= {(21y .., ®,) € 8: for every i€ {1,...,n} we have
By = @(Bry ervy Byoyy Big1y 1wn)}

1.4. Differential operators. For u € N3\ {0} we define the dlfferentlal
operator D, by the formula
¥y grttin

(1.20) Duth = 5 = i oan "

(for sufficiently regular u).
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Furthermore, we put

(1.26) Dy = D,....o) = identity
and
(1.27) D = Dy,...1)-
an
This means that Dy4 = and Du = ——F— .
0%, ... 0m,

By I, we dcnote the set of all elements u belonging to Ry such that
p;=00ru, =1forie{l,...,n} and (4| = g+ ... +p, <n—1. In the
sequel we shall consider D, only for u eI, or for u = (1,...,1).

We extend notation (1.25)-(1.27) for systems of m funoctions
(yli A | ym): lf

Y= (Y1y.+yYn): B">R"

is sufficiently regular, then we put

(1.28) Diy =D,y; (tefl,...,m})
and
(1.29) -Dp?/ = -(D},’!/, AN -D?:?/)'

We shall extend the above notation to one side partial derivatives
in Section 2.

1.5. The family of sets {/7,}. There is given a family {V,},.s, of closed
and connected subsets of the set

——

(1.30) (BEZ)U([0, b]\int )
such that

(1.31) Vind =8  for every u
and, moreover, for every 4 €I,, u # 0, we have
(1.32) (intV,)N[4,_,n @V 2] =a.

Condition (1.32) means that in the set 4, ,N(dV,\Z°) there are
no accumulation points of the interior of V,. This family will be con-
sidered as given and fixed throughout the paper.

At the figure we give an interpretation of the conditions introduced
above with respect to the set A and the sets V,, in the case n = 2. In the
figure there is also given an example of an impossible situation: the
position of V|, ;) marked by the segment-line, is excluded.

1.6. Some constants. Let us consider the mapping

(1.33) Adaw— |dt (= measure of 4,) € Rx.

4,
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Xa A

It is well known that for every u eI, and every ze A there is a seh
4,,, = B* ", whose measure is uniquely determined by « and u, such that,

(1.34) D, [at= [ds-

(more precisely:

(D [@t)(@)= [(@—mar).
4. z,p
On the right-hand side of (1.34) we have the (n — [u[)-dimensional inte-
gral representing the (n — |u|) measure of the set 4, ,. Of course we have

Az,p = pl‘Oj,‘(Ax)
and this set considered as a subset of R" is contained in 4, , (see (1.5));

here by proj, we mean the composition of proj; for such ¢ for which. u; =1

(n = (By+e ey Pin))s
For every u € I, we put

»

(1.35) Pt = f ds (= max{measd, ,: € 4}).

Ab.p
Let us now denote by J, (for any x e I,) the set of all i e {1, ..., n} for
which u; = 0; this means that 7eJ, < [the -th coordinate of the
point uz is equal to zero for every x € A]. For u €I, we denote by h,,
the mapping

(1.36) A3 (@, ..y0,)—> [dseR.

‘d.’It i
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Now, for a,njr pel, and i €d, we define

(1.37) T% = [the least constant with which the mapping &, fulfils
the Lipschitz condition with respect to the variable z;].

2. Fundamental classes of funetions
If u e Ny, p; €{0,1}, then by
C,(dud)

(or shortly C,) we denote the class of all real functions defined in AUV,
which are of class (%, that is, for which all the partial derivatives

il
—5'5; for v = (¥y, ..y %), 0w < iy
exist and are continuous.

The meaning of the term: class 0 and thus also the precise sense

of the definition of 0,(4U V), will be explained in all details below.

(I I) We say that a function u: A~ B is of class C*(A) (w belongs to
(A)) it and only if the following conditions hold true:

(a) v is of class C* in tho ordinary, sense, in the interior of 4;

(b) if & € 4 is such that &, = b, for % belongmg to0 {i3, ..., %} (where
of course r<n and 4,,...,05,€{l,...,n}), &<b, for Le{l,...,n}\
N{iyy ..., %,} and & > 0 for 70 e{1,..., fn,} y fhien « has at the point & the con-
tinuous partial derivatives of the first order du/dw; for these indices j
for which & < b; and u; > 0, and « has at the point £ the continuous
partial left-hand. derivatives (lcft) —0u /6a‘ for these  indices 4 for which
£ =b; and ;> 0;

-each derivative (left-hand derivative) du/dz; has at the point & the contin-

_ . L d (0u
nous partial derivatives PR (—m) for s such that tha > 0,8 ¢{iqy.enytpyihy
. ’ ,

and continuous left-hand derivatives S (-6—;&—) for ¢ such that wu, > 0,
¢t \ 0%

t # gyt e {iy,y ..., 1.}, ete, (cf Pelezar [26], Definition 0.4.1);

{e) if &ed is such that & =0 for ke {iy,...,4,} and &, # b, for
ke{l,...,n}, then 4 has at the point £ the continuous partial derivatives
of the first order.du/dz; for j such that & > 0, u; > 0, and « has at the
point £ the right-hand derivatives (right) —odu/dw; for j such that E, = 0,
u; > 0, etc. (see Definition 0.4.1 in [26]);

(d) If £e X’ and &, # b, for ke {1,...,n}, then » has at the pomt &
all continuwous partial right-hand denva.tlves (right) —8"joz” for » < g,
ve NJ;
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(e) if £e8 and & =10, for ke {3y, ..., %}, then we assume that all
¥l

partial derivatives (5{7@)(-) regarded as functions defined in int 4,

hayve limits at £ as o — &, © € 4;
T

e %)(E);

these limits are denoted also by (

alvl ,
(f) it is supposed that the functions — e ~ i, ¥ < 4, v € Ny (including

the case v = (0, ..., 0)), where the symbols of partial derivatives denote
in some cages left-hand derivatives, right-hand derivatives or limits of
derivatives (see (b), (d), (e)) (and, in the case y= 0, denote the function.
itself) are continuous in 4.

(II) We say that a function w: V,~ R is of class C*(V,) (w belongs
to 0"(17 )) if and only if w is the restriction of a function v: 13 — R, where I~7
is & set containing the set V,, open in (R"\R})U ([0, b]\4), such tha.t
V NEY = V,NERE, and v is of class C* in the ordinary sense in (l7 \Ry)U
u([O b]\A) a,nd has the continuous partial derivatives of suitable orders

at points belonging to 15' NRY in the sense that — for instance — if £
is such that & = §, =... =§ =0, then the partial derivatives with
respect to m", .y @;, are taJ:en as left-hand derivatives (cf. (b) in (I)
ahove), ete.

(III) Now we define precisely the class C,(4UV,) as the set of all
functions

(2.1) u: AUV, >R

such that, putting
(2.2) v =ly, W, =l ,

we obtain

(2.3) ) v e C*(4)
and
(2.4) w, € C“(V,)

in the sense of (I) and (II), respectively, and, moreover,

5""7,0,, alilv

5 &) =

(2.5)

(»< )

for every ée S (= V,n4), w;vhere the partial derivatives of w and v are
defined as in (I) and (II), respectively.

4 — Annales Polonici Mathematicl XXXV z. 3
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TFinally, we can d(efine the class @’,, with which we shall be concerned
in the sequel.

DErINITION 2.1. Let p € I,. We say that a fu'l{ction u 18 of the cluss C‘,,
(shortly « € C,) if and only if

(2.6) u: AV - R,
where
(2.7} V={,: 0y u,veNy}

and every restriction
\

(2.8) ulpus  (0<v<p, »eN}

belongs to the class C,(4u V,); this means that one can write shortly
(with some inessential “non-formality”) that

(2.9) d,= N c,(4ur,).
v )

For any p € N we denote by (5{,’ the Cartesian product (f? «)7, where

(@,,)” = du X eee X (.}# (p-times).

DEFINITION 2.2. We say that « belongs to é(],...,n if and only if u e 6‘,,
for every u € I,, and, moreover, the restriction of « to the set 4 is of class
O ( A) in the sense of (I). '

DEFINITION 2.3. For ueI,u{l,...,1} we denote by €, the class
of all functions

v: V>R

guch that
|y, € C°(V,)

(see (II)) for every » € Ny, » < u.

By 0% we denote the Cartesian product (C,).

Now we shall use the convention that the symbol D, is extended
to derivatives in the sense of (I)-(I1I); this means that D,u can be equal

to right-hand or left-hand derivative or can denote a suitable.limit of
derivatives.

In (:J,, we introduce the natural topology of uniform convergence
of all partial derivatives D, for » < u, » € Nj; of course, the convergence
of D, is congidered only in the set AU V,.

This means that if {,} =« C,, k =1,2,..., we (3‘,,, then

w = limwu,
le—o0
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in the above sense if and only if D, u, tends uniformly in AUV, to D,u
for each v € Ny, » < p. '

The same topology is considered in Cﬁ,.

For any p € N we introduce in ¢ and {? the usual topology of the
Cartesian product.

If V, is unbounded, then uniform convergence has to be replaced
by almost uniform convergence.

We shall use the following abreviations:

(210) G, =0Cy(dul,), 0 ,=1(C,,)° for uel,,seN
(here 0 = (0, ..., 0) e R").

3. Formulation of problem

Let m be a positive integer, fixed in the sequel, let %, (4 € I,) be
positive integers, also fixed throughout the paper. We shall consider
continuous operators .

(3.1) A,: O, 0, pel,.
Let

(3.2) f: A x R™*u  B™,
where

(3.3) Z k, = 2{75,,: pel},

be a funection having suitable regularity proprieties. We shall assume that f
is continuous (in the first part of the paper) or that f fulfils the Carathéo-
dory conditions (in the second part); the details will be formulated below.
Let
@: V- R™

We shall congider the (generalized) Canchy—Darboux Problen}:‘
PrOBLEM (P). Given a function ¢ € O}, .y, find a function y € C .
Julfilling the following equations:

(3.4)  (Dy)(@) = flz, (Ae3) (@), (4g,,...0 Pig,e,...0 ¥} (@), (Ag,0,....00)
D0, W) (@) ooy (Ag,. oy Doo,..oony ¥) (@) -y (A, D) (), -
sy (A(o,l,...,1)D(o,1,...,1)?/)(’m)) for z € 4,
(3.5) y(@) =p(z) foraxzel,

(3.6) D, (yi)(@) = (D,p)(@) for e D', and vel,.
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4. Some special case of the Cauchy-Darboux problem

Let a function p e O be given. Consider the following Cauchy-
Darboux problem:

(_4.1) (Du)(z) =0 for we 4,
(4.2) w(2) = ¢(x) for z e 8, '
43) - (D,u)(w) = Dyp() for we X', wel,.

PROPOSITION 4.1. IFor overy @ e 0% .. problem (4.1)-(4.3) has
exactly one solution of class ().

The proof of this proposﬂnon is quite elementary and will be omitted.
DerINITION 4.1, For a given p € 0}’1‘ ,,,,, 1y we shall denote by A, the
unigque (in the class Cf . 1(4)) solution of (4.1)—(4.3).

5. Integral equations equivalent to the Cauchy-Darboux problem

5.1. We shall replace Problem (P) by some’ integral equation. It is
a simple equation being a natural generalization of the classical integral
equatlons considered in the theory of ordinary differential equations.

We first formulate the fo]lowmg easy

TreoREM b.1. Suppose that all asumptions introduced in the previous
sections are satzsfwd Assume that the function f (see (3.2)) is continuous
and g e (P . !

quf.@:;ff?qblqm (P) ds equivalent to the follow'iaz,g
ProBrEM (P*). Find o function
o y: AUV > R™

belonging to C’"‘ for every u eI, such that {3.5) and (3.6) are satisfied, and,
moreover, samsf ying, the following equality : \

(5-1) y(®) = A+ ff.-(ta (A(O....,O)?/) () -..y _(A(o,l,...,l)D(u,l,...,1)y) (t)) dt
dy F :

where A, is defined as in Section 4.
We shall omit a trivial proof of this theorem.

5.2. Now we shall slightly modify equation (5-.1).
It is easy to see that the number of elements of I, is equal to
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Let us put, m being fixed previously (cf. Section 3),

(5.2) g =m(2"—1).

Let

Z =(Zp,..on Zo,,..0 Z0,,..,03 1 50,4, 4R

be such that for every u eI, the function
Z,: 4~ R"

belongs to the space (0y(4))™ (shortly, Z, e O,

‘We shall speak shortly that such a mapping .

Zy A—> R
i8 continuous.

Suppose that ¢ is a function belonging to the class Gy We
assume that

(5.3) | Z,)s =D,ply for wel,
and we denote

(5.4) Z, = Z,vD,p for pel,.
We shall write shortly

(5.5) [ £lt, (AZ) () an
instead of =

Now we define '
(5.7) Fo(@,2) = [ft, (AZ)()dt for me 4,
and N
(5.8) P (,%) = (D, Fo(+,2))(®) for wed, pel,.

ExAMPLE. Let n = 2 and let
4 =AUV = {(#1, @s): g(21) < B < by} = {(1, 2)t h(2a) < D1 < by},

where g (resp. k) is a strietly decreasing continuous function from [0, b,]
onto [0, b,] (vesp. from [0, b,] onto [0, b,]) such that ¢ = h™*, A, = iden-
tity (for 4 = (0, 0), (1, 0), (0, 1)), and, finally, let f: R®x R*— R be a con-
tinuous function. Then, for

Z = (Zaop Z,0)) Bo,n) = (g 0, w): 4> E
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and » = (v, 2,), we have:

Foo(@,2) = [ fs,8,u(s,0),0(s, 1), w(s, 1)) dsdt,

An([0,zy] %0, 2g])

T2
B2, Z) = f f(mli 1y (@, 1), v(2y, ¥), w(2q, 7:))dt1
a(=xy)
z
-F(o,l)(a"y Z) = f f(sa Loy U(8y L3)y V(S Dg), w($, a"z))ds-
- hzq) ’
v  Let us turn our attention again to the general situation and consider
the following '
PrROBLEM (P). Given a function ¢ € O or every u € I,,, find a contin-
wous function '

7 = (Z,...,0)1 Z,(1,n,..,,o)5 EXY) Z(O,El,..‘,])): A — R

such that '
(.9) Z,(®) = (DuA) @)+ F(, %) forwed, pel,

where 2, 18, as previously, the unique solution of (4.1)~(4.3).
TEEOREM 5.2. Under the assumpiion of Theorem 5.1 problems (P)
and (P) are equivalent.

The proof is trivial; it is a simple consequence of the definitions
of ¥,,Z, and Z,.

6. Some generalized integral equations

The gystem of equations (5.9) can be considered as a special case of
gome more general system of equations. Since those generalized integral
equations can be solved by the same methods and under — essentially —
the same, or even more general, assumptions as equations (5.9), we
shall consider in the sequel only this generalizations, obtaining also,
implicitly, corresponding theorems for (5.9) as a special case.

Let ns assume that the functions ¢;, 4 € {1, ..., n}, defining the set X°
(see Section 1.3) fulfil the conditions of (A). '

Suppose that there are given continuous functions

(6.1) M A-R™ (pel,)
and continuons functions

(6.2) v':V,~>R" (pel,)
such that

(6.3) Yis =g (nel,).
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We shall denote shortly by 2 and y the corresponding systems
(2.(0""’0), ey 1(0.1,...,1)) and (w(o,...,o), cery w(o,l,...,l))

of functions (6.1) and (6.2).
PrROBLEM (Q). Given A and y as above, find a continuous function

Z = (Zy,.,p120,,.,1): 4—R?
such that
(6.4) Z,(x) = 2 (2)+P}(w,Z) for wed, pel,
where

(6.5) @(2,2) = D, [flt, (AZ)W))dt for wed, pel,,
4azr

witﬁ

66)  Z=g..orr Zpp)s Dy =209, pel,.

In opder to exclude any confusion, let us explain precisely that (6.5)
means

B2, 2) = [f(t,(AZ)())dt and @i(z,Z) = (DB, 2))(2)
4z .

for xed, uel,, u>0.

Here, similarly to the case of the definition of 7, (see Section 5), we use
the natural notation

[1, AZy)at =[5 (Ag,..iZo,) (@) --or (AL ), ..

ey (A, Zgn,...) (D) 6.
‘We shall uge a further abbreviation: instead of

((‘DYD,...,O)("Z); ceey gz5}%,1,...,1)(', Z))

we shall write shortly &¥(Z); using this notation we can write the system
(6.4) in the natural form

(6.7) Z =i+ 9%(2),

and formulate Problem (Q) as follows:

Given A and », find Z which is continuous and fulfils (6.7). Recording y
as given, we shall sometimes write gshortly @ in place of ¢ and &,(z, Z)
in place of @¥(z, Z).

Remark 6.1. Putting ¢* = D, for a function ¢ belonging to the
class (7 ), we obtain 7 in the form of a Z given by (5.4) and then we
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can write: if " = D,p, then &¥(z,Z) = F,(», Z) with F, given by (5.7)
and (56.8). Hence Problem (Q) is a direct generalization of Problem (P).

In order to underline this fact, we do not use here the same notation as
in Section 5; F, are replaced by @,.
7. Lipschitz conditions, boundedness and semicontinuity
Let a family of non-negative constants
{M ;"k}/uIn,ke{l,...,m},is{l,...,u}
be given. For any fixed u € I, and k € {1, ..., m} we shall denote by
Mk
the system (M{"%, ..., M%¥); hence
{M#'k}#eIn,kc(l,...,m} = {(Jl[f’ki ey M;:’k)}ucfu.ke{l,...,m} c -R:l:‘-
Furthermore, we denote by M* the matrix
{MP*} 05
hence
(7.1) {M*Y yex, = (M ooy M"Y er 5

and finally the set (more precisely, the finite sequence) of all matrices A*
will be denoted by M; this means that

(7.2) M= (M(O,---.O), cery MODD)

Suppose, moreover, that there is given a matrix

(7.3) . K = (K(O...-.n)’ s Kbl
with
(7.4) K* = (K!y...,K )R’ . pel,.

Let us consider a mapping
Z = (Z,. 0y Zpn,.0y): 4R
DEFINITION 7.1. We say that the mapping Z belongs to the class
[#(K), £ (M)]

(saying also that Z is bounded by K and fulfils the Lipschitz ¢ondition
with the constant ) if and only if

(7.5) Zy (@)l < K* for xed, 2el,
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and

(7.6) IZ,,(,um—l-(l——,u)w)—Z,,(/.am+(1—p):'é)|og|M“><((1—p)(m—<5))]o
foruel,, z,% ¢ 4. '

Remark 7.1. Condition (7.5)is equivalent to the following m systems
of inequalities:

(7.5.7) 1Z:;@) < Ej, wed, iel, (j=1,...,m).
Here, of course,
(*) ZA(w) = (Zl,l(m)i "')Zl,m(m)) for weA, lEIJZ'
Oonditions (7.6) are equivalent to the system of m systems of scalar
inequalities
(7.6.8) |Z,p(p2+(1—p)2) = Z,, 1 (42 +(1— p)&)| < | M (1 — ) (2 — )|

for @, e 4, uel, (sec (%)) (B =1,...,m).
On the left-hand side of (7.6.k) there is the usual absolute value,
on. the right-hand side we have:

n
D) Mi*(1— )l — &
, =1
(see Section 1.1).

ExAmPLES. We give two examples for (7.6). .

1° Consider the case m =3, n =2, u = (1, 0). Then condition (7.6)
means that ‘

|Z(1,o),z'(w1’ @) —Z(I,O),i (@1, @) < Mg'u)'ilma— &y
for (wy, @), (%1, %) €4, 4 =1,2,38.
2° Let m =3,n =3, p = (0,0,1). Then (7.6) means that
'Z(0.0.1).i(‘”1: Tgy Xs) ““Z(o,O.l),i(”z'u 5%;‘%” < Mio’o'l)'ih'ﬁ —&, |+ MO [y, — |

fOI‘ (wl, wz’ 503), (5)1, 52, ms) e A, 'I: = 1, 2, 3-
Indeed, we have for y; = u, =0, g3 =1
ML — ) [y~ By | A+ ML — pg) [y — B + M PODHL — ) a6y — B
= M§°'°'”'ilw1-—5’1l + MO0 |, — B,
Remark 7.2. The Lipschitz condition with the “constant” M means
in fact (cf. Examples) that our function fulfils the Lipschitz condition

with respect to some variables; namely, with respect to the variables
having indices ¢ such that u; = 0.
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DEFINITION 7.2, Let u € I, be fixed and let a function
W: 4 —+R"™
be given. We say that W belongs to the class
| USC
if and only if for every k € {1, ..., m} and every ¢ € 4 the mapping

(7.7) As3x— W, ((L—p)t+po)ecR

"

is upper semicontinuous.

We say that a mapping

7 = (Z(o,...,on CRRY) Z(n,1,...,1)): 4 — Rt
belongs to the class :
_ Usce
if and only if for every u e I,
Z,e USC,.

Remark 7.3. The definition of the class USC ‘can be expressed

ghortly in the form:
USG = USO(O,...,O) X USC(LU.__.’U)X eee X USO(U,I,...,I)'

DzrINITION 7.3. We denote ;
(7.8) 2(K, M) = [#(K), £ (M)]nUSC.
DEFINITION 7.4. Let x e I, be given. We say that a function
Z,: 4-—-R"
belongs to the class
€

if and only if for every ke{l,...,m} and every ¢ € A, the mapping
(7.9) doz—>Z, (ut+(1—pa)eR

is continuous. ,
We say that a mapping

Z = (Z(o,...,o)’ 1oy Z(o.l ..... 1)): A — R?
belongs to the class

u

if and only if for every pu eI,
" Z,e®

7 ue

We denote

DEFINITION 7:5.
{7.10) P = 4nUSC, 9y, =%,nUSC,.
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DEriNITION 7.6. For everj u €I, we define the class D, as follows:
(711) D, ={U: AUV, RBR": Uls€ 2, and Uh——” is continuOus}'.

8. Comparative functions
We shall consider a function
(8.1) w: A x Rpn > RP

(%, are the samo as in Section 3), on which we shall assume some condi-
tions. The letter w is reserved in the whole paper to denote this funection.
On account of condition (3) (see Assumption (A;) below) the function
is very often called a comparative function for the function f.

We now introduce certain conditions, which we collect under the
titles: Assumptions.

ASSUMPTION (A,).

() © 18 continuous,

( B) if e A, u,ve R u and u < v, then o(z, u) < w(@,v),
(y) o(z,0) = 0 for every z e 4,

(8) for e've?y z e, u,v e R"*u the inequality

(8.2) (@, u) —F (@, )l < oz, [t—2l)
holds true.

Remark 8.1. The symbol |-|, in (8.2) is applied to points in the
spaces of dimension m (en the left-h nd side) and m )%k, (on the right-
hand side); this cannot lead to mlsunderstandlng

Suppose that there is a family of operators {B,},.; , which we shall
congider ag fixed throughout the paper; we shall reg'nd this family as
a finite sequence, ordered as previously:

(B(o....,u): -B(l,u, fy0)3 s 7‘B(0,l,...,1)) .

ASSUMPTION (A,).

(@) B,: D,—~ D%, nel, (here 25 =(2,)°),

(b) if Z, W belong to CF,, (see Section 3) and

_ Z IV“ = WiV.u"

then the inequality
(8.3) |A,Z — AW, < B,(1Z—W|y)
holds true (4 € 1,),

(¢) for each i € I, the operator B, is increasing, in the sensethatif U < V),
then B,U < B,V.
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In order to formulate further assumptions concerning the function o,
we introduce notation similar to that used in Sections 5 and 6.

Let V = (V... -y Vo,1,..,1) be a system of functions such that
V,eD, We denote

(8.4) Dz, V) = [oft, (BY)(®)d for med (o =(0,...,0) e k")

4z

(= [wt, (Bo,.nyVio,t) D)y o0y (BT (), .-.)81).

ag

We adopt this notation for functions defined only in A4: if
U = (U(o,...,on coey U(o,1,....1)): 4 - R

belongs to USC and
Uls =0 for uel,
then we put

(8.8) 2z, U) = [w(t, (BU)(@®)dt for med (o =(0,...,0)eR",
where ’

(8.6) U, = U,U|the zero function: V,— {0}].

The notation (8.5) and (8.6) corresponds directly to the notation used
in Section 6 for the functions f and @. Since the domain of mapping under
congideration is always explicitly indicated, there is no possibility of any
confusion concerning (8.5) and (8.4).

Similarly to the notion in Sections 5 and 6 we put

Q24 V) =D, [ oft, (BV)()dt
4z

and
Q.(@, U) =D, [oft, (BO)()d
A:z: ‘

for V and U as above.
Furthermore, instead of

(Q(o,...,o)('} V)yeeny 9(0.1....,1)('; V))

we shall write shortly 2(V); the same convention is used also for U: 4 — R?.
Remark 8.2. If o fulfils (A;) and B, fulfil (A,), then for every
continnous mappings
Z,W: 40V —~>R?
such that
Z,v, = W,,lp”. (uel)
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A

we have the following inequalities: .
(8.7) 1Du(w; Z2)— Dy(w, W)y < Ru(2) 1Z—Wlo), pel,.
Instead of the systems of inequalities (8.7) we can write, equivalently,
the following inequality: '
(8.8) 15(2) — B(W)ly < 2(1Z—T],).
In the proof of (8.7) we use the following simple observation

D, [zt)dt = [ 3((1—p)t+pua)(L—p)dt

Aw,/t
(see (1.6)): :
DeErmTION 8.1. Let 4 and yp be as in Section 6 (see (6.1)-(6.3)).
‘We say that a continuous mapping ‘
Z = (Zg,.. 013 Z(U,l,....l)): 4 — R"

belongs to the sét.
E(y, 4)
if and only if there exists a mapping.
U= (U005 Uon,....y)s 4> B
belonging to 2., such that
(8.9) |B"(Z + 1) —Z)y < U~2(1).

Remark 8.3. Clearly, (8.9) means that for every z e 4 and every
pel,
lq)z(.’E, Z+A) —Zu(m)lo < U[l(m) - "Q,u(ma U) .
Accordingly to the convention from Section 6, we write (from now on)
@ and &, instead of ¥ and D},
In theorems on the existence and uniqueness of solutions of the

equation
Z=21+9D(Z)

it will be assumed that the sets of the type E(y, A) are non-empty, and
also that the only solution (in some class) of- the equation
U=202(U)

(called the comparative equation) is zero. The details will be stated preciée
by below.
Let M and K be given by (7.2) and (7.3). We introduce the following

ASSUMPTION (A,(M, K)). If ”
U = (U(o,,,,,on coey U(u,l,...,l)): 4 — By
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belongs to Z{I, M) and
(8.10) U =Q(U),
then U = 0 (thatis, U,(2) = 0 € " for 6very & € Aand u e l,).

9, Technical lemmaé

Lemva 9.1. If 1 and y are as in Section 6,

(9.1) Z =(Zy 0y r20p,..1): 4= R" is continuous
and

(9.2) Zuls = Auls = Yulsy

then putting

(9.3) W) =2(@)+P,(2,Z) forwed, uel,,

we obtain a continuous mapping

ﬂ7= (-‘17‘(0.”‘.0), '-1’ TV(O,L...,])): A q“ .Rq
such that

(9.4) W—2ie[8(K), 2 (M),

where M and K are given by (7.2) and (7.3) with

(9.5) Mg‘:j = T4 -max{|f;(z, ¥)|: w4, YeR, |¥|j< 1‘21’},
(9.65 K% = P*max{|f;(z, X)|: wed, Y eR?, |¥|,< 1"(};

here
0 0 0
(9.7) K = (K(O.---.U)’ s K(O,l,...,l))
0 0 0 0
= (B0 ROk, L, (B, L, BP9,

0 (1]
Ceny (Ic(o.l. ....1).1’ ey K(O,l....,1),k(0'1'.“_1)))‘

is given by
0 a ~ -
{9.8) K = max |4, 2,0, Z; =20y

(cf. the notation form Scction 1.2).
Remark 9.1. Of course,

0 0 \]
K} = (K2, ..., Kg2).
LEMMA 9.2. If U: A~ R] belongs to 2, and is such that

U,u].s' =0 (,u € In)y
then putting

(9.9) V =Q(U)



Pariial differential functional equations 286

we obtain o function belonging to the class D (K, M), where M and K are
given by (7.2) and (7.3) (with the substitution M = M, K = K), respectively,
with

(9.10) My = Timax{w(s, ¥): e d, YeRL, Y<I',
(9.11) KY =P'‘max{w,(z, Y): zed, Y e R}, ¥Y<I;
here

(9.12) I° — (Lo(o,....o)’ ey LO(O,I,...,I))

%8 given by
(9.13) L™ =max|B,U;l; U, = U,ufzero function: 4, {0})
(cf. (9.7), (9.8) and Remark 9.1). ”

The proofs of the above lemmasg are trivial and will be omitted.

Roemark 9.2. Wo shall say in such a situation that M and K are
given by the function U.

Lemma 9.3. If functions UF: A — R§ are such that
{U Va1, = 2(L, N)
for some I, N and if
(9.14) - U 0% for k =1,2,...,
which means that
Ut (z) < Uk(w)  for ced, pel,, keN,

then for every w € /A there ewists

(9.15) lim U*(z) = (lim U, g, ..., 1im U(U L)
k—>00 k—o0o k-»oo
and
(9.16) U =1imU*e 2(L, N).
k—o0

Moreover, the convergence of {U*} is uniform with respect to those o, for which U*
fulfils the Lipschitz condition.

The proof is trivial.

LeMmMA 9.4. If {U"I is as in Lemma 9.3, then for every x e A and
every u el there ewists

limQ, (z, U*(z))
k—oo

and this limit is equal to
Q (m y U(m))5
where U 1s given by (9.16).
The proof is trivial in virtue of the classical Lebesgue theorem.
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10. The main results

Consider a function f (see (3.2)), o (see (8.1)), operators 4, and B,
(see (3.1) and Section 8).

TaEOREM 10.1. Suppose that:

(a) f is continuous, w fulfils Assumption (A,), 4, and B, fulfil Assump-
tion (A,), A, w are given and satisfy conditions (6.1)-(6.3);

(b) the set E(w, 1) is non-empty. Assume, moreover, that Z c B(y, A)

0

and U°: A — RZ are such that U e D,, and for Z =7Z and U = U° con-
dition (8.9) s fulfilled; B

(¢) Assumption (Ay(M, K)) is satisfied for M and K given by the
SJunction T, accordingly to the terminology from Section 9 (see (9.10)—(9.13)

witch U = U’, and Remark 9.2).
Under the above assumptions-ithere exists « solution

Zt = ( ’(vo,....o)r s ::111))
of Problem (Q), the uniform limit
(10.1) Z* =limZz*

k—oc0

of the following sequence of successive approvimalions:

(10.2) ZH — A4+ @ (2", k=0,1,2,...,
0 ;
where Z2° = Z 3- 2.
Moreover, "
(10.3) Z*—Ae[#B(K), Z(M)]

.0
with M given by (9.5) (with Z replaced by Z), and K such that

- 0
K* = max Uj+maxZ,,

and finally,
(10.4) |Z* 2", < U" for k =0,1,2,...

Proof. Let us consider the following sequence of continuous functions
from A4 into R%: -

(10.5) Uk = (U, k=1,2,..,
we have (by indnction):
(10.6) 0K UK U< q® fork=1,2,...

(see the notation from Section 1.2).
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Hence
Ute(K, M) fork=1,2,...

with &, M as in the formulation of the theorem. (See Lermma 9.2.) More-
over (also by induction),

(10.7) QUUH KT, k=0,1,2,...

In virtue of Lemmas 9.3 and 9.4, we have

(10.8) Ut U*e(K, M) as k— oo

and then, pagsing in (10.5) to the limit as & — oo, we obtain
(10.9) Ut = Q(UY).

Because of (Aj;(M, K)), the function T* must be equal to zero. Hence
the convergence (10.7) is uniform, since every decreasing sequence of
upper semicontinuous functions convergent to a continuous function,
is uniformly convergent.

Now, we shall show by induction that (10.4) holds true. Indeed, for
k = 0,1 inequality (10.4) is true, since for ¥ = 0 it is trivial and for & = 1
it is assumed (in the stronger form (8.9)). Assume (10.4) for ¥ = p and
consider |Z?+!1—2Z°),.

‘We have

122 — 20, < l¢(Z")—¢(Z°)Io+I<D(Z°)—%lo
< Q(12°—2%,) + U°~ 2(T")
< QUY+T' -0 = T°
and the proof of (10.4) is complete.
‘We shall now show, agé.in by induction, that
(10.10) |zetE 7%, < U* for k=0,1,2,..., p =1,2,...

For any p e N and &k = 0, inequality (10.10) is a consequence of (10.4)
and (10.7). Suppose (10.10) for k¥ =1 and p € N. Consider |ZPHI+L g
We have

|ZPHHR 7MY = | @ (2P — B(ZY)), < (127 —ZY,)) < Q(TY) = TH!

and. so the proof of (10.10) is finished.

From the uniform convergence of the sequence {U*} to zero it follows,
in virtue of (10.10), that {Z*} fulfils the Cauchy condition and then it
is uniformly .convergent to a function Z*. Passing to the limit in (10.2)
as &k — oo, we obtain

Z* =202,
which means that Z* is a solution of Problem (Q).
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Relation (10.3) results immediately from the form of Z* = limZ~
Thus the proof of the theorem is complete.

THEOREM 10.2. Suppose that assumptions (a) of Theorem. 10.1 are
satisfied and assume that U® € D, and Assumption (Aq(BHL, I)) for M and K
given by the function U° (see Remark 9.2) is satisfied. Suppose, moreover,
that '

(10.11) Q) <. T°.

Under these assumptions, if Z and W are two solutions of Problem (Q) such
that

(10.12) 1Z—Wl, < U°,
then Z = W. ‘
Proof. Since Z =1+ P(Z) and W = A1+ D(W), we have:
I_Z"'Wlo = |P(Z) - DB (W), < LUZ—W|p) < QU< T".

Oonsiderihg the sequence (10.5), we obtain

(10.13) ° |1Z2—W|,< T* for every %
(the proof prdceedﬂ by induction). Then, passing to the limit, we obtain
|Z—W], =0

and so the proof is finished.

11. Some corollaries

In order to formulate further results, we introduce the following

ASSUMPTION (A,). Assuming that the function o (see (8.1)) is given,
we suppose that for every continuous function

Z: 4R
there exists & function U e 2, such that
1Z, < U
and
QU < T

TarorEM 11.1. Suppose that all assumptions of Theorem 10.1 are
satisfied, and so are Assumption (A,) and Assumption'A,(M, IC )) for every M
and K. Then there exists exaclly one solution of Problem (Q).

The proof is trivial in virtue of Theorem 10.1 and Theorem 10.2,

Remarlk 11.1. Assumption (A,) is satisfied for a large class of funec-
tions w. The trivial case is that in which w is bounded. But also for a lot
of unbounded functions w this condition is satistied. This is the case, for
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instance, for functions « which are, in a sense, “similar to linear”. One
can find such examples in [8], [9], [26], [30].

Remark 11.2. If the surface 8 is such that X° reduces to one point,
that is, if we consider a special case of Problem.(Q), corresponding. to
a generalization of the Darboux problem, then under the assumption
that the operators A, are of the delay type: '

(-A.u Uu)(t) = U,u(t—au)!

where a, are non-negative, if we wish to find only local solutions (solu-
tions in a sufficiently small subset 4,0 of 4), we, can assume, without loss
of generality, that o is bounded. Indeed, since we can regard (for suffi-
ciently small 2°) f I 4_gxF) B8 bounded by suitable constants, we can consider

the function wg = max(w, @) (the notation is not precise; we omit the
details) in place of w, where G denotes a corresponding system of constants,
such that

sup {|f(x, Z)—f(w, 4)ls: ® € 4y, Z,7 e F} < &,
F ={ZeR": |Z,< U".

12. Some modification of the main results

Let o be a function of the type (8.1).

ASSUMPTION (Ag). For every function U.e 2(K, M) with an arbitrary
pair (IL, M), and every Z: A — R} continuous such that '

(12.1) ZLR2Z)+ T,
there emists U € 9D, such that '
(12.2) z< U
and

(12.3) U+20)<T.

ASSUMPTION (A,). For every Ue 2(M,K), with an arbitrary pair
(M, K), there exists a mawimal solution W of the equation
Z =Q2Z)+U
in the olass D,; this means that Wy € Dy and Wy fulfils the above equation,
and for every Z € D, fulfilling this equation, we have '
7 Wy.
Now we can formulate the following

THEOREM 12.1. Suppose that assumption (a) of Theorem 10.1 are
satisfied. Assume that there exist U’ e D, amd a continuous function Z°:
4 — B9 such that

(12.4) 1Z°—2—P(Z°), < U°
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and
(12.5) QU <
and, moreover, Assumption (Ay(M, K )) for e'very M and K and Assumptions

(A;) and (A,) are sam;fwd Then thsre exists exaotly one solution Z of Prob-
lem (Q); this solulion is given as the uniform limit

' Z =1lim Zk,
’ k—o00
where {Z*} are defined by (10.2), but now Z° is the function given above — not

by (Z+4). ' |

Proof. We use the method of Wazewski [31] used with respect
to the partial differential equations in [24].

Define {U*} as in Section 10.:

(12.6) U* = QU*Y), k=1,2,...

It is easy to show by the induction that

(12.7) Uk %Y, k=1,2,...

and ‘

(12.8) 1ZE 7%, < 0%, &k =1,2,...
Furthermore, we easﬂy prove that for r < 8

(12.9) IZ' ~Z°ly < 2U’+~Q(IZ’ Z%o)

and then putting

(12.10) - 8, = [Z"—Z%,

and

(12.11) V,=20"

we obtain

(12.12) 80 < Vo +Q(8,,).

Now we apply Assumption (A;). We find W,? € 2, such that
(12.13) S < W,

and

(12.14) QW)+ V. < W,q.

Putting

(12.15) Wis = Wy, Wi =2(Wih, k=1,2,..

we obtain a decreasing sequence, which is convergent to a solution W,
of the equation

(12.16) ) W =Q(W)+7,.
Obviously W, € 2,.
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It is easy to see that the following is true:
LeMMA 12.1. If X: 4 — R is a summable fovution such that

(12.17) XLV, +2(X and X< W,,
then '
(12.18} X< W,

Indeed, by induction we obtain
(12.19) X<WE fork=0,1,2,...

and then, passing to the limit in (12.19) as k¥ - oo, we obtain the required
inequality (12.18).
Hence, in view of (12.14), we obtain

(12.20) 8, < W,

Now, we apply Assumption (A,) and we denote by fV,. the maximal
solution in 2, of (12.18).

Let us observe that W tends to zero as r - oo. Indeed, W’ W,_I,
since U" < U™! (the same Lemma 12.1). Hence, {W,} is decreasmg and — in

virtue of the obvious inequality — W >0, bounded. So {W,} i con-
vergent.
Passing to the limit in the relation

W, = V,+Q(W,)
we obtain for W = lim w.

r—>00

= Q(W).

Of course, L4 e 2(M, K) for some M, K.

Hence, in virtue of Assumption (A,(M,K)) (assumed for every
M, K) we obtain W = 0 and therefore the convergence is uniform. Hence
and from (12.20) it follows that §,, tends uniformly to zero as », $ — oo,

This means that the sequence {Z*} fulfils the Cauchy condltlon
and then it is uniformly convergent to a solution Z of Problem (Q).

But this solution is unique, because of Assumption (Aj;).

The proof of the uniqueness is just the same a8 in the case of Theo-
rem 10.2.

Remark 12.1. One can assume conditions soine what weaker than
the assumptions of Theorem 12.1, namely one can assume (Aj;) with-
respect to some clagses of functions defined by suitable constants M
and K, not for every M, K. ,

Remark 12.2. Assumption (4,) is fulfilled for a large class of func-
tions w; for instance for bounded functions o (compare Remark 11.1
and Remark 11.2).
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One can prove that Assumption (A,) follows from the following two
assumptions (A,) and (A;) (the second is stronger than (Aj)).

ASSUMPTION (A,). For every U e 2(M, K), in the partially ordered
space of all summable functions Z: A — RE there ewists

sup{Z: Z < 2(Z)+ U}..

ASSUMPTION (A;). For every U e @(M, K), with an arbitrary pair
(M, K), and for every summable function Z : A — RE such that (12.1) is
satisfied, there exists a summable function U: A — RE such that Q(U) e 9,
and (12.2) and (12.3) are satisfied.

13. Generalizations

It is easy to see that we can generalize Theorems 10.1 and 10.2
agsuming some conditions for 2 and @, not for w and f. More precisely,
we can forget the definitions of 2 and @, and we can formulate the corre-
sponding assumptions directly for 2 and .

In other words, instead of assumptions concerning the functions w
and f, we can introduce conditions which are conclusions from lemmas of
Section 9, giving corresponding properties of 2 and &. The assertions
in that case would be the existence and uniqueness of solutions of the
equation

Z =2+ 9(2)

(without correspondence with integral equations).
Such a formulation of our results is similar to those of Kwapisz [12].

PART II
1. Preliminaries

We adopt the notation and definftions of Part I. In addition, for
me N, and u eI, we denote

B (4d) = {W: A — R™: there exists W e I™(4) such that
W) = [ W((1—p)t+pun)(l—u)d}.

Az,u
Remark 1.1. It is easy to see that the set B™(4) can be written in
the form '
EP(4) = (W: A—R™ D,_,WeIMA)
or
B (4) = {W e LM 4): proft_,(4) 5 (1— w)w — W (ue+ (L —u)a) B

is absolutely continuous for almost every uaz e projs(4)}.

Here, L*(4) denotes the set of all summable functions defined on 4
withrangein B™, and by proj’ (» = (v, ..., »,) € I,) we denote the mapping

R'sx—ww = (v, ..., 1,%,) € R".
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Further, we write
i o =V Vo, g0 A—>R" VI, eEr (d),

V"’(o,...,o) € 0g,..0(Fo,...0)}
and for ue I N{0,..., 0}

B = {V: V,ud>R" V|, e BX4), V), e LMV,

As usual, we denote by
X B2 (4)

bely,

the Oartesian product of the sets B™(4) and we put
& = {U = (Up,...0p1 1. Upus,....ny) € X E™(4): there exists

uely,

Ug,...,y € L1*(4) such that for 4 e I,
we have U,(x) = fUu 1)(1 7! t—i—,um) (L—u)di a.e. In A]

Az

(here “a.e.” stands for “almost everywhere™). _

Thus, an element of the set & is a system U = (U ), 1, of funetions U,
which may be obtained by the suitable integration of the same function
Ug,....n Summable in 4; then U, . is equal to D, U, .. 0-

In other words, we have

£ — IU — (U#),u,n e X B (4): there exists Uy, e L{*(4),
nelp |

such that for u eI, we have D,_,U = Uy, ; a.e.}
Now, we define
. &« = {U: 4 RPN Ue g}
and, for h e L*(4), h =0,
&) ={Ueé&: Uy, y(@)<hiz) a.e in 4}
and
Ex(b) = E(R)NEx.

Similarly, we set

= {UeXE": Ul, <&},

pely

and by é* ) & (h) we denote the subsets of é, containing only those elements

of # whose restrictions to the set 4 belong to &, and & (), respectively.
Let a system of positive integers {%,},, 1, be given. Let us put

r =m2k,,.
u
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Suppose that a function
f: Ax R -~ R™
satisfies the following (Carathéodory type)
JonDITION (W). ,
(i) for every fized u € R" the mapping A 3« v f(x, u) € R™ is meas-
urable,
(ii) for every m e A the mapping R’ s u v f(@, u) € R™ 15 continuous,
(iii) the mapping A 52 — f(z, 0) € R™ s summable.
We admit that a comparative (for f) function
w: AXR'— RY
satisfies the following "
AssumpTioN (A,).
(@) (i) d22 > w(z,u) e RY is measuradble for every fized u e R,
(i) R"su — w(x,u) e RY is continuous for every » € 4,
(i) there exists- a function g, € LT*(A4) such that for every u e R"
the inequality w(w,w)< g.(v) is satisfied almosi everywhere in the set A.
B) Ifvced, u,veR and u<v, then w(x, u) < w(z,v),
(¥) w(w, 0) = 0 for every x € 4,
(3) 1f(w, u)—f(z, v)o < w(, lu—2ly) a.e. in 4, u,vekR.
Remark 1.2. From (W)-(iii) and (&,)—(3) it follows easily that the
inequality

1f(z, w)| < |f(z, 0)| + (2, [1]y)

holds a.e. in 4, which immediately implies the following ecstimation:
(1.1) If(z, w)| < g(x) ae. in A for every u e R’, *
where g is the function summable on 4 and given by the formula:
(1.2) g(+) = If(*, 0){+gu(-).

For. mappings

Ay By B X ™*(4), pel

n
uely

(where #™%:(4) denotes the space of all measurable functions defined
on 4 and with values in B™*s) we admit the following

AssumpTION (A,).
(&) If Z, We B! and Z|,, = W|,, ae. in V,, thn
\4,Z— A, Wiy < BJZ~Wly) ae. in 4,
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(b) if Z, W e B7 and Z < W a.e. in AUV, then
B, Z<B,W a.e in 4,

(©) if (ZiYumry,...s (2} < EP and ZE—>Z, a..in AUV, as &> oo then
A2k~ A,Z, ae in 4, as &k — oo,

(@) if {ZR)kers,...r (Z} = B and ZENZ, a.e. in AUV, as k— oo, -
then B,Z%—~ B,Z, a.e. in 4, as k — oo,

In condition (d) the sign \ denotes the monotone convergenoce (de-
creaging) and, of course, we have B,Z%\\ B,Z,. Now, we define a mapping

) Q= (Q(o‘...,u): seey 9(0,1,...,1)): §—>8&
setting for ¥ e & and pel,,zed

0, 7) = [ o(l—ut+pz, (BY)((L—p)t+pa))(l—p)dt,

P

(1.3)

where . :
BY =(B,V,)e1,, -
We have, of course, .
| Q,: &~ B, (4).
Remark 1.3. Wo denote also by {2 the mapping from the set
& ={U ef: Uy, 0@ =01for ze V(o'_"_.o)nA}
into the set & setting for U € &,
(1.4) Q(U) = 2(0),
where
O < (Upa,, Uu=TU,0{0: 7, >0} (nel,).
We assume that for a function & e I'™(4), h = 0, the mapping 2 satis-

fies the following .

AssumerioN (By(h)). If Ueé&(h) and U = Q(U), then U =0:
for 6’069‘5!/ '(1 —wp)@ eproji_,(A4) and for almost every (in |u|-dimensional
Lebesgue measure) ux e projy(4).

This means, roughly spealking, that U,(x) (4 € I,) may be different
from zero (0 € R™) oiily at those points of A whose coordinates ;, for all ¢
such that 4, = 1, belong to some set of linear measure zero, this set being
a subset of projy ., . ¢(4) (1 on the i-th place).

In the sequel we note this fact shortly as follows

U,(#) =0 for every (1L —u)o eproji_,(4),fora.e. pw e proj,(4), pel,;
we do not distingnish the case when 4 = (0, ..., 0).
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In this part of the paper we consider the following

PROBLEM (Q). For gwen A= (L)1, d ¥ = (V) V..o
oh v € LT(V,) for ue I, \{(0,...,0)}, find a function

z = (Z ,u),us]n
such that for u € 1,, the equality

,,,,,

(1B)  Z,(2) = Ao+ [ fl(1—w)t+ue, (AZ)((1 —p)t+ pa)) (1 p)dt

Az,u ‘

is satisfied for every (1— u)x e projl_,(4) and for a.e. ux e proj’ (4).
In this formula we put

PN -

AZ = (AvZu)p el

where
(1.6) Z, =2Z,up, forwvel,
Under the notation

dY: &> ¢,
where

djw = ((D;{J),ueln
and

@) & — T (4)
is given by the formula

11 &(@,2) = [ {1 —pi+tuz, (AZ)((1—wu)t+uo))d—u)dt,

A,
we can write shortly equation (1.5) in the form ”

(1.8) Z = 1+ 0% (Z).

2. Auxiliary lemmas

LeMmA 2.1. Assume that Z and ) belong to & and that p = (1/;”),‘,_% 18
such that vy, .. o) € 0y (Pio,...00)y wu € LT (V).
Then the funclion W given by the formula

(2.1) W =A+0% %)

belongs to & (g+ Aq,... 1), where g is given by (1.2).
For the proof it suffices to observe that the function

Wo,..n@) = Aw,... (@) ‘|-f(93: (AZ)(W))
is summable on 4 and then to apply the estimation (1.1).
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LeEvma 2.2. If Ue g*, U(o",.__,o)(m) =0 fOT ¥ e Aﬁ'V(o’”"o), then
T = 2(0U) belongs to &4(g,), where g, is as in Assumption (A,) («) (iii).
The simple prooi follows directly from the formulae

Vu@) = [ o(1—p)t+pe, BU)(L—p)t+pa))1—p)dt  (wel,)

Agp
and from Assumption (A,)~(«).
LemMA 2.3, Assume that {U*},.,, . < &« and

(2.2) UG 2@ < UG y(@)  ae in A.
Then
1° there emists lim U¥, which will be denoted by U,
k—o00

2° Ue &u(Tp,...1)-
More precisely, in 1° we have for u eI,
Uk(z) — U,(w)
uniformly with respeci to (L— p)x in the set proji_,(4), for a.e. px in the
set proj,(4), and the function
Proji-u(4) 2 (L —u)a ~ Uj((1—u)w+ua) e B”

48 absolutely continuous foa a.e. ux eprOJ,,(A ).

Proof. Inequality (2.2) implies that there exists a set P c 4 of
measure zero, such that for » e AN\F the function

U(l...;,1)(93) = lim Uﬁ,....l)(w)
k—o0

is well defined and we have »
0 S U(l ’’’’’ 1)(m) U(l ..... 1)(%) fOI' e A\F.

Hence, by the Lebesgue theorem, we obtain for uel,

Uu@) = [ Ug,.y((Q—p)t+pa) (1 — p)at
dg
=1lim [ Tf, . ,((L—p)t+p)(l—p)dt = lin Tk().
k—o0

k—>00 A’.’B “

Thus U = (U,)uer,, 18 the required (in 1° and 2°) function. For the pro'of'
of the uniform convergence of {U%}, observe that y

T @)~ T5@)o = | [ Th,..o((1 — )+ po) (L — )t —
Az

— [ Uk (L — @)+ ) (1 — ) dt ..

a3 u
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Since the condition
z, =& forq such that pi =1
implies that
po = pd,
we may write the right-hand side of the equality under consideration
in the form
m U [(1— w)t+ po) (1 —p)dt,
R(z,3)
where
R(w, @) = (4,,N\dz )V (45, N4;,).

‘In view of assumption (2.2) and of the absolute continuity of the inte-
gral, we obtain for any ¢ > 0 (¢ = (s, ..., &) € R") the estimation

| [ Ok (=@t~ at),
R{z,)

<| [ Uh.(l—mt+us)(l—was
R(z,%)
for k=1,2,... and |l—p)z—(1—pu)%l, <6 when & = d(¢) (6 =
= (8,..., 6) € R is sufficiently small.

Hence the limit function U,,-defined for almost every ux € proj‘,’,(zl),
satisties also the above inequality, and this shows the absolute contin-
uity of U, with respect to (1 — u)o e proj;_,(4). Sincc monotone conver-
gence to a continuous function is, by Dini’s theorem, uniform, the proof
of the lemma is complete. In particular, the function Uq.,...,0) is absolutely
continuous in 4 and the convergence )

0<3

Tf...(@) > T, (@) a8 b oo
is uniform in 4. '
LEMMA 2.4. If the sequenoe {U"},c=1'2w o &, satisfies condition (2.2)

and the operators B,,v € I,, satisfy Assumption (4,), (4), then for uel,
the sequence

{‘Q,u(mJ Uk)}k-—-1,2,...

18* decreasing and converges to Q,(x, U) for a.e. pw eprojl(4), where U
18 the function considered in Lemma 2.3.

For the proof it suffices to observe that for u e I, we have

Q.(z, U*) = fw((l——;u)t—l—,u.x, (Bﬁk)((1~,u)t—|—ym)) (L—p)dt

e



Partial differential functional equations 299

and that, in view of Lemma 2.3, Assumption (A,) (d) and Ac_umption
(A,) («) (ii), the integral on the right-hand side er..7w.ges in a monotone
way to

J ol —mttue, (BO)(A—p)t+pa))1l—p)dt = 2,(, V).
4

£ N7
3. The main result

TaEOREM 3.1. Assume that

(a) f satisfies Condition (W), o satisfies Assumption (A,),4,,B, (u € I,,)
satisfy Assumption (A ,,), AE é’, P = (w”)”‘_, 18 suoh that wy, .. EO'T(V(o,...,o)),
e ItV y)!:uEI\{ . 0}

(b) there exist Zedand T c &« such that the inequality
N\

(3.1) |f(a9,’A(%+A)(m))—Z°(L (@), < By (@) — 0 (2, (BU)(x))

8 satisfied a.e. in A;
(¢) Assumption (A (R)) <8 satisfied for h= T,y

Then there exists Z* c—;é{(U(I,,__,l)+Z(1,__,,1)+}.(1“_”n) which is a solution

of Problem (Q) and
Z* =limZ*,

k—o0

where Z* are given by the formulae
(8.2)  Z' = A+Z, ZM = 40°ZY for k=0,1,2,...

Remark 3.1. Assumption (b) may be formulated in another form.
Namely, it may be replaced by the condition:

(b*) the set
By, A) = {Z0 € &: there exists U’ such that (3.1) is satisfied}

is not empty.
Contrary to the case considered in the first part of the paper, the
more general condition: the set

B(p, )= {Z € &: there exists U°such that (6*(Z +4) —Zl,< U° —2(T°))

18 not empty, is not sufficient for the proof presented below.

CoroLLARY 3.1. Theorem 3.1 can be used in particular to differential
SJunctional equations with regular right-hand members corresponding to the

case: Ay . 1y(x) = 0 a.e. in 4 (Problem (P) in Part I of the paper).
Remark 3.2. Corollary 3.1 generalizes the result of Shanahan [27]
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Proof of Theorem 3.1. Starting with U’ (see assumption (b)) we put
(3.3) U = Q(T%, k=0,1,2,...

By induction we show that the sequence 50 obtained is decreasing and
is contained in &4 (Uy,... 1)
Indeed, from (3.1) it follows that

oz, (BU)e)) < U, (@) ae in 4.

Hence, for x eI, we obtain

2,(0°)(2) = f (1= p)ttpy (BT (L~ )tk o)) (1 — o)

f Ot (L= )+ ) (L — )t = Tj (o).
E;ﬂ
Thus we have U! = Q(U°) < U*
Agsume that U* < U*!for a fixed % > 1. Hence, by the monotonicity-
assumptions for B,, w and by the monotonicity of the integral we get

U = QU < Q(U*Y) = U™,
Notice that for ¥ =0,1, 2, ...
UEH (@) = ofe, (BU®)(2)) a.c. in 4
and that the inequalities
o (2, (BU*)(2)) < oz, (BT)(2)) < ... < Tg,....y(2)

are fulfilled almost everywhere in A.
Thus the assumptions of Lemma 2.3 and Lemma 2.4 are satisfied.
Consequently, there exists

U* = lim U*,

k~00
v
which is an element of &4 (U7, . 1)), and we have

Q(U*) = lim (T").

fe—00

Hence by (3.3) we obtain
U* = (0",

which, in view of Assumption (A4(h)) (with b = Uy, ,)), implies that
U*=0 i 4

(this means that T ( ) = 0 for every (1—pu)# e proji_,(4) for a.e. uw
€ proju(4), p e I,,).
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Therefore, in view, of Lemma 2.3, we get for pel,
(3.4) Uk(w)—0, as k — oo, uniformly with respect to
(L—pu)z e proji_,(4), for a.e. uw €projy(4).

Now, again by induction we sliow the validity of the following esti<
mations:

(3.5) \Zk-Z°, < 0" (k=0,1,2,..)
and
(3.6) |25 — 74, < U (k=0,1,2,..., p =1,2,...).

Inequality (3.5) for k¥ = 0 is trivial and for & = 1 it immediately
follows from condition (3.1).

Suppose that (3.5) is true for a fixed integer k > 0. Notice that
(3.7) |74+ — 200, < |87 (2%) — D%(2°)ly + |87 (Z°) — 2.
Owing to (3.1), the second member of the right-hand side of (3.7) satisties
the inequality
(3.8) JcD"’(Z“)—Z|0\.U°—Q(U°)

For an estimation of the first memeber of the right-hand side of (3.7),
observe that for x € I, we have:

8525 — B2 < [ [F((L—m)t+ e, (AZ9)((1— u)t+ po)) —

0

—f{— i+ uz, (AZ)H((1 — )t + pa))ly (L — p) .

In virtue of assumptions (A,)~(3), (As)—(a), (Ao)~(b) and '(X,)~(g), the
last integral may be estimated by the integral

[o(L—pituo, (BIZF—20%)((1— )i+ pa)) (1 — )&,

z,p

which, in turn, under the assumption that (3.5) is true for our k, may
be estimated by

Jo(@—mt+uo, (BO) (1~ p)t+po))(1—p)at = 2u(T").

Aan

Hence, in virtue of (3.8) and (3.7), we obtain
|78 - 20, < Q(UY)+ T —Q(U° = T°.

This completes, by the induction principle the proof of inequality (3.5).
The proof of inequality (3.6) is quite similar (for & = 0 we have
simply (3.5)) and it will be omitted.
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From (3.6) and (3.4) it follows that the sequence

{Zk}k=0,1,2,...

given Dy (3.2) converges in 4 to a function Z*.
More precigely, we have for yeIl,:

Z¥@)—~Z,(@) a8 k> oo,

uniforinly with respect to (1—pu)xr e proj‘}_p(d), for a.e. ux e proj,(4).
Hence, in virtue of Assumption (A,)—(c) and. condition (W), we get

Fla, (A2 () > f (2, (AZ*) (%)) a.e. in 4

and the limit function iz summable.
This convergence, together with the second equality in (3.2), imply
by the Lebesgue theorem that '

Z* = A+ 0°(2"),
which means exactly that for u € I,, we have
Zh(@) = A,() - B(z, Z%)  for a.e. uw eprojs(d).
Thus the function Z* is the requiered solution of Problem (Q), and, more-

over (in virtue of (3.8)), the estimation

1z*-2°, < U°
holds true. Hence
Z'e ‘f('U?1,...,1)"|'Z'()l,...,l)))
which means.that

- 0
Z*e &(UY,..y+Za,. .yt
The proof of the theorem is thus complete. .

- Final remarks. In a similar way we can obtain the analogues of
other theorems of Part I of the paper, concerning Carathéodory’s theory
“of differential functional equations.

In particular, we formulate the following theorem concerning tho
uniqueness of solutions.

THEOREM 3.2. Suppose assumplion (2) of Theorem 3.1. Suppose,
moreover, that for a function U° € &, Assumption (Rq(h)) s satisfied with h
equal to U\, .y and, in addition, that the inequality

(3.9) QU< T
18 fulfilled.
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Under these assumptions, if Z and W are two solutions of Pmblem (Q),

such that

(3.10) Z-Ww,< T

then

Z =W,

The proof of this theorem is quite similar to that of Theorem 10.2

in Part I,
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