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On the existence and uniqueness of solutions
of some partial differential functional equations

by ZpDzIsEAW DENEKOWSEI and ANDRZES PELOZAR (Krakéw)

Abstract. The existence and uniqueness of solutions of some initial-boundary
problems for partial differential funetional equations are considered. Some methods
of successive approximations are used to prove the existence of solutions, under suit-
able agsumptions on right-hand members of such equations. These assumptions reduce,
in some classical special cases, to well-known conditions of Kamke type. The problems
considered here generalize, among others, some olassical initial problems for delay type
ordinary differential equations and also initial-boundary problems for partial differen-
tial aquations of the hyperbolic type.

INTRODUCTION

The purpose of the present paper is to give some results on partial
differential functional equations of n-th order, with unknown functions
of n variables, considered in certain sets in the n-dimensional Buclidean
space, with initial-boundary conditions of the Cauchy-Darboux type.
Special cases of such equations are partial and ordinary delay equations
of various types (in particular, the classical). We discuss here the questions
of the existence, uniqueness and the convergence of some successive appro-
ximations for such equations, and — more generally — for some in-
tegro-differential-functional equations, since Cauchy-Darboux problems
under consideration can be transformed into problems of existence .of
solutions of certain integro-differential-functional equations. If the oper-
ators A, appearing in our equations (see Section 3) are identities in corre-
sponding classes of functions and the sets V, reduce to the surface S (see
the notation introduced in Section 1), then we obtain the classical differ-
ential equation, which can be written in the form:

Uy =S (Bry ooy By Uy Ug g oony Ugyaony Uogy oy 1y vees Ug,...z,)

with the initial-boundary condition of the Cauchy-Darboux type; in
particular, in the case n =2 we have the Oauchy-Darboux problem
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(a direct generalization of the two classical problems: of Cauchy and
Darboux) for the equation

oy = J (@)Y, Uy U a'“y)

investigated by many authors (see for instance: [1], [7]- [9], [23], [24],
[26], [30]; further, a very rich bibliography can be found in references
given in the above papers and in the book [30]). Some generalizations
of the problem of Cauchy and Darboux and also of the Cauchy—Darboux
problem generalizing the both, are problems considered (and introduced)
by Szmydt [28] (see also Lasota [16] and Bielecki [1]). Our generaliza-
tions are of some other kind; we consider equations in which some oper-
ators are applied to unknown functions. Such equations for n = .2 have
been considered by Kisielewicz [6], Mangeron [17], Mangeron and Kri-
vosein [18], [19], Palczewski [22] and for n arbitrary by Kwapisz and
Turo [14], Turo [29], Pelezar [26] (only in the case of such functions f
which do not depend on the partial derivativés of unknown functions)
and Kilapyta [10], [11]. Let us note here that before some papers on
n-dimensional functional differential equations have been published, the
natural generalizations of the clagsical Darboux problem for the n-dimen-
sional case had been discussed; we quote for example: Castellano [2],
Conlan and Diaz [3], Glick [5], Nappi [20], Kwapisz, Palczewski and
Pawelski [13] and others (for further references see for instance [26]).

The questions of existence and uniqueness of solutions, as well as
of the convergence of successive approximations, should be always con-
sidered with respect to some class of regularity; one can require various
conditions of regularity which must be fulfilled by solutions, or — in
other words — one can try to find solutions (unique or not) in various
clagses of regulanty and try to prove the convergence of successive approx-
imations in various functional spaces. For example, in [23] and [24]
there are considered regular solutions (being of the so called class 0*)
of equations in the classical sense; in [27] corresponding equations are
essentially understood in the sense “almost everywhere”. Generalized
solutions are considered for example by Kisyndski in [7] and by Kisynski
and Pelezar in [9]. In the first part of the present paper we shall consider
the classical solutions, in the second part there are investigated equations
in the sense “almost everywhere”.

We do not present here any complete classification of the refer-
ences from all points of view; in particular, we do not state precisely
which of the referred papers deal with equations in Banach spaces and
which with of them finite dimensional spaces. In the present paper we
limit ourselves to the finite dimensional case only, some natural genera-
lizations for Banach spaces are possible.
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We shall consider, as mentioned above, some method of successive
approximations, which has been used in various versions and under
various assumptions in many papers, with respect to classical and ge-
neralized problems concerning partial and ordinary differential equations,
integro-differential equations, functional differential and. functional in-
tegral equations and very general functional equations in some abstract
spaccs (see for instance: [9], [12], [14], [15], [21], [24], [26], [27],
[29], [30]). , : ,

The general idea.of the method used here is taken from the funda-
mental paper of Wazewski [31]; we use in Section 10 in the proof of Theo-
rem 10.1 the method slightly modified and adopted to generalized inte-
gro-functional equations, presented by Kwapisz and Turo in [14] and [15]
(see also Turo [29] and other papers of these authors referred in [29]),.
and in Section 12, in the proof of Theorem 12.1, we use the successive’
approximations method taken almost directly from papers [23], [24],
[26], based on [81]. |

In the second part of the paper we use the same method as in Section.
10; certain possibilities of modifications, analogous to those from Sec-
tion 12, are just mentioned, without details. For some general remarks
on the methods used here we refer to paper [25].

Since the equations considered here are similar to those occurring
in [14], [15] and [29], we shall give some remarks on the correspondence
between them. Formally, cur results are neither special cases of the main
results of [14], [15], [29], nor any generalizations of them. The main
results of the present paper are, however, some generalizations of theo-
rems which can be viewed as certain special cases of the results from [14],
[15], [29]; we mean have the theorems obtained by an application of the
general results for the n-dimensional space, to integro-functional-differen-
tial equations of type (5.1). Here we shall consider very general operators 4 ,.
In particular, we admit operators being essentially of the.delay type
(including some constant delay-deviation of the independent variables).
This is ensured by conditions concerning the sets V,. One can extend
our results to Banach spaces and also to more general equations..

We shall make a few remarks on this subject in the sequel.

Note, finally, that the problem of the existence of solutions of equa-
tions of the same type as that considered here, without unigueness, has
been discussed in [4]. ' '

"PART 1
1. Preliminaries
1.1. Notation. By R, R, R,, N, N, we denote — respectively —

the sets of: real numbers, real non-negative, real positive numbers, posi-
tive integers, non-negative integers.
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Tor a set A we denote, as usual, by A" the Cartesian product 4 x ...
. XA (n-times). Hence R" = {(21,...,%,): 4; € R} i3 identified with
the n-dimensional Euclidean space. We write By R} and N{ in place of
(R4)", (B (M), respectively. For a set A — R" we denote by 04,
int.4 and 4 — respectively — the boundary, the interior and the closure
of A.
If & = (by,...,b,) €R", we write

(1.1) (=00, b] = (—00,by]X ... X(—00,b,].
If a =(ay,...,a,) R and b = (b, ..., b,) e B", then
_at
a<b<wa<bh for every 1e{l,...,n},

o af
1.2y a<b< a,<b; for every ¢e{l,...,n},

a<b b a<b and a;<b forsomeiefll,...,n}
For a, b e B" 'such that a < b we. write
(1.3) [@, D] = [@, B3] X ... X [@,,b,].
The same convention is adopted for %‘-dimensiona,l, intervals:
(s, D), (a, ], [a, D)

0
{under the assumption that a < b).
If 4 € R" and # € R", then we define

(1.4) BB = (815 ery fhy )
(we shall often write uw in place of x -z) and
(1.5) A, = {um: © e R"}.

If ue Ny, then we write
(1.6) L—p = (1= fayy eery 1—piy).

In particular, we shall consider u € R" such that y, e {0,1} (6 = 1,...,%);
in this case 1—pu is also of the same type, (1—u); =1—u; € {0,1}
(¢ =1,...,n). In this special case the sets

Ay = {(p1@1y ..y puw,): @ € B}
and Ay, = {((1—p)@y, ..., (1—p,)z,): ©eR"

are subsets of the union of all hyperplanes H; (¢ =1, ..., n), where H;
is defined by the equality: @; = 0.

If M = {M;}is a (kx p)-matrix and 2 € R*, then we denote by
Mz
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the usual product; hence, this is the element of R? whose coordinates are
given by the formulae

k
(sz)i':ZMi]'zj ('i=1,...,p).

j=1
When using multiindices, we shall apply the standard notation:
for p = (4yy ..., 4,) € N, we write -
(1.7) lul = p+ . iy
We shall extend this notation to arbitrary e RB", putting

(1‘8) 2| = Imll + .+ |w17.| .
‘We shall also use another symbol: if # € R*, then

(1.9) [Zlo = (I%ly .-y l0n]).
Hence |z|, belongs to R".

1.2. If a function w is defined in a set A and has its values in a set B,
then for any subset D of the set 4, we denote by w|, the restriction of w
to the set D.

If two functions « and w are defined. in some sets 4 and B, respec-
tively, and have values in a set 0 and, moreover,

Ulgnr = WanB

(it is possible that AN B = @, then the above condition is fulfiled triv-
ially), then we define the union % uUw as the function given by the formula

u(w) for wed,
(wUw)(x) = '
w(z) for zxeB.
If w: A— R® is a given function, then |w| or |w|, denote, respec-
tively, the functions:
A sz |w(x)je Ry
and
A 32— |w(w)|, € Ri
(cf. (1.8) and (1.9)).
Moreover, we put for such a function w:

max {w(z): e A} = (max {w,(z): = €4}, ..., max{w,(2): wcA}).

The same convention is used for supw, infw and min2.

If the domain of a function w is known and fixed in a particular pro!)-
lem, then we shall write shrotly maxw instead of max {w(z): @ € domain
of w}.
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Finally, we introduce the natural convention: if u, w: 4 — R?,
then

u < W gu(w) Sw(z) for every wed
(that means (séé (1.2)) that wu;(=2) ;<,w,;'(w) for every i € {1,..., 9}, @ € 4).
1.3. Preliminary assumptions. We shall consider the dimension »
of the space R™ in which we carry owr investigations as fixed. Suppose

that b e R" is fixed. Let 4 be a subset of E" con51dered also as fixed
throughout the paper. We assume that

(1.10) 4 18 connectec_l, closed
and fulfils the following condition:
(W) if » =(»y,...,2,)€ zi\{b}, then there exists & = (1, ...,%,) e R
such that [z,2+1] < 4 and, moreover,
({Ba X (=00, By] X ... X (—00,b,])NEE < 4,
(111)  ((—o00, by]X {by} X (— 09, b1 X ... X(—00,B,])NR} < 4,
((--00, bylX ... X(—00,b, ,]X {bn})mRZ: < 4,
(1.12) 4 < [0,0b].
It is clear that 0 € 4 if and only if 4 = [0, b].
An example of a set 4 which is not an n-dimensional cube, but fulfils
conditions (1.10)-(1.12) is the triangle AB(0 on the plane R°, where

4 =10,1), B=(1,1), 0 =(1,0).
Yor a point ze 4 we write

(1.13) 4, =[0,x]n4d.
Observe that A, = 4. By § we denote the sat

(114) AN[0,b]\(int 4)\{= e B": w; =b, for some ie{l,..., n}}.

It is clear that § « 04 and that S is compact.

We supposce that 8, being obviously a hypersurface in R", has the
form

(1.15) 8§ =xulJx,
i
where
(1.16) Xy =8n{weR": 2, =0}, idefl,...,n}

and X° is a hypersurface, which we shall describe more plcclscly below.
Let us consider the following projection mappings

(1.17)  proji: B™ 2 (@1, couy 8,) 2 (Bry e ony Dpoyy By -0y &) € BP71
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In particular we have
(1.18)  proj,(Z;) = {1y« Liyy Bip1y ovey & .) € R*L:
(@ry eeay Biqy Oy Byg1y oeny &) €

The requu'ed properties of the surface X° are described by the fol-
lowing

ASSUMPTION (A,). It 48 assumed that there are n funetions q:, (¢
€ {1, ..., n}) with the following properties:

(1 19) @:: 8~ [0, ‘l‘h‘]y

where -

(1.20) §; = Proj(S)\Proj(Z) (i {L,..., n}),
(1.21) gilw) =0  for x e §;nproj;(Z,),

(1.22) | @; is continuous (i e {1,...,n}),

(1.23:) @ is'strictly decreasing with respect to each variable,

that is: if
i< Yy,
then
@i @iy ooy Doty Brgpy oovy Bjay Bpy Bppry oeny Fn) > @i(Bryeeny Byoqy By o
-1’wj—11?/j7wj+17~--;mn) (ie{l’_---a""})a
(1.24) :D‘} = ?’j(mga ooy m}—n 511 seey wy) - if and only if

By = @ (B0 eery Doy Bhry eeny @) for every ke {l,...,n}.
Remark 1.1. In implication (1.23) it is obviously assumed that
J # 4, since g, is defined for all variables except ;.
" Remark 1.2. In virtue of (1.24) we have the set equality

(1.26) 2" ={(#y,...,®,) € §: there is an 4 {1, ..., n} such that
By = @y(Bry -y By_ay Digry -y By)}
= {(21y .., ®,) € 8: for every i€ {1,...,n} we have
By = @(Bry ervy Byoyy Big1y 1wn)}

1.4. Differential operators. For u € N3\ {0} we define the dlfferentlal
operator D, by the formula
¥y grttin

(1.20) Duth = 5 = i oan "

(for sufficiently regular u).
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Furthermore, we put

(1.26) Dy = D,....o) = identity
and
(1.27) D = Dy,...1)-
an
This means that Dy4 = and Du = ——F— .
0%, ... 0m,

By I, we dcnote the set of all elements u belonging to Ry such that
p;=00ru, =1forie{l,...,n} and (4| = g+ ... +p, <n—1. In the
sequel we shall consider D, only for u eI, or for u = (1,...,1).

We extend notation (1.25)-(1.27) for systems of m funoctions
(yli A | ym): lf

Y= (Y1y.+yYn): B">R"

is sufficiently regular, then we put

(1.28) Diy =D,y; (tefl,...,m})
and
(1.29) -Dp?/ = -(D},’!/, AN -D?:?/)'

We shall extend the above notation to one side partial derivatives
in Section 2.

1.5. The family of sets {/7,}. There is given a family {V,},.s, of closed
and connected subsets of the set

——

(1.30) (BEZ)U([0, b]\int )
such that

(1.31) Vind =8  for every u
and, moreover, for every 4 €I,, u # 0, we have
(1.32) (intV,)N[4,_,n @V 2] =a.

Condition (1.32) means that in the set 4, ,N(dV,\Z°) there are
no accumulation points of the interior of V,. This family will be con-
sidered as given and fixed throughout the paper.

At the figure we give an interpretation of the conditions introduced
above with respect to the set A and the sets V,, in the case n = 2. In the
figure there is also given an example of an impossible situation: the
position of V|, ;) marked by the segment-line, is excluded.

1.6. Some constants. Let us consider the mapping

(1.33) Adaw— |dt (= measure of 4,) € Rx.

4,
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Xa A

It is well known that for every u eI, and every ze A there is a seh
4,,, = B* ", whose measure is uniquely determined by « and u, such that,

(1.34) D, [at= [ds-

(more precisely:

(D [@t)(@)= [(@—mar).
4. z,p
On the right-hand side of (1.34) we have the (n — [u[)-dimensional inte-
gral representing the (n — |u|) measure of the set 4, ,. Of course we have

Az,p = pl‘Oj,‘(Ax)
and this set considered as a subset of R" is contained in 4, , (see (1.5));

here by proj, we mean the composition of proj; for such ¢ for which. u; =1

(n = (By+e ey Pin))s
For every u € I, we put

»

(1.35) Pt = f ds (= max{measd, ,: € 4}).

Ab.p
Let us now denote by J, (for any x e I,) the set of all i e {1, ..., n} for
which u; = 0; this means that 7eJ, < [the -th coordinate of the
point uz is equal to zero for every x € A]. For u €I, we denote by h,,
the mapping

(1.36) A3 (@, ..y0,)—> [dseR.

‘d.’It i
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Now, for a,njr pel, and i €d, we define

(1.37) T% = [the least constant with which the mapping &, fulfils
the Lipschitz condition with respect to the variable z;].

2. Fundamental classes of funetions
If u e Ny, p; €{0,1}, then by
C,(dud)

(or shortly C,) we denote the class of all real functions defined in AUV,
which are of class (%, that is, for which all the partial derivatives

il
—5'5; for v = (¥y, ..y %), 0w < iy
exist and are continuous.

The meaning of the term: class 0 and thus also the precise sense

of the definition of 0,(4U V), will be explained in all details below.

(I I) We say that a function u: A~ B is of class C*(A) (w belongs to
(A)) it and only if the following conditions hold true:

(a) v is of class C* in tho ordinary, sense, in the interior of 4;

(b) if & € 4 is such that &, = b, for % belongmg to0 {i3, ..., %} (where
of course r<n and 4,,...,05,€{l,...,n}), &<b, for Le{l,...,n}\
N{iyy ..., %,} and & > 0 for 70 e{1,..., fn,} y fhien « has at the point & the con-
tinuous partial derivatives of the first order du/dw; for these indices j
for which & < b; and u; > 0, and « has at the point £ the continuous
partial left-hand. derivatives (lcft) —0u /6a‘ for these  indices 4 for which
£ =b; and ;> 0;

-each derivative (left-hand derivative) du/dz; has at the point & the contin-

_ . L d (0u
nous partial derivatives PR (—m) for s such that tha > 0,8 ¢{iqy.enytpyihy
. ’ ,

and continuous left-hand derivatives S (-6—;&—) for ¢ such that wu, > 0,
¢t \ 0%

t # gyt e {iy,y ..., 1.}, ete, (cf Pelezar [26], Definition 0.4.1);

{e) if &ed is such that & =0 for ke {iy,...,4,} and &, # b, for
ke{l,...,n}, then 4 has at the point £ the continuous partial derivatives
of the first order.du/dz; for j such that & > 0, u; > 0, and « has at the
point £ the right-hand derivatives (right) —odu/dw; for j such that E, = 0,
u; > 0, etc. (see Definition 0.4.1 in [26]);

(d) If £e X’ and &, # b, for ke {1,...,n}, then » has at the pomt &
all continuwous partial right-hand denva.tlves (right) —8"joz” for » < g,
ve NJ;
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(e) if £e8 and & =10, for ke {3y, ..., %}, then we assume that all
¥l

partial derivatives (5{7@)(-) regarded as functions defined in int 4,

hayve limits at £ as o — &, © € 4;
T

e %)(E);

these limits are denoted also by (

alvl ,
(f) it is supposed that the functions — e ~ i, ¥ < 4, v € Ny (including

the case v = (0, ..., 0)), where the symbols of partial derivatives denote
in some cages left-hand derivatives, right-hand derivatives or limits of
derivatives (see (b), (d), (e)) (and, in the case y= 0, denote the function.
itself) are continuous in 4.

(II) We say that a function w: V,~ R is of class C*(V,) (w belongs
to 0"(17 )) if and only if w is the restriction of a function v: 13 — R, where I~7
is & set containing the set V,, open in (R"\R})U ([0, b]\4), such tha.t
V NEY = V,NERE, and v is of class C* in the ordinary sense in (l7 \Ry)U
u([O b]\A) a,nd has the continuous partial derivatives of suitable orders

at points belonging to 15' NRY in the sense that — for instance — if £
is such that & = §, =... =§ =0, then the partial derivatives with
respect to m", .y @;, are taJ:en as left-hand derivatives (cf. (b) in (I)
ahove), ete.

(III) Now we define precisely the class C,(4UV,) as the set of all
functions

(2.1) u: AUV, >R

such that, putting
(2.2) v =ly, W, =l ,

we obtain

(2.3) ) v e C*(4)
and
(2.4) w, € C“(V,)

in the sense of (I) and (II), respectively, and, moreover,

5""7,0,, alilv

5 &) =

(2.5)

(»< )

for every ée S (= V,n4), w;vhere the partial derivatives of w and v are
defined as in (I) and (II), respectively.

4 — Annales Polonici Mathematicl XXXV z. 3
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TFinally, we can d(efine the class @’,, with which we shall be concerned
in the sequel.

DErINITION 2.1. Let p € I,. We say that a fu'l{ction u 18 of the cluss C‘,,
(shortly « € C,) if and only if

(2.6) u: AV - R,
where
(2.7} V={,: 0y u,veNy}

and every restriction
\

(2.8) ulpus  (0<v<p, »eN}

belongs to the class C,(4u V,); this means that one can write shortly
(with some inessential “non-formality”) that

(2.9) d,= N c,(4ur,).
v )

For any p € N we denote by (5{,’ the Cartesian product (f? «)7, where

(@,,)” = du X eee X (.}# (p-times).

DEFINITION 2.2. We say that « belongs to é(],...,n if and only if u e 6‘,,
for every u € I,, and, moreover, the restriction of « to the set 4 is of class
O ( A) in the sense of (I). '

DEFINITION 2.3. For ueI,u{l,...,1} we denote by €, the class
of all functions

v: V>R

guch that
|y, € C°(V,)

(see (II)) for every » € Ny, » < u.

By 0% we denote the Cartesian product (C,).

Now we shall use the convention that the symbol D, is extended
to derivatives in the sense of (I)-(I1I); this means that D,u can be equal

to right-hand or left-hand derivative or can denote a suitable.limit of
derivatives.

In (:J,, we introduce the natural topology of uniform convergence
of all partial derivatives D, for » < u, » € Nj; of course, the convergence
of D, is congidered only in the set AU V,.

This means that if {,} =« C,, k =1,2,..., we (3‘,,, then

w = limwu,
le—o0
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in the above sense if and only if D, u, tends uniformly in AUV, to D,u
for each v € Ny, » < p. '

The same topology is considered in Cﬁ,.

For any p € N we introduce in ¢ and {? the usual topology of the
Cartesian product.

If V, is unbounded, then uniform convergence has to be replaced
by almost uniform convergence.

We shall use the following abreviations:

(210) G, =0Cy(dul,), 0 ,=1(C,,)° for uel,,seN
(here 0 = (0, ..., 0) e R").

3. Formulation of problem

Let m be a positive integer, fixed in the sequel, let %, (4 € I,) be
positive integers, also fixed throughout the paper. We shall consider
continuous operators .

(3.1) A,: O, 0, pel,.
Let

(3.2) f: A x R™*u  B™,
where

(3.3) Z k, = 2{75,,: pel},

be a funection having suitable regularity proprieties. We shall assume that f
is continuous (in the first part of the paper) or that f fulfils the Carathéo-
dory conditions (in the second part); the details will be formulated below.
Let
@: V- R™

We shall congider the (generalized) Canchy—Darboux Problen}:‘
PrOBLEM (P). Given a function ¢ € O}, .y, find a function y € C .
Julfilling the following equations:

(3.4)  (Dy)(@) = flz, (Ae3) (@), (4g,,...0 Pig,e,...0 ¥} (@), (Ag,0,....00)
D0, W) (@) ooy (Ag,. oy Doo,..oony ¥) (@) -y (A, D) (), -
sy (A(o,l,...,1)D(o,1,...,1)?/)(’m)) for z € 4,
(3.5) y(@) =p(z) foraxzel,

(3.6) D, (yi)(@) = (D,p)(@) for e D', and vel,.
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4. Some special case of the Cauchy-Darboux problem

Let a function p e O be given. Consider the following Cauchy-
Darboux problem:

(_4.1) (Du)(z) =0 for we 4,
(4.2) w(2) = ¢(x) for z e 8, '
43) - (D,u)(w) = Dyp() for we X', wel,.

PROPOSITION 4.1. IFor overy @ e 0% .. problem (4.1)-(4.3) has
exactly one solution of class ().

The proof of this proposﬂnon is quite elementary and will be omitted.
DerINITION 4.1, For a given p € 0}’1‘ ,,,,, 1y we shall denote by A, the
unigque (in the class Cf . 1(4)) solution of (4.1)—(4.3).

5. Integral equations equivalent to the Cauchy-Darboux problem

5.1. We shall replace Problem (P) by some’ integral equation. It is
a simple equation being a natural generalization of the classical integral
equatlons considered in the theory of ordinary differential equations.

We first formulate the fo]lowmg easy

TreoREM b.1. Suppose that all asumptions introduced in the previous
sections are satzsfwd Assume that the function f (see (3.2)) is continuous
and g e (P . !

quf.@:;ff?qblqm (P) ds equivalent to the follow'iaz,g
ProBrEM (P*). Find o function
o y: AUV > R™

belonging to C’"‘ for every u eI, such that {3.5) and (3.6) are satisfied, and,
moreover, samsf ying, the following equality : \

(5-1) y(®) = A+ ff.-(ta (A(O....,O)?/) () -..y _(A(o,l,...,l)D(u,l,...,1)y) (t)) dt
dy F :

where A, is defined as in Section 4.
We shall omit a trivial proof of this theorem.

5.2. Now we shall slightly modify equation (5-.1).
It is easy to see that the number of elements of I, is equal to
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Let us put, m being fixed previously (cf. Section 3),

(5.2) g =m(2"—1).

Let

Z =(Zp,..on Zo,,..0 Z0,,..,03 1 50,4, 4R

be such that for every u eI, the function
Z,: 4~ R"

belongs to the space (0y(4))™ (shortly, Z, e O,

‘We shall speak shortly that such a mapping .

Zy A—> R
i8 continuous.

Suppose that ¢ is a function belonging to the class Gy We
assume that

(5.3) | Z,)s =D,ply for wel,
and we denote

(5.4) Z, = Z,vD,p for pel,.
We shall write shortly

(5.5) [ £lt, (AZ) () an
instead of =

Now we define '
(5.7) Fo(@,2) = [ft, (AZ)()dt for me 4,
and N
(5.8) P (,%) = (D, Fo(+,2))(®) for wed, pel,.

ExAMPLE. Let n = 2 and let
4 =AUV = {(#1, @s): g(21) < B < by} = {(1, 2)t h(2a) < D1 < by},

where g (resp. k) is a strietly decreasing continuous function from [0, b,]
onto [0, b,] (vesp. from [0, b,] onto [0, b,]) such that ¢ = h™*, A, = iden-
tity (for 4 = (0, 0), (1, 0), (0, 1)), and, finally, let f: R®x R*— R be a con-
tinuous function. Then, for

Z = (Zaop Z,0)) Bo,n) = (g 0, w): 4> E


























































































